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ABSTRACT. A nowvel decision-based filter based on support vector machines (SVMs) that
preserves image details and effectively suppresses impulsive noise is proposed. The filter
employs an SVM impulse detector to judge whether an input pizel is noisy. If a noisy
pizel is detected, a noise-free lower-upper-middle (LUM) filter is triggered to replace it;
otherwise, it stays unchanged. To improve the quality of the restored image, an adap-
tive LUM filter based on scalar quantization (SQ) is employed. The optimal weights of
the adaptive LUM filter are obtained using the least mean square (LMS) learning algo-
rithm. FExperimental results demonstrate that the proposed scheme outperforms existing
decision-based median filters in terms of noise suppression and detail preservation. The
proposed filter is also robust against various levels of impulsive noise.

Keywords: Support vector machine, Least mean square, Impulsive noise, Image restora-
tion

1. Introduction. The imperfection of communication channels and image sensors intro-
duces impulsive noise in the form of outliers and bit errors [1-3]. Impulsive noise is a
common type of noise that often corrupts digital images. Noise signals are usually strong
enough to be sensed by the human eye. Image pre-processing techniques play a key role in
image processing applications such as computer vision and pattern recognition. Denois-
ing is thus an essential step before image compression, image retrieval, image copyright
protection, edge detection, and object recognition for image processing [32-35]. Image
denoising is concerned with not only how to efficiently remove impulsive noise, but also
how to preserve image details. Developing an effective image denoising technique has
become increasingly important for image processing applications.

A number of approaches have been developed for image denoising. Due to its efficient
suppression of impulsive noise, the median filter is a well-known nonlinear filter. However,
while suppressing impulsive noise, the median filter sometimes removes fine details. In
recent years, variants of the median filter such as weight median (WM) filters, fuzzy-rule-
based filters and decision-based filters have been developed in an attempt to improve it
[1,4-18]. Satisfactory results have been achieved using these filters. Nevertheless, many
WM filters tend to mistakenly alter noise-free pixels. Arakawa et al. proposed a median-
type filter controlled by fuzzy rules [4]. An extension of the method, called the partition
fuzzy median filter, has also been developed [9]. In fuzzy-based schemes, the optimal
weights of the mutually exclusive blocks are realized by training with a reference image.
Although good filtering results can be achieved, the filter has a relatively large number
of parameters and the generalization capability is poor.

The effectiveness of decision-based filters depends on the effectiveness of the detection
process. The switching median (SWM) filter by Sun and Neuvo is based on a threshold
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value [16]. The final output switches between the median filter and identity filter. The
tri-state median (TSM) filter comprises a median filter, an identity filter and a center
weighted median (CWM) filter; it is a special case of the WM filter [6,17,18]. Noise
detection is realized by an impulse detector, which takes the outputs from the CWM
filter and median filter and compares them with the input pixel value to make a tri-
state decision. Recently, a decision-based adaptive low-upper-middle (DALUM) filter
was developed [36]. In order to keep the noise-free pixels unchanged, the probability of
the local contrast entropy in the filter window is used to judge whether the input pixel is
noisy. Generally, the practice of threshold function in decision-based filters is critical in
obtaining high noise reduction rates and preserving details. The latest advancement is the
adaptive two-pass median (ATM) filter based on support vector machines (SVMs) by Lin
and Yu, called the support vector classifier (SVC)-based filter [1]. The SVC-based filter
can be regarded as a decision-based filter. It first utilizes SVMs to classify the signal as
either noise-corrupted or noise-free and then applies a noise-free reduction filter to remove
corrupted pixels. It preserves image details while efficiently suppressing impulsive noise.
However, to improve filtering performance, the SVC-based filter requires proper threshold
values for a pre-assumed noise density level in second-pass filtering.

In the present study, a novel adaptive SVC-based (ASVC) filter based on SVMs and
a least mean square (LMS) learning algorithm that overcomes the drawbacks of existing
methods is proposed. The proposed ASVC filter comprises an SVM impulse detector and
two low-upper-middle (LUM) smoothers [21,22]. First, the ASVC filter follows the SVM
approach; an impulse detection algorithm is used to separate noise-corrupted pixels from
noise-free pixels. The accuracy of the SVM impulse detector is satisfactory. Then, only
the detected noise-corrupted pixels are filtered; the noise-free pixels are kept unchanged
to better preserve image details. The ASVC filter resembles the ATM filter, but its pa-
rameters are easily obtained for various noise ratios. The ASVC filter does not require
the threshold parameter for LUM filtering. The proposed adaptive LUM filter uses an
adjustable weight to best balance the tradeoff between impulsive noise suppression and
image detail preservation. The scalar quantizer (SQ) method and a learning approach
based on the LMS algorithm are employed to obtain the optimal weight for each block
independently [19,20]. With this filtering framework, the proposed ASVC filter signifi-
cantly outperforms existing median-based filters in terms of noise suppression and detail
preservation. The proposed filter is also robust against various impulsive noise ratios.

The rest of this paper is organized as follows. In Section 2, the basic idea of the
adaptive LUM filter is introduced. In Section 3, the design of the proposed ASVC filter is
presented in detail. In Section 4, the results of some extensive experiments demonstrate
that the proposed ASVC filter outperforms existing median-based median filters. Finally,
the conclusion is given in Section 5.

2. LUM Filters. In this section, the algorithms of SVMs for binary classification can
be found in [23-30]. Then, LUM filters are introduced.

Let C' = {(ki,k2)|1 < ky < H,1 < ky < W} denote the pixel coordinates of the noisy
image corrupted by impulsive noise, where H and W are the image height and width,
respectively. Let x(k) represent the input pixel value of the noisy image at location k € C.
At each location k, the observed filter window w{k}, whose size is N =2n+1 (n is a
non-negative integer), is defined in terms of the coordinates symmetrically surrounding
the input pixel z(k).

w{ky = {z;(k): f=1,2,...,n,n+1,...,N}, (1)

where the input pixel z(k) = 2,41 (k) is the center pixel.
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Nonlinear low-upper-middle (LUM) smoothers, which are a subclass of LUM filters
that take advantage of the computational efficiency of order-statistics-based operators,
have been shown to be equivalent to center weighted median (CWM) filters [21,22]. LUM
smoothers are defined as:

y(k) = MED{x ) (k), 2(k), £v-i11)(k)}, (2)

where M ED denotes the median operation, 1 <[ < (N +1)/2, z(k) is the central sample
from the filter window w{k}, and z¢1)(k) < z@)(k) < ... < z(y)(k) is the rank-ordered
set. of w{k}. Here, x()(k) and z(y_;11)(k) are the lower-order statistic and upper-order
statistic, respectively, and [ is the control weight for the smoothing. The amount of
smoothing done by LUM smoothers can range from y(k) = z(k) (for [ = 1) to the median
(for I = (N +1)/2).

The weight [ of non-adaptive LUM filters is a compromise between noise suppression
and detail preservation. However, LUM filters uniformly process the whole noisy image,
which leads to possible excessive or insufficient smoothing. In the present study, to best
balance the tradeoff between impulsive noise suppression and image detail preservation,
the weight [ of the LUM filter is made adjustable according to the local feature of the
filter window.

3. Design of the ASVC Filter.

3.1. Structure of the ASVC filter. The framework of the proposed ASVC filter is
illustrated in Figure 1. The filter comprises an SVM impulse detector and two LUM
filters. The SVM impulse detector is first used to efficiently determine whether the LUM
filter or the identity filter should be used. The input pixels are first identified by the SVM
impulse detector as either noise-corrupted or noise-free. Then, according to the results
of the SVM impulse detector, either the LUM filter is used to remove impulsive noise or
the identity filter (no filtering) is used to preserve true pixels. The first LUM filter can
remove most of the noise, but some impulsive noise might remain. In order to alleviate
this problem, an adaptive LUM filter is used to remove residue impulses with small signal
distortion.

LUM
O il .
Nois _ SVM ter Adaptive Restored
: (3/ impulse > > image
1mage detector oly| Identity LUM filter =
filter

FIGURE 1. Structure of ASVC filter

3.2. SVM impulse detector. Decision-based median filters are used to avoid smoothing
the image during filtering. They mainly use a detection process to separate noise-free
pixels from noise-corrupted pixels. Pixels are left unchanged if they are judged as noise-
free. In the present study, an SVM impulse detector based on the SVM approach is
proposed to identify noise. This design includes two steps: (1) feature extraction and (2)
training of the SVM impulse detector.
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3.2.1. Feature extraction. Since noise filtering effectiveness heavily depends on the cor-
rectness of noise detection, in designing decision-based filters, the SVM impulse detector
should be made as precise as possible. Before noise filtering begins, the local features of
the filter window w{k} must be extracted to identify noisy pixels [1]. The local features
in the filter window, such as prominent signals and the possible presence of details and
edges, are taken into account. The following three variables are defined to generate feature
vector f{k} as the input data of the SVM impulse detector.

Definition 3.1. The variable c¢(k) denotes the absolute difference between the input (k)
and the median value of w{k} as follows [1,9]:

c(k) = |z(k) — MED(w{k})|.

A large c(k) value indicates that the central pizel x(k) stands out among its neighboring
pizels; that is, the input x(k) may be corrupted by impulsive noise. Most impulsive noise
can be detected by using the variable c(k) as an indicator. However, if only the c(k) value is
used to judge whether impulsive noise exists, it would be difficult to fully separate impulsive
noise. For example, line components and edges are usually present in an image; therefore,
if x(k) is located on a line or an edge, it may be mistakenly interpreted as impulsive noise
and removed. To avoid misjudgments, it is necessary to add other observations. Therefore,
two extra variables, [(k) and e(k) are used.

Definition 3.2. ¢*°(k) = MED{z(k),...,z,(k), wodxni1(k),...,xn(k)}, where
MED{x(k),...,xn(k), wodxni1(k),...,xn(k)}
= MED{x(k),... ,xn(k),gcnﬂ(k), e ,xnﬂ(k)j ooy (k)}

-~
wo times

here, wq denotes a non-negative integer weight, and wox,.1(k) means that there are wy
copies of input pizel x(k) = x,41(k) [11].

Definition 3.3. I(k) = |z(k) — (k).
Definition 3.4. e(k) = |z(k) — (k)|

If the variable [(k) is used, then a pixel on an edge component in the filter window
w{k} will not be detected as noise because of its small [(k) value. In addition, if the
variable e(k) is used, then a pixel on a line component in the filter window w{k} will not
be detected as noise because of its small e(k) value.

In the present study, the feature vector is given by:

f{k} = {c(k), (k). e(k)}. (3)
The feature vector f{k} serves as the input data set to the SVM impulse detector. This
feature information is also used in the filtering stage.

3.2.2. Training of the SVM classifier. The optimal separating hyperplane can be obtained
through a training process by using a set of supervised class labels y; € {—1,1} for the
training corrupted image. The input in the training process is the set of unsupervised
feature f{k}. Figure 2 shows the feedforward network architecture of the SVM impulse
detector that identifies noise-free pixels and noise-corrupted pixels [1]. After learning, the
nonlinearly inseparable discrimination function, as shown in Equation (7), is obtained to
separate the training data into two classes (noise-free or noise-corrupted). That is, the
optimal separating hyperplane is obtained. This efficient design minimizes the risk of
misclassification not only in the training set (i.e., training errors) but also in the test set
(i.e., generalization errors).
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Class Level y

c(k) I(k) e(k)

Input vector f{k} = {c(k),l(k),e(k)}

FIGURE 2. Feedforward network architecture of support vector machines

3.3. Adaptive weight of the LUM filter. Adaptive weight [ allows the LUM filter to
perform various degrees of noise suppression and image detail preservation. To determine
adaptive weight [, a weight controller (the switching scheme shown in Figure 3) is proposed
in this work [11]. Note that d(-) shown in Figure 3, which is defined as a function
of the feature vector, is a classifier used to determine the partitioning, and S;(k),i €
{1,2,..., M} serves as adaptive weight [ for the LUM filter. The scalar quantization
(SQ) method is used to partition the feature vector space into M blocks, and the LMS
learning algorithm is used to set the weight for each block to minimize the mean square
error of the filter output.

Weight controller

] LUM OU[pl]t
» : —> y(k)
filtering g

F1GURE 3. Structure of the adaptive LUM filter
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3.3.1. Partitioning of the feature space. The feature vector exists in feature vector space

R3:
FAkY = {c(k), U(k), e(k)} € R°. (4)
The weight controller, shown in Figure 3, decides that 2 is partitioned into M mutually
exclusive blocks ;, i = 1,2,..., M. Then, each weight 3;(k) is associated with the i-th
block in the partition given by:

Q= {f{k}y e R d(f{k}) =i}, i=1,2,..., M, (5)

where the classifier d(-) is now defined as a function of feature vector f{k}. As a result,
the M blocks satisfy:

M
R = and Q; N Q; = ¢, fori # . (6)
i=1
Each input z(k) corresponding to f{k} is classified into one of the M blocks by the
classifier d(-). Due to the low computational complexity of the partitioning indices, the
classifier d(-) can be designed using simple scalar quantization (SQ) [9,11,31].

Each scalar component f;{k} € {c(k),l(k),e(k)}, 7 =1,2,3 of f{k} can be classified
independently using SQ, which involves an encoder mapping process and a decoder map-
ping process [31]. The encoder mapping process involves receiving the input value f;{k}
and providing an output codeword, which is determined using the interval in which the
value falls. The decoder mapping process transforms the codeword into a representative
value ¢. In the present study, the encoder mapping process divides the range [0, 255] into
five intervals such that each scalar component f;{k} belongs to one of the five intervals,
as shown in Figure 4 [11]. This way, each block Q; can be represented by a Cartesian
product of three interval blocks, s, so and ss3; that is, €2; = s; X s9 X s3. For example,
an input c¢(k) to the quantizer with a value between 2 and 5 will result in the output
¢; = 2. An input [(k) with a value between 35 and 60 will result in the output ¢go = 4. An
input e(k) with a value between 60 and 255 will result in the output g5 = 5. When the
representation values ¢, ¢ and ¢z are obtained, a vector V;{k} = {q1, ¢2, ¢3} is described
as d(f{k}) =1i,i € {1,2,..., M}. Each unique vector V;{k} defines a distinct block €;,
and thus the feature vector space consists of M exclusive blocks that together form the
entire observation vector space. Three-dimensional array A can be used to perform the
partitioning as follows:

Alg]leellas], 1< <5, 1<¢g <5, 1<¢3<5.

3.3.2. Setting of weights using LMS algorithm. Designing the optimal weight 3;(k), i =
1,2,..., M for the adaptive LUM filter requires minimizing the mean square error (MSE).
The value of f3;(k) can be obtained independently by executing the LMS algorithm, which
is capable of minimizing the error function with respect to block €2; [26]. The weights
Bi(k) corresponding to block €; can be adjusted in an iterative fashion along with the
error surface toward the optimal solution. For each input (k) associated with block €2;,
the value of f;(k) is updated iteratively in a gradient way:

(t) . (t) . (t+1)
5 (1) = { A0 nllblleth) —olhl, 720 -

)

Here, the error e(k) is the difference between the desired output o(k) and the physical
output y(k) [11]. BZ-(O)(k) represents the initial weight, and ﬁi(t)(k) is the weight after the
t-th iteration. The learning rate nft) at iteration ¢ defines a decaying constant with the
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FIGURE 4. Quantizer input-output map for input scalar feature vector
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t
iteration, such as ;" = ap(1— =), where «y is a predetermined constant and 7 is the total

number of iterations involved. In order to improve the convergence speed, the algorithm
iterates the process until the average difference of the distortion MSE falls below threshold
IMSE® — MSE1)

VSED < 6, where t denotes the iteration number.

0, given by

3.4. Noise filtering. The noise filtering of the ASVC filter is a combination of LUM
filtering and adaptive LUM filtering, as shown in Figure 1.

3.4.1. LUM filtering. Feature vector f{k} is computed from the test image, and then the
SVM impulse detector classifies the input pixels as either noise-free or noise-corrupted
according to the discrimination function learned in the training stage. If the input pixel is
classified as impulsive noise by the SVM impulse detector, the LUM filter is activated and
the pixel is replaced. Otherwise, the identity filter (no filtering) is activated to preserve
the original intensity. Note that the inputs to the LUM filter here are selected from only
the noise-free pixels decided by the SVM impulse detector within a filter window w{k}.
Here, to reduce complexity, weight [ = (N + 1)/2 of the LUM filter is selected. That
is, the LUM filter outputs the median value of the noise-free pixels in the filter window

w{k}.

3.4.2. Adaptive LUM filtering. The SVM impulse detector might make mistakes. As a
result, undetected noisy pixels may remain in the restored image and misdetected pixels
may be mistakenly modified. Adaptive LUM filtering is thus incorporated in the ASVC
filter to reduce the number of undetected and misdetected pixels. Since the ASVC filter
adaptively selects an optimized weight to carry out the filtering operation for each input
pixel (k) corresponding to the f3;(k) of block €2;, better noise attenuation can be achieved
without degrading the quality of fine details.

4. Experimental Results. Extensive experiments were conducted on a variety of 512 x
512 test images to evaluate the performance of the proposed ASVC filter. The peak
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signal-to-noise ratio (PSNR) was employed to quantitatively measure the restoration per-
formance, which is defined as:

3 2552 )

PSNR = 10log ( dB, (8)
YA (k) = y(k))?

where 255 is the peak gray level of the image. In addition, the mean absolute error

(MAE) was used as a quantitative measure to evaluate the levels of the edges and the

details preserved, which is defined as:

k) —y(k
HxW
Larger PSNR values denote better image restoration, whereas smaller MAE values suggest

better image detail preservation.
In this work, an impulsive noise model with noise ratio p is described as:

| s(k), with probability 1 — p,
v(k) = { n(k), with probability p, (10)

where s(k) and n(k) represent original noise-free image pixel and the noise substitution for
the original pixel, respectively [7]. There are two types of impulsive noise: fixed-valued
and random-valued impulses. In 8-bit gray-scale images, fixed-valued impulsive noise,
which is also known as salt and pepper noise, has equal probability of noise intensity at 0
and 255, whereas random-valued impulsive noise is uniformly distributed over the range
of [0, 255].

TABLE 1. Classification accuracy of SVM classifier

Image Lena  F16 Boat Lake Goldhill Cameraman
Fixed-valued impulse  0.9953 0.9870 0.9881 0.9812 0.9915 0.9829
Random-valued impulse 0.9767 0.9376 0.9728 0.9641 0.9698 0.9555

The optimal separating hyperplane was obtained using training image ‘Couple’ cor-
rupted by 20% impulsive noise in the training process. The tested images were outside
the training set to test the generalization capability. Table 1 shows the accuracy of the
SVM impulse detector (or SVM classifier) for some images corrupted by 20% impulsive
noise. Figure 5 shows the false noise detection using the SVM impulse detector.

3 x 3 filter windows were used in all the experiments. The optimal weight 5;(k),i =
1,2,..., M was obtained using training image ‘Couple’ corrupted by 20% impulsive noise
in the training process. The quantization interval values employed in the partitioning
processes were obtained experimentally. [0,2), [2,5), [5, 35), [35, 60), [60, 255] for variables
c(k),l(k) and e(k) were found to be satisfactory interval values (shown in Figure 4) and
thus used throughout the experiments.

Several experiments were conducted to compare the proposed ASVC filter with the
standard median (MED) filter, the tri-state median (TSM) filter [6], switching scheme I
(SWM-I) [16], the fuzzy median (FM) filter [4], the partition fuzzy median (PFM) filter
[9], the fast peer group filter (FPGF) [15], and the adaptive two-pass median (ATM) filter
[1] in terms of noise removal capability. Table 2 compares the PSNR and MAE results
of removing both fixed-valued and random-valued impulsive noise at 20%. As the table
shows, the proposed ASVC filter significantly outperforms the other schemes. Figure 6
shows the restoration results comparison for the image ‘Cameraman’ corrupted by 20%
random-valued impulsive noise among MED, FM, ATM and ASVC. The ASVC filter
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FIGURE 5. Noise identification. (a) ‘Lena’, (¢) ‘Lake’ and (e) ‘F16’, each
corrupted by 20% fixed- valued impulsive noise, (b) False detection for
‘Lena’, (d) False detection for ‘Lake’, (f) False detection for ‘F16’.
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FIGURE 6. Subjective visual quality of restored image ‘Cameraman’. (a)
Original image, (b) image corrupted by 20% random-valued impulsive noise,
and images filtered by (c) MED filter, (d) FM filter, (e) ATM filter and (f)
ASVC filter.
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TABLE 2. Restoration result comparison of PSNR (dB) and MAE for 20%
(a) fixed-valued and (b) random-valued impulsive noise

(a)
Image
Filter Lena F16 Boat Lake Goldhill Cameraman
PSNR MAE PSNR MAE PSNR MAE PSNR MAE PSNR MAE PSNR MAE
MED 30.18 3.44 29.62 3.47 29.20 3.89 27.19 5.61 28.84 4.83 33.76 1.85
TSM 31.84 2.75 32.76 2.82 31.16 2.97 29.73 3.51 31.55 2.85 34.71 1.42
SWM-1 31.64 1.58 32.43 1.18 30.26 2.06 28.55 2.69 30.58 2.15 34.64 1.19
FM 31.32 1.88 31.45 1.94 30.86 2.16 28.61 3.14 30.95 2.39 34.82 1.14
PFM 35.52 1.57  32.92 1.54 3334 1.82 31.13 252 33.87 2.01 36.08 0.99
FPGF 31.06 1.82 29.66 2.16 29.94 2.29 27.58 3.38 30.30 2.36 34.11 1.16
ATM 35.77 1.46  32.99 145 33.05 1.76  30.62 2.47  33.06 1.98 36.64 0.83
ASVC  36.46 1.36  33.94 1.35 34.27 1.64 31.30 2.28  34.08 1.84 37.17 0.98
(b)
Image

Filter Lena F16 Boat Lake Goldhill Cameraman
PSNR MAE PSNR MAE PSNR MAE PSNR MAE PSNR MAE PSNR MAE

MED 31.72 3.46 30.93 2.95 30.14 3.92 27.84 5.71 29.71 4.84 31.51 2.31
TSM 34.03 1.91 31.56 2.77 32.29 2.83 30.22 3.26 32.44 2.61 31.62 1.89
SWM-I 32.08 2.09 29.62 2.16 30.78 2.35 28.86 3.04 31.01 2.46 31.14 1.63
FM 33.40 2.11 30.79 2.11 32.11 2.37 29.76 3.23 32.22 2.63 32.15 1.61
PFM 33.88 2.03 32.03 1.95 32.43 2.32 30.11 3.26 32.44 2.61 34.04 1.36
FPGF 30.11 2.69 28.52 2.76 29.46 2.87 28.15 3.46 29.67 2.92 29.65 2.22
ATM 34.26 1.64 32.00 1.69 32.42 1.94 29.96 2.74 32.26 2.19 33.34 1.46
ASVC 34.63 1.59 32.20 1.54 32.86 1.84 30.43 2.49 32.73 2.09 34.26 1.14

produces a restored image with the best subjective visual quality by offering more noise
suppression and detail preservation.

The robustness of the ASVC filter was also tested. The trained discrimination func-
tion and the optimal weights of block €2; were independent of the noise intensity in all
experiments. Figure 7 shows the PSNR comparison with restored image ‘Boat’ initially
corrupted by 5% to 40% fixed-valued or random-valued impulsive noise. As shown in
the figure, the ASVC filter outperforms the other techniques in terms of robustness, even
though the 20% impulsive noise training image ‘Couple’ is independent of the actual
corruption percentage in filtering.

5. Conclusion. A novel decision-based median filter based on SVMs was developed to
preserve image details while effectively suppressing impulsive noise. An impulse detector
design based on SVMs is responsible for judging whether the input pixel is noisy. In
addition, an adaptive LUM filter was proposed to efficiently improve the detection error
rate of the SVM impulse detector. The excellent generalization capability of SVMs and
the optimal weight of each block allow the mean square error of the filter output to
be minimized. The experimental results demonstrate that the proposed ASVC filter is
superior to a number of well-accepted decision-based median filters. The ASVC filter is
also capable of giving satisfactory perceptual quality.
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FIGURE 7. Restoration result comparison of PSNR (dB) for filtering ‘Boat’
image corrupted by impulsive noise
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