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ABSTRACT. This paper proposes a new design of Functional unknown input observer for
nonlinear systems. It represents an extension of the Luenberger observer with unknown
inputs using the Taylor expansion for first order. The Local observer is characterized by
its simplicity in the mathematical development. The aim of this observer is the estimate
of the state function which represents the control law for example. The necessary and
sufficient conditions for the existence of the observer are given. An numerical example
is given to illustrate the attractiveness and the simplicity of the new design procedure.
Keywords: Nonlinear systems, Unknown input observers, Stability, Robust state func-
tion estimation

1. Introduction. Control systems are used for regulating a great variety of machines,
and processes. They control quantities such as motion, temperature, heat flow, fluid
flow and fluid pressure. Most concepts in control theory are based on having sensors to
measure the quantity under control. The performance of a feedback control system is of
primary importance. Generally, we are interested in controlling the system with a control
signal u(t) that is a function of several measurable state variables:

u(t) = v(t) —r() (1)
where v(t) = Kx(t), therefore, K is a feedback matrix; r(¢) is the reference input vector
to the system and z(t) is the state vector. A block diagram of the closed loop system is
seen in Figure 1.

If the entire state vector cannot be measured, in most complex systems, the control
law cannot be implemented. However, it is usually not practical because it is not possible
(in general) to measure all the states. In practice, only certain states are measured
and provided as system outputs. In such a case, either a new approach that directly
accounts for the no availability of the entire state vector must be devised, or a suitable
approximation to the state vector must be determined. In this context, we can construct
an unknown input observer which estimates a state function v(¢) as shown in Figure 2.
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FiGURE 1. Closed loop system with full state feedback
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FIGURE 2. State feedback with full order observer

Feedback unknown input observer may be used to estimate the state function in pres-
ence of unknown input disturbances. We can cite some works in the context of linear
systems as [1-7]. This observer is extended to nonlinear system. Most of the work uses a
particular class of nonlinear system to build their observer; this class of system is obtained
after a state transformation to change the original nonlinear systems into canonical forms.
Some authors use the Lipschitz class of nonlinear systems for construction of the unknown
input observer [8-11], and this dynamic system is described under the following form [8]:

& = Az + Bu + g(z,u,t) 2)
y=Cz+Dfp

where x, u, fp and y are the state vector, the inputs, the sensor fault and the outputs of
the system, therefore, g(x, u,t) is assumed to be globally Lipschitz with respect to x:

lg(x1, u,t) — g(xe, u, t)|| < A||xy — 22|, Vu,Vt>0. (3)

It has proposed a functional observer for estimating the state function v = Csx. This
observer can be written as follows:

w = Nw+ Ly, + Pg(9,u,t) + PBu (@)
ﬁ:w+Qy1

In this paper, we present a new unknown input observer functional observer of non-
linear system. Its design is based on the linearization along a trajectory using Taylor
development. The observer is able to trace the trajectory of state vector in presence of
unknown inputs. The advantage of its design is that it is not based on the transforma-
tion of the nonlinear system into its canonical form. This paper presents new conditions
for the existence of the robust nonlinear observer and describes step by step the design
method. A numerical example is given to illustrate the attractiveness and simplicity of
the new design procedure.

2. Problem Statement. Consider a nonlinear system described by state equation and
measurements equations, augmented by a state function useful for control or diagnosis:

&= f(zr)+ Bu+ Ed, z(t=0)=x
v= Mz

where o € R" describes the state of the system, u € R¥ the inputs, d € RP the unknown
inputs, v € R® the state function to be estimated and y € R™ the outputs of the system.
B e Rk E e R M e R* and C € R™ ™ are known constant matrices of appro-
priate dimensions. f(.) is supposed to be continuously differentiable. We assume that
rank[E] = p and rank[C| = m.
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The aim of this paper is: Construct an observer such that it can estimate the state
function of the considered nonlinear systems asymptotically without any knowledge of the
input d.

In the following forms, such that Fj, K;, fi, h; and f, represent respectively F(z),
K(z), f(2), h(2) and f(z).

3. Main Results. In this section, we propose an unknown input observer for nonlinear
systems based on first order Taylor approximation.

Theorem 3.1. We propose a local functional observer for the system described by (5),
such that:

v=Nz+ Ly (6)
where z is given by:
2= Fpz+ Ky + Tu+ P(fs — Du(f)2) (7)
T 1s defined by z + Hy and different matrices of the observer checking:

F; = PD,(f;) — K1;:C (8a)
K; = Ki; + F;H (8b)
PE =0 (8¢)
T+PB=0 (8d)
L=MH (8e)
N=M (8f)
The following conditions are necessary for the existence of the observer:
rank|CE] = rank[E] = p (9a)
PD.(f,) — P, *G:CTQC < 0 (9b)

where z € R", 0 € R® and D,(fz) are the state, the output vector of observer and the
Jacobian matriz of f with respect to &. F; € R™™, T € RV*, K; € R*™*™, H € R™™,
L e R>*™ N € R*™ and P € R™™"™ are matrices which have to be designed such that v
asymptotically converges to v, Py is a symmetric positive definite matriz, G is a diagonal
positive definite matriz.

The nonlinear state feedback observer schema is presented by Figure 3.

Proof: Let the estimation error e;:
ez=r—t=x—2—Hy=(I—-HC)x—z (10)

Let P=1— HC, with [ is n identity matrix.
And put e, = Me, such that e, = v — © then the reconstruction of state function
becomes possible. So, we proceed as follows:

ep=v—0=Mz—Nz— Ly (11)
The estimation error e, is also written:
ey =Me, =Mz —Mz— MHy (12)
From (11) and (12), the estimation error e, = Me, if only if:
N=Mand L=MH
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F1GURE 3. Nonlinear state feedback observer

In order to prove the stability and convergence of the observer, the state estimation
error dynamic is analyzed. From the expression of the estimation error, we can write:

ez=r—t=x—z2z—Hy=—2+(I—-HCO)x (13)
Let P=1— HC, (13) becomes:

e, = Pr — 2 (14)
In order to investigate the stability and the convergence of the observer the state esti-

mation error dynamics is analyzed:
€, =% —&=Pi—2 (15)
The local observer asymptotically reconstructs the state function of the system (5), if
the estimation error e; asymptotically converges to zero as t tends to infinity, whatever the
initial state of the observer zy and the control of the system u. Then we can approximate

the function f(x) by its Taylor development to first order along of the trajectory, if & is
become sufficiently close to x, we can write:

fo = fire, = fo + Da(f2)ee + hs (16)
where h; the higher order terms and D, is the differential operator defined by:
0fa
D.(fz) = 17
=] (17)

Obviously, proving stability using this kind of the Taylor expansion works only if the
nonlinearity is not too significant and higher order terms can be neglected.
We take into account the relation (15), we obtain:

€r=—Fzz—Tu— Kzyy — Pfy + PD,(f3)% + P(f, + Bu+ Ed) (18)
The Taylor expansion approach leads to the following error dynamics:
€r~ —Fyz—Tu— Ky — Pfiy + PD,(f:)T+ Pfs + PBu+ PD,(f:)e, + PEd (19)
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Now, we assume that K; = Kj; + Ky; and we replace z by (& — Hy). The expression
(19) becomes:

Our objective is to determine the conditions to guaranty that & converges asymptoti-

cally to z. So, we proceed as follows:
€y = (PDy(fz) — K130)e, — (Fy — (PDy(fz) — K1:0)
+(F;H — Koz)y + (PB—T)u+ PEd (21)
In Equation (21), Ky;, Koz, T and P are matrices, which be determined to design an

observer given by (8). It is very useful to choose an error given by an autonomous
process, independent of variable d, y, u and z. This leads to:

Fiy + (Ki;C = PD.(f:)) =0

F;H — Ky =0
PE =0
PB-T=0

We obtain the new equation €, &~ (PD,(fz) — K1;C)e;. The convergence of the esti-
mator is more dependant of the term F; = PD,(f;) — K1:C.

3.1. Proof of the existence conditions.

3.1.1. Condition (9a). From (8), we have:

PE=(I-HC)E=0=— HCE=F (22)
The solution of this equation depends on the rank of matrix CE, So,
H exists if f rank[CE] = rank[FE] = p. (23)

3.1.2. Condition (9b). The aim is to define the matrix K;; so that the error of estimation
converges asymptotically to zero. Let

1
Vies) = 56513161- (24)

where P; is a symmetric positive definite matrix, the dynamic Lyapunov function can be
writing:
V(es) = eLPi(PD,(f:) — K12C)e, (25)
To ensure the asymptotic convergence of e to zero, we require time derivative of V' to
be negative.
In [13], he proposed an algorithm for determining the gain K; based on the assumption
that ker(C') # {0}. The algorithm comprises two step:

Step (1): Considering the assumption that ker(C) # {0}, it can write (25) under the
following form:

V(es) = ea" NTPLPD,(f3)Ne, (26)

where N is right orthogonal to C' and e = Né. Tsinias showed in [13], that there exists a
positif constant k; such that for any e, € ker(C') — {0} there is a neighborhood S, of e,
such that:

e." NTPLPD,(fs)Néy < —ky|e,|? (27)

V(z,€;) € R* X S,,.
Generally, P, is determined by solving inequalities using algebraic techniques to increase
function. A solution exists if the nonlinearities of the considered system are bounded.
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If ker(C') is reduced to {0}, Step (1) is bypassed and P; taking equal to the identity
matrix.

Step (2): The matrix P, is determined. Now, considered e € R" and research the
matrix Ki; satisfying the condition of convergence of e to zero.

Viey) = €' PLPD,(f3)es — el PiK13Ce, < 0 (28)
We know that:
ef)\min(Pl)PDm(fi*)em S efplpo(fi)em S ef)\max(Pl)PDm(fi)em (29)
with A is the eigenvalue of Py, we assume that Gz = Amax(P1) P D, (f3):
€£G@€x = Z gij€i€;

ij=1

n (30)
<> giilleses|
ij=1
where g;; represents the coefficients of the matrix G;.
We know that:
1
eies] < 56+ €2) (31)
Then, (30) becomes:
1 n n
erGae, < 3 > (lgiile? +lgisled) < D (lgisle? + lgisle?)
ij=1 ij=1 2
< (Z |gkj|> e; + Z (Z |gzk|> e
k=1 7=1 k=1 =1

So, we obtain:

erGaey < |6 Gaeg <Y <Z 983+ |gik|> e (33)
1 \j=1 i=1

k=

Following this latest development, we can conclude that for all (e, ) € R™, we find:

el'Gie, < el Gie, (34)
where G; is a diagonal matrix, such that:
() 0 0 e 0
0 a(z) 0 .- 0
G = 0 0  az(2) . (35)
. : : : 0
0 0 0 ()
with
or(2) = lgegl + Y lgi| such that k=1,2,... n. (36)
j=1 i=1

A sufficient condition to fulfill this inequality is that the matrix PD,(fz) — P K1:C be
negative semi-definite. We note that:

V(ey) < eXGien| — el PLK ;Ce, (37)
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V(e,) will be negative, if K;; is defined such that the term e’ P K;Ce, is a positive
function and sufficiently large for the second member of (28) is negative.
A structure of Ki; to satisfy this conditions is:

Ki; = P7'G:07Q (38)

where () is a m dimensional square matrices to be determined, we obtain the following
equality:

Viey,) = el PLPD,(f;)es — eL G:CTQCk, (39)

__To increase the first term of the previous equality, we seek to determine a positif constant
G; satisfying the following inequality:

eI PLPD,(f3)e.| < eLG e, (40)
We choose then G = G;. Then, we obtain the following inequality:
V(ex) < elGie, — el G:0TQCe, (41)
Note here that the inequality can be rewritten as follows:
V(ey) < elGy(I — CTQC)e, < 0 (42)

where (Q is a matrix satisfying CTQC — I > 0. With this selection of the matrix K, the
equilibrium e, = 0 is asymptotically stable for the first order approximation.

4. Tllustrative Example. We consider the nonlinear dynamic system with unknown
input writing under the following form:

&= f,+ Bu+ Ed

y=Cr
v=Mzx
2 0 T 101
where f, = | —sin(z1) —04dzz3 |, B=| 04 |, F= 0o |,C= ( 01 1 )
T — T3 0 0
-2 1 —4
Mz( 0 1 _2>,u€[—1 1 ] and
d=0 for [ 0 100s ] and [ 150s 300s |,
d=1 for[ 100s 150s |.
We choose a projection matrix P such that PE = 0, we take P equal to:
0 —0.1 0.5
P=| 0 —-0.1 -1
0 1 0.5

So, the matrix PD,(fz) can be written:

0.1cos(d1) 0.04d5 — 2y 0.04d — 0.5
PD;(f;) = | Olcos(d) 0.0+ ¥y 0.04d, +1
COS(i‘l) 04!%3 - (:%QI%)? 0433‘2 —0.5

Now, we seek a matrix P; such that, we obtain:

Viey) = &' NTPPD,(f;)Né,
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where N is right orthogonal to C":

1 1
N = 1 — e, = 1 e
-1 -1
If we choose P, = O D2 then the dynamic of the Lyapunov function can be
0 ps
written:
( (0 1cos (1) + 0.04d5 — — 2 — 0.04, + 0.5)
(3 + 1)
229 .
+ po| 0.1cos(zy) + 0.0425 + 5 — 0.042, — 1

+ 3

< (25 +1)
(

0.1 cos (71 +04(:1:3+x2)+L2+0.5>>e%<0
(3 +1)

A

o
V(ey) < [ p1]0.1cos (1) | + 0.04p; @5 + &2 + pr ——— | +0.5p,
(23 +1)
21‘2
0 cos ) + 008+l [ 2
P

A

T
(@3 +1)°

+ p3|0.1cos (1) | + 0.4ps| 25 + Z2| + p3

+ 0.5p3> el <0

The state z; and 23 € [ =1 1 Jand z, €[ —0.8 1 ].
Thus, we obtain:

V(ep) < (0.93p; — 0.32ps + 1.65p3)e? < 0

We can choose the matrix P, follows, to satisfy the previous inequality:

10 0
P=1028 0
0 0 0.1

We can then determinate G; = diag(a;(%)), i = 1,2,3, whatever e,(t) € R?, such that:

ai(2) =0.1] cos(&1)] + 0.5 ‘0.04:%3 + 0.1 cos(#y) — (A;%l)? + 0.5 |[cos(Z1) — 0.0425 + 0.5]
T3
N . 229 To . A
= 10.04%3 + —5——5 | + 0.5 | =5 ——5 — 0.1 —0.04
a2 (%) ‘ T3+ 2 +1) + @117 cos(i) s
A ) T
0.5 |0.04i — 0.4d5 — ——2— +1

+ ‘ To T3 (53% 1) + ‘

as() =10.425 + 0.5] + 0.5] cos(d1) — 0.0422 + 0.5] + 0.5 ‘0.04:22 — 0.475 — ﬁ 41
T3

The next step is to find a matrix @ rending (CTQC — I) positive semi-definite. We

find:
10 0
Q= ( 0 10 )
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4.1. Simulation results. Figure 4 represents the evolution of the state function vector
during the interval of time t = [ 0 300s |, with a command u = 1. We have introduced
a disturbance between times t; = 100s and ty = 150s and we added in the output system
a gaussian noise variance equals to 0.001 and average value of zero.

Evolution of the state function vector
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FIGURE 4. Evolution of the state function vector

We note that the output observer converges quickly to the state function system even
in the presence of the disturbance.

To see the behavior of the output observer v relative to the state function v. We study
the evolution of the estimation error e, = v — 0.

In Figure 5, we see that the estimation error converges rapidly to zero.

5. Conclusion. This paper has proposed a novel functional unknown input observer
(an extension of the Luenberger observer) and existence conditions for the synthesis of
full-order state feedback observer for nonlinear systems. The attractive feature of the
proposed observer is the simplicity with which the design process can be accomplished
and it can be used in a large class of nonlinear systems. Numerical example has been
given to illustrate the attractiveness and simplicity of the new design procedures.
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