
International Journal of Innovative
Computing, Information and Control ICIC International c⃝2012 ISSN 1349-4198
Volume 8, Number 2, February 2012 pp. 1221–1235

MODEL-DRIVEN SECURITY FOR TRUSTED SYSTEMS

Masoom Alam1, Shahbaz Khan1, Quratulain Alam1, Tamleek Ali1

Sajid Anwar1, Amir Hayat2, Arfan Jaffar3

Muhammad Ali1 and Awais Adnan1

1Security Engineering Research Group
Institute of Management Sciences

1-A, E-5, Phase VII, Hayatabad, Peshawar, Pakistan
{masoom.alam; shaz; q.alam; tamleek; sajid.anwar; m.ali; awais }@imsciences.edu.pk

2School of Electrical Engineering and Computer Science
National University of Sciences and Technology

H-12, Islamabad, Pakistan
amir.hayat@seecs.edu.pk

3Foundation for Advancement of Science and Technology
National University of Computer and Emerging Sciences

A.K. Brohi Road, H-11/4, Islamabad, Pakistan
arfan.jaffar@nu.edu.pk

Received October 2010; revised February 2011

Abstract. Security management in information societies is becoming extremely chal-
lenging where the resources are open and ubiquitous. The policies of the classified object
change with its usage depending on the environment and its internal states. A classified
object will have many stakeholders, with varying number of rights over it, all along its
life. The relationship of stakeholders with objects is of our prime interest, where the
object will be derived and/or distributed in its original form. In this contribution, we
have classified stakeholders and objects, while concentrating on the specification for ob-
jects’ usage at the stakeholder end. This will allow us to deploy our tools in an emulated
environment, where these high level specifications will transform to platform independent
administrative policies and administer the emulation in a dynamic manner. This work
will further lead us to investigate and provide tooling support for more granular seman-
tically integrated control for stakeholders on their objects in a ubiquitous environment.
We have concentrated on resources focusing the mobile platforms, taking Android as our
case study. We base our work on top of recognized standards like that provided by Trusted
Computing Group’s Mobile Phone Working Group. It allows us to use the strong service
oriented business model available in information based societies.
Keywords: Security, Trusted computing, Access control, Mobile platforms, Rights man-
agement

1. Introduction. Modern mobile platforms have taken over the roles of tools like the
electronic gadgets, PC, netbook, camera and jukebox into an all in one package. They
provide sophisticated services and they can use various modes of communications. Battery
life time and performance limitations are now less of a consideration than they were a few
years back. Unfortunately, the mobile platforms suffer from the same threats as its PC
counterparts like malicious software and crackers. The attack vectors have been reduced
by using restricted application runtime environment and strictly mediated access to file
systems. Such methods enhance security by reducing the attack surface, but they do
not provide any means to delegate authority to other service providers or stakeholders.
This business model takes effect when the device manufacturer plays a trustworthy role

1221

1222 M. ALAM, S. KHAN, Q. ALAM ET AL.

on which other service providers provide services to others, especially the user. This is
mandatory for fair sharing of responsibility as the owner or user of a device is merely a
consumer and she expects the service providers to take care of service delivery and its
assurance.
Mobile devices have revolutionized the business model of computation, where the user

consumes services but the platform is serviced by a few service providers. The mobile
device and its user might be dealing with sensitive or private information, where moni-
toring the device for such use cases is not feasible. The user is not interested to detect
and prevent intrusion by worms and viruses. Other stakeholders also expect the device to
be in a condition where their data are being used according to their requirements using
integrated tools of the platform with minimum possible input from the user. On the other
hand, conventional anti-virus toolkits and intrusion detection modules consume battery
power continuously, without any other benefit.
Such requirements can be met by regulating the business model. Normally, the device

manufacturer will keep all the regulation in its control by deciding the operator and the
usage constraints of the stakeholders of the device. This model works for the conventional
device manufacturer’s centered model but does not scale well to custom business models.
The open business model for mobile computing is emerging to allow more flexibility for
the stakeholders of the platform.
An example of a restricted business model is of the popular Apple’s iPhone, where

each developer has to submit her developed applications to an iPhone authority, and
the authorities check the viability of the current application according to their mandated
requirements and regulations. A device manufacturer has unlimited authority and it
can be expected to be used for monopoly building. Consider the ban of Google voice
application by iPhone [5], which had created a lot of distrust among the service providers
and consumers.
The open model, pioneered by Google’s Android, amongst others, is one prominent

example of an open business model. Its web portal called Android Market [4] is where
autonomous stakeholders can post their applications and user can choose among the ap-
plications. Both paid and free applications are available on the Android Market; however,
this model also does not provide any flexible regulatory mechanism that fairly deals with
the rights of the different stakeholders.
A generic open and fairly regulated mobile business model includes a few stakeholders

using each others’ resources to enable or provide service, while the user or a software
component will consume these services. The user and the software component can also
be expected to serve the consumed service as a derived service [6]. This is unlike the
PC platforms where the platform user manages all these according to her preferences
and experience, while the mobile user wants to be able to consume the platform and its
services for some specific requirements and expects the service providers to assure the
security of the platform with minimal input from the user.
A business model regulated by our proposed policy model for multi stakeholders forces

a perspective change on how the resources on a platform should be modeled, administered
and used. A resource on a platform will be used to support the user but might not be
distributed by the platform provider. In such cases, the platform provider must enable
the platform to provide resource and stakeholder deployments with regulations. It might
as well require minimal input from user. The regulations provide the assurance and fair
usage of the platform.
In our model, a resource on a platform has an owner and users. The owner can be

a distributor, but she might delegate these rights to a third party, which is trusted by
the resource owner and users. The distributor makes sure that the platform will use the

MODEL-DRIVEN SECURITY FOR TRUSTED SYSTEMS 1223

resource or service according to the specified regulations. It is important to note that,
in order to deal with remote and different authoritative stakeholders, trust relationships
have to be handled with automated policy management. Stakeholders’ policies specify
the regulations used to build trust relationships and manage conflicting requirements.

Our policy model is based on Trusted Computing Group’s (TCG) [16] Mobile Phone
Reference Architecture (MPRA) [9], which defines an open business model within its
specification. In general, trusted computing deals with hardware assisted security that
leverages software stack to extend the chain of trust using sophisticated policies and mech-
anisms. Using trusted computing to regulate policy management between stakeholders
is mandatory to use the computational strength and authority of service providers, while
the device user provides minimal or no input in this process. The TCG is a consortium of
major vendors who specify the hardware and software requirements as a standard to be
widely used. Their specifications for PC platforms are already deployed as the Trusted
Platform Module (TPM) [1] in PCs and laptops.

According to MPRA specification, the manufacturer has the ultimate rights and it is
the certification root for the platform and the provided operating system acts like a meta-
trust engine, which provisions and allocates resources to the stakeholders. Resources of
these stakeholders need to be managed at platform deployment and runtime. Most of
the stakeholders, including the device owner, will use the certificates provided and rights
provisioned by the manufacturer, but the manufacturer can also delegate this ability to
another cloud provider, hence enabling the open business model that is fairly regulated
by higher order legislative bodies like governments to safeguard against monopolies and
unfair restrictions.

Contributions: The TCG MPRA specification provides only a high-level view on
how a resource has to be shared among multiple stakeholders on a mobile platform. The
specifications are more focused on the handling of MTM on a mobile platform and its
cryptographic details with little emphasis on how concrete access and delegation policies
will be defined and enforced.

Our main contributions in this paper are as follows:

• We propose a policy model called Multi stakeholder policy model (MSPM) built on
top of MPRA specification by TCG mobile phone work group. Using multi stake-
holder policy model, we define a concrete mechanism for access rights’ management
between different stakeholders on a mobile platform. In particular, how the device
manufacturer’s trust engine, which can closely be associated with the OS, mediates
access control between services belonging to different stakeholders.

• Our target architecture is based on Android software stack, which is a sophisticated
application virtual machine based OS. With the help of an example on the Android
mobile platform, we show that our approach is feasible.

The rest of the paper is organized as follows. Section 2 provides the formal basis for
the multi stakeholder policy model. Section 3 describes a detailed description on how
multi stakeholder policy can be implemented using the Android software stack. Section 4
discusses the feasibility of our approach for the future mobile operating systems. Section
5 summarizes the related work and finally, Section 6 concludes the paper.

2. Model Driven Security for Trusted Systems. A mobile platform has no single
owner and multiple owners but ownership and usage rights are delegated. Thus, all
resources are located on a single mobile platform but partly or fully owned by multiple
stakeholders. A comprehensive policy model is needed that can depict the access rights
management relationships between resources of multiple stakeholders residing on a single
mobile platform at a fine grained level. Multi stakeholder policy model aims at formalizing

1224 M. ALAM, S. KHAN, Q. ALAM ET AL.

such relationships between different protected resources of multiple stakeholders in order
to provide a secure mobile environment in which the stakes of all the owners are secured.
Definition 2.1, formally defines the semantics of the multi stakeholder policy model.
Each service on a mobile device is owned by a stakeholder and is accessible by other

services through a set of rights. Formally:

Definition 2.1 (Stakeholder). A stakeholder is an entity that owns a set of services on
a mobile platform. We define a function R that returns a set of rights through which a
service s is accessible. Formally:

R : Sv → Sr

A right r1 of a service s1 is written as s1.r1 where R(s1) ⊆ Sr. A function K returns the
stakeholder of a service, thus

K : Sv → Sk

Each stakeholder sk ∈ Sk can belong to one of the following stakeholder category sets:
device manufacturer (DM), User (U), Service provider (SP) and communication carrier
(CC). Except set U , each of the above sets can contain multiple elements. The reason
is that only a single user is operating a mobile device at any time. These sets reflect the
current set of stakeholders present through their services on a mobile device. For example,
if a mobile device is shared between multiple employees of an organization according
to their job hours, the set U will contain the active user operating the mobile device.
Similarly, if a flash is attached to a mobile device, the set DM is updated accordingly by
the mobile operating system.
Depending on the purpose for which a stakeholder has purchased a mobile device,

the rights of the stakeholders in each of the category are decided. This factor is called
ownership of the mobile device and has a direct impact on the access control scenarios
occurring, following the mobile device is purchased.

Example 2.1. As an example, consider if a hospital has purchased a set of mobile devices
for its employees, then the rights from the device manufacturer have been delegated to
the hospital which is a stakeholder in the service provider category. According to its
organizational policy, the hospital can restrict access to certain mobile services for its
employees. Alternatively, if the mobile device was directly purchased by a hospital employee
and installed the medical application, she has a lot more control on the services running
on the mobile device.

Each category of the stakeholders can belong to the device owner (DO) set where
|DO| = 1. Thus, each mobile device has a single owner.
A device owner can restrict access to certain services after purchasing the mobile device.

Restriction to certain services in a multi stakeholder environment can be done at two
levels: 1) at the level of device owner, it can be performed by associating constraints with
the particular rights of its owned services and 2) at the level of mobile user, it can be done
by performing a delegation of its owned services to other stakeholders and associating
constraints with it. Delegation of rights from the device owner to other stakeholders
is performed when device owner and user of the mobile device are not the same. Thus,
delegation of rights explicitly describes a situation in which the mobile device is physically
handed over to other stakeholders for use by the device owner. A device owner can delegate
a subset of rights delegated to it from the device manufacturer, to other stakeholders
including service providers, communication carriers and/or different mobile users, based
on its organizational policy.

MODEL-DRIVEN SECURITY FOR TRUSTED SYSTEMS 1225

In case, mobile user is the same as the device owner, he/she can define a set of access
policies regulating the usage of its owned services. The reason is that a mobile device is
not physically handed over to other stakeholders. Without this aspect, both delegation
of rights and access control can achieve the same regulations. Both of these levels are
explained in the following subsections.

2.1. Access control. Each service is treated as a subject service or object service (or
subject and object in short) running on a mobile device. Thus, s ∈ S, o ∈ O∧S∪O ∈ Sv.
We use access control matrix (ACM) to capture the behaviors of the subjects or object
services running on a mobile platform. Formally:

Definition 2.2. The ACM of a mobile device is defined as A : S ×O → 2Sr .

Thus, if r ∈ A(s, o), it means that subject s is exercising right r on object o. Also,
if r ∈ A(s, o), it means that the stakeholders of the subject and object are same, thus
K(s) = K(o). For simplicity, we assume that there is only one session for a single (s, o, r)
existing at one time. However, one subject can access multiple objects and one object
can be accessed by multiple subjects at the same time.

Each service may have a finite set Att of attribute names associated with it. Each
attribute characterizing a subject or an object has a name a and a domain denoted by
dom(a) of possible values. A mobile service may consume these attribute values using a set
of internal functions F defined particularly for that service. These internal functions take
attributes of other services as input and produces an output relevant for the corresponding
service. An internal function of a service is written as s.f where s ∈ Sv and f ∈ F .

A service stakeholder can define regulations for the usage of its owned services. These
regulations are enforced when services owned by other stakeholders access the correspond-
ing service. Formally:

Definition 2.3 (Access Control Scenario). An access control scenario describes a situ-
ation in which a service s wants to exercise a right r on another service o. We write
s ;c o.r to define an access control scenario, thus:

{s ;c o.r → r ∈ A(s, o)} if c = true

{s ;c o.r → r /∈ A(s, o)} if c = false

where c ∈ C ∪ ∅, s ∈ S, o ∈ O, S ∪O ∈ Sv, r ∈ R(o) ⊂ Sr.

C defines a set of constraints which are composed of attributes of services involved in
a particular access control scenario or other services running on a mobile platform and
a set of internal functions of the object service. A particular right of a service might be
accessible without any constraint thus, c = ϕ.

Example 2.2. The medical application (introduced in Example 2.1) does not allow access
to medical records if the location of the mobile device is not within hospital. thus

(mobileuser ;c medicalapp.readrecord) →
readrecord ∈ A(mobileuser,medicalapp)

ifmedicalapp.location within hospital(GPS.coordinates)

where mobileuser ∈ U,medicalapp ∈ SP,

location within hospital ∈ Att

Each stakeholder’s service can have its own application specific usage control require-
ments. In our model, internal functions are used to model the behavior of individual
services/applications on a mobile device. For example, the medical application has a

1226 M. ALAM, S. KHAN, Q. ALAM ET AL.

security requirement that determines the location of the mobile device from the GPS co-
ordinates or a music application might allow access to music file after five mins, if payment
has been made. In the above example, location within hospital is an internal function of
the medical application that takes attributes of the GPS service – coordinates, as input
and returns true or false based on the evaluation of the GPS coordinates.

Example 2.3. A user defines a policy that a particular game application can use a dialer
but only a specific number can be dialed thus

(gameapp ;c dialer.dial) →
dial ∈ A(gameapp,Ddialer)

if(dialer.dialed number = x)

where dialed number ∈ Att,

gameapp ∈ SP, dialer ∈ DM.

In the above example, dialed number is an attribute of the dialer service which is
matched against a predefined number x.
Due to the independence that each stakeholder can define constraints for its owned

services and these constraints can include service attributes owned by other stakeholders,
a constraint can trigger a set of access control scenarios, causing a permission dependency
in two patterns 1) circular and 2) an indefinite loop. Formally:

Definition 2.4 (Permission Dependency). A Permission dependency P is defined as a
situation in which the evaluation of a constraint triggers a set of access control scenarios.
A permission dependency can be in two patterns: Circular and indefinite.
1 Circular)

{s ;c o.r, o ;c1 s.r1, s ;c2 o.r2, ...}

2 Indefinite loop)

{s ;c o.r, o ;c1 s1.r1, s1 ;c2 o1.r2, ...}

In a circular pattern, the evaluation of a constraint triggers another access control
scenario involving the same subject and object but their roles as subject and object are
swapped. On the other hand, in an indefinite loop, the evaluation of constraints triggers
other access control scenarios involving other services. A permission dependency can
involve a combination of the above patterns.
In order to reduce the wastage of the limited computational power of a mobile device,

a device owner can resolve permission dependencies by associating levels with it. These
levels reflect the number of access control scenarios that can be triggered in response to
the evaluation of a constraint.

Example 2.4. The level 1 of a permission dependency means that if the medical appli-
cation needs GPS coordinates for determining the location of the mobile device, the GPS
service cannot call other mobile services before handing over coordinates to the medical
application.

2.2. Delegation of rights. A stakeholder belonging to device owner category may del-
egate a subset of its owned services to another stakeholder. By default, a device owner
can delegate a service in two modes: Constrained (CD) and Unconstrained (UD). In un-
constrained delegation, the delegator places no restriction on the respective delegation.
Formally:

MODEL-DRIVEN SECURITY FOR TRUSTED SYSTEMS 1227

Definition 2.5 (Unconstrained Delegation). An unconstrained delegation scenario de-
scribes a situation in which a stakeholder sk1 ∈ DO delegates its owned service s1 to
another stakeholder sk2. We define unconstrained delegation (UD) as a function that re-
turns true or false if an unconstrained delegation has been done with the corresponding
parameters.

UD : (Sk, Sk, Sv) → {true, false}

Thus

sk1 , sk2 ∈ Sk ∧K(s1) = sk1 ∧ sk1 ̸= sk2

UD(sk1 , sk2 , s1) → K(s1) = sk2

On the other hand side, the only difference in a constrained delegation scenario is that
it places a restriction on the delegated services using a delegation constraint. Formally:

Definition 2.6 (Constrained Delegation). A constrained delegation describes a situation
in which a stakeholder sk1 ∈ DO delegates a service s to another stakeholder sk2 associated
with a delegation constraint. We define constrained delegation as a function

CD : (Sk, Sk, Sv, DC) → {true, false}

DC defines a set of delegation constraints and a particular delegation constraint is a
boolean expression, composed of a set of access control scenarios.

Example 2.5. The hospital as a device owner delegates the GPS service to an employee
with a restriction that he/she cannot deny GPS to the hospital’s medical application.

CD(hospital,mobileuser,GPS, dc1)

dc1 = (medicalapp ;c GPS.getGPS) →
(getGPS ∈ A(medicalApp,GPS))

where hospital ∈ DO,mobileuser ∈ U

In our model, only a device owner can delegate a subset of permissions to other stake-
holders. Thus, revocation is quite simple to handle. As an example, consider if a com-
munication carrier acting as a device owner makes a restriction on the use of voice over
ip (voip) applications on the respective mobile device, the mobile user should respect the
corresponding restricted delegation. Otherwise, the communication carrier can block a
mobile user (revocation in some sense) if a violation has been made or detected.

Assuming that a service s is calling another service o then, Algorithm 1 evaluates that
whether access request is successful or not. In particular, before a service s can make a
request for an object o, it is verified that a delegation policy does not exist that denies
the formation of the corresponding access control scenario. If both of these conditions
did not meet, the algorithm finally verifies the possibility of a permission dependency by
examining the access requests triggered as a result of this access control scenario. In case,
there is a permission dependency, an error is returned with the message that a permission
dependency exists. The algorithm is configured to operate at level 1 of any type of logical
transgression. Depending on the computational power of a mobile device, the Algorithm
1 has a linear time and space complexity in the size of the policy.

In the following sections, the realization of multi stakeholder policy model using the
Android software stack is detailed.

1228 M. ALAM, S. KHAN, Q. ALAM ET AL.

3. Target Architecture. For the deployment of our proposed multi stakeholder policy
model, we have chosen the popular open source mobile software stack Android. We believe
that with the passage of time, this open source model with shape itself to a distributed
and multi stakeholder environment where different stakeholders can have their application
running on Android. In this section, we first briefly describe the architecture of Android
along with the permission mechanism both at install-time and runtime. Afterwards, the
changes we have made to this framework for the incorporation of the multi stakeholder
policy model in Android, are explained.

3.1. Android architecture. Android is an open source platform for mobile devices with
a complete stack that includes an operating system, middle ware and different applica-
tions. Android architecture is arranged in different layers. It is based on the Linux 2.6
kernel which acts as an hardware abstraction layer i.e., it includes Android’s memory
management programs, security settings, power management software and several hard-
ware drivers. Above the kernel layer is the native libraries. These libraries are written in
C and C++ and the core power of Android platform comes from this layer. Some of the
core libraries are Surface Manager – which is responsible for composing different drying
into the screen, SGL and openGL are used for the graphics, Webkit for the browser and
SQLLite as the database.
The Next layer is the Android runtime. The main component of Android runtime is

the Dalvik Virtual Machine. The Android runtime is designed specifically for Android to
meet the needs of running an embedded environment i.e., limited battery, limited memory
and cpu speed. The Dalvik vm runs the Dex files. These are the resultant byte codes of
the .class files and .jar files at build time. These libraries are written in Java programming
language and contains all of the collection classes, utilities and I/O.
Next is the Application framework layer, written in Java programming language. This

is the toolkit that all applications uses i.e., built-in applications that comes with Android
phone or applications written by third party developers.
The permission model of Android is an all-or-nothing policy model. During install, the

PackageInstaller retrieves the permissions required by the application and shows a list
of the collection to the user. The user has to click on “Install” and by doing so, she agrees

MODEL-DRIVEN SECURITY FOR TRUSTED SYSTEMS 1229

to grant all permissions to the installed application. These permissions are included in
the <uses-permission> tag in the special manifest file – AndroidManifest.xml. Once
the application is installed, it gets access to all the permissions requested by it in the
manifest file.

Applications in Android consist of components that form parts of the whole for the sake
of improved re-usability and enhanced performance. This means that any application can
benefit from elements belonging to other applications, provided they have the proper
permissions.

These components can be of type Activity, Service, Broadcast Receiver and Content
Providers. They are initialized by the Android framework using specialized inter-process
communication design patterns known as Intents. Intents raised for instantiation of ap-
plication components are intercepted by the ApplicationContext class in the Android
application framework. Using the different application manifests, this class makes sure
that the calling application has the appropriate permissions associated with it (and thus
granted at install-time). For this purpose, it creates a Parcel and transports it to the tar-
get application using the concepts of the IBinder interface and the Binder class. Parcel
maintains some information as meta-data about its contents, which is used to manage
IBinder object references in the buffer. The meta-data is used to maintain object refer-
ences as the buffer moves across different processes.

The primary purpose of this parcel is to check whether the calling application has the
permissions associated (or required by the target application). The parcel is handled by
the ActivityManager class which passes the call to the PackageManager class which re-
trieves and then parses the manifest file associated with the application. If the permissions
associated with the intent are indeed granted to the application, the PackageManager cre-
ates a resultant Parcel and returns the value true to the ApplicaitonContext. The intent
can then be passed onto the target application which then resumes the operations as per
its own semantics.

3.2. Modifications to the base framework. The core idea behind our target architec-
ture is to make each mobile service configurable by its stakeholder, be it a service giving
access to telephony related operations such as GPRS or calling facility or a simple client
server application accessing a server for some data. In this way, multiple stakeholders can
be supported on a single mobile platform. Using existing mobile architectures, where the
responsibility of access control is taken care by a central authority or service, is no longer
applicable to a multi stakeholder environment such as a mobile platform, the reason is
that a central mobile service responsible for mediating access control cannot understand
the access and usage control requirements of a specific service.

Existing Android framework revolve around checking the permission at a single point
called PackageManager which is very much centralized in nature. Firstly, a single point
check cannot capture the specific usage control requirements of different application ser-
vices. The central security point of Android should be backed up by multiple security
check points within individual services. Each service on a mobile platform whose at-
tributes can change the state of other services such as GPS, GPRS, should be configurable
by its stakeholders. For example, a GPRS service can have policy defined by its stake-
holder for its restricted use in a specified time, or for limited services due to the expensive
cost of the communication carrier. These application specific policies cannot be handled
by Android base framework due to their varying nature. Secondly, the responsibility of
the central security point is to check for the permission dependency issues such as cir-
cular or indefinite loop computation. Finally, the evaluation of these application specific

1230 M. ALAM, S. KHAN, Q. ALAM ET AL.

policies may require attributes of other services on a mobile platform, which is then the
responsibility of the base framework to handle such requests.
The main objective of our experiment was to check the viability of multi stakeholder

environment with minimal changes to the Android base framework. We have implemented
the following scenario as a proof of concept implementation.
Scenario: A mobile user is installing a medical application on her Android which requires
a GPS permission. The normal flow is that whenever an application is installed, it asks
for the required permissions from the mobile user, which she can deny or grant depending
on her preferences. In our case, the device owner – hospital has set a constrained delega-
tion on the GPS service that the mobile user cannot deny GPS to its medical application
thus, for the incorporation of the multi stakeholder policy model in the existing Android
framework, we need to handle both the install-time and runtime aspects of the framework.
Install-time: The existing Android architecture uses the AndroidManifest.xml file for
permission definition. Any application which is installed, dictates a set of required per-
missions from the mobile user using the AndroidManifest.xml. In the current Android
settings, it is at the discretion of the mobile user to grant or deny the required permis-
sions. Further, if a mobile user denies a permission, the application will not be installed.
Thus, application installation is based on all-or-nothing policy.
In order not to have to change the schema specification of the manifest file, we have

opted to include the application or service policies within the corresponding application.
Each service has its own policy manifest file – PolicyManifest.xml – that includes the
stakeholder’s policies as applied to the application. The policy includes the constraints
associated with the different permissions allowed by the application as well as any (con-
strained or unconstrained) delegation policies.
The GPS service on Android is handled by a Java Native Interface call to the operating

system. The com.android.internal.location package contains several classes related
to location services on the Android platform. It introduces the LocationManager system
service, which provides an API to determine location. The com.android.internal.loca-
tion provides GpsLocationProvider class which is a GPS implementation of LocationPr-
ovider used by LocationManager. It will call the GpsLocationProvider class which is
not available to application developers in Android application development kit. This class
contains Java methods e.g., startNavigating(), stopNavigating() and many others,
that are used to get location. Basically, these methods call the native methods which
have the actual implementation.
We have placed a hook at the point where the GPS functions makes the system call,

namely evaluatePolicy(). This function evaluates the PolicyManifest.xml defined for
the GPS service. In this way, the GPS service is made configurable with the help of a
policy.
Figure 1 shows an example PolicyManifest.xml for the GPS service. The example

policy dictates that the hospital as device owner imposes a delegated constraint that
GPS access to the medical application cannot be denied. The GPS service on Android
is accessible through the ACCESS FINE LOCATION permission. If an application is granted
ACCESS FINE LOCATION permission at install-time, it can access the GPS service. In
Android framework, these rights are assigned at install time only.
We have also extended the PackageInstallerActivity class which is responsible for

handling all application installations. The extended package installer asks the GPS service
directly for the ACCSS FINE LOCATION permission. Since the GPS service PolicyManifest
.xml states that mobile user cannot deny GPS service to a specific medical application,
therefore, extended package installer did not ask the permission from the mobile user. As
a result, the user get the installation complete screen as shown in Figure 2. The enforce-

MODEL-DRIVEN SECURITY FOR TRUSTED SYSTEMS 1231

<policy id=´0´>
 <constraineddelegation>
 <delegator>

DO
 <attribute id=´QDPH´/>
 <attributevalue> Hospital A </attributevalue>
 </delegator>
 <delegatee>
 U
 <attribute id=´QDPH´/>
 <attributevalue> User A </attributevalue>
 <constraint effect=´cannotDeny´>
 <service> com.hospitalA.medicalapp</service>
 <right>GPS.ACCESS_FINE_LOCATION</right>
 </constraint>
</constraineddelegation>
</policy>

1
2
3
4
5
6
6
7
8
9

10
11
12
13
14
15
16

Figure 1. PolicyManifest.xml for the GPS service

Figure 2. Android’s a) normal package installer b) extended one

ment of stakeholder policies at runtime is described in the following section.
Runtime: Once the medical application is installed, the next task is to enable at-
tribute values which the medical application or service may require for its policy eval-
uation. Figure 3 shows an example PolicyManifest.xml file for the medical applica-
tion. The policy verifies the location of the mobile device through the internal function
locationwithinhospital before handing over the medical records to the mobile user
from hospital server (cf. Figure 4). A service PolicyManifest.xml may include at-
tributes for the evaluation of internal functions such as GPS etc. This feature is provided
in the Android through which an application can raise an intent for an attribute of a
service. The PackageManager is already responsible for handling the permissions asso-
ciated with applications. In our extended version, PackageManager is also responsible
for managing the permission dependencies. The extended PackageManager resolves the
attributes keeping in consideration the permission dependency rules defined in Section
2. If the attributes can be successfully resolved, they are returned to the target service

1232 M. ALAM, S. KHAN, Q. ALAM ET AL.

<policy id=´1´>
 <accesscontrol>
 <target>
 <subject>mobileuser</subject>
 <right>ReadHospitalRecord</right>
 </target>
 <condition function=´locationwithinhospital´>
 <attribute id=´name´/>
 <attributevalue> GPS </attributevalue>
 </condition>
 </accesscontrol>
</policy>

1
2
3
4
5
6
6
7
8
9

10
11

Figure 3. PolicyManifest.xml for the medical application

which can then apply its policy internally as defined by its semantics.

Figure 4. An example medical application

Evaluation: To measure the performance hit caused by execution of PolicyManifest.x-
ml, we have carried out some preliminary experiments. These tests have been carried out
on Android HTC handset developer version. The total time taken by the GPS service to
evaluate policy and give results back to the medical application caused 27ms and with
a policy in place, it took 35ms which is quite acceptable. We believe that this minimal
performance hit, coupled with the usability of multi stakeholder policy model in the con-
sumer market and increasing computational power of mobile devices will not make any
difference.

4. Discussion. The basic idea behind the implementation of multi stakeholder policy
model using the Android software stack is that every service on a mobile platform should
be configurable using the policy of its stakeholder. This policy of a service dictates the
delegation as well as the access control requirements imposed by a stakeholder. An issue
is the change management of this policy on the mobile device. This means that if there is
a change required within the policy of a service on a mobile platform, a stakeholder might
set a special bit within the application, asking for the policy update for the corresponding

MODEL-DRIVEN SECURITY FOR TRUSTED SYSTEMS 1233

service. [13] has discussed the possibility of a proxy server between the mobile user and
various stakeholders for policy change management.

Due to the feature of mobility, mobile devices are untrustworthy regarding the enforce-
ment of the policy of a stakeholder. There is always a threat that mobile user is not
fulfilling the requirements of the stakeholders of different services. Compared to its PC
counterparts, stealth of data or misuse of services is rather easy on a mobile device. In
order to fill this gap, trusted computing has launched the hardware root of trust called
Trusted Platform Module (TPM) for the PC platform. Using TPM, a remote verifier can
vouch the trusted status of a mobile device using a technique known as remote attesta-
tion.Nokia has launched a software mobile trusted module based on the specifications of
MPWG [3]. The mobile trusted module will be also be launched in the near future thus,
a hardware root of trust will also be available for the mobile device. Which can ensure
that 1) integrity of nad 2) semantics of the policies is indeed enforced. This is currently
under investigation and part of the future work.

Our work also paves the way for the analysis of the information flow properties for the
mobile devices. Mobile kiosks can be in place that can make an analysis of the mobile
devices and give a validity certificate upon verification. Thus, the device owner can have
a tool, through which it can verify all the information flows occurring on a respective
mobile device.

As the MPRA specification suggests that device manufacturer trust engine is the parent
engine and should facilitate other stakeholders trust engines. A related issue is that the
device manufacturer engine must take care of communication between different services
and should allow only if the their stakeholders permit. In our proposed model, it is the
responsibility of the corresponding service to provision resources associated with it. A
device manufacturer engine or mobile operating system should protect the files of the
corresponding service.

In our multi stakeholder policy model, only services are delegated and not their specific
rights, thus it is a service based delegation model, as opposed to a permission based
delegation model. This is due to limited computation power of a mobile device. If
computational power of a mobile device permits, a more fine grained permission based
delegation model can also be defined in the same way.

A policy editor both at the mobile phone and at the PC platform can be made available
through which the different policies of stakeholders can be configured. For example, if the
device owner and the mobile user are the same, the provision for associating constraints
at run time should also be included. Android provides no support for run time policy
management, and policy decisions have to be made at install time only which then can
never be changed. Our current implementation is in line with the current philosophy of
Android and permissions are verified at install time only. A provision for a mobile user
only to change a policy at run time is discussed in [10].

Our whole idea is based on a set of reference monitors that are residing on a mobile
platform, rather than a single security check point. These distributed security check points
ensure the delegation as well as the access control requirements of various stakeholders.

5. Related Work. Over the past year, many efforts have been made at formalizing
and extending the security mechanism of smart phones in the light of the existence of
multiple stakeholders. Rao and Jaeger [13] have proposed a dynamic mandatory access
control mechanism that is able to enforce the security policies of multiple stakeholders
using runtime information. The idea is to introduce a policy proxy that is able to combine
the policies associated with different stakeholder. However, the authors base their work on
SELinux and are thus unable to take into consideration constraints involving predicates

1234 M. ALAM, S. KHAN, Q. ALAM ET AL.

of different services themselves. For example, they are unable to resolve predicates that
restrict usage control requirements such as time constraints and periods of usage.
Ongtang et al. [11] have described SAINT – a mechanism aimed at Android that al-

lows application developers to define install-time and runtime constraints on the policies
associated with their applications. As the different applications running on smart phones
work on the behalf of different stakeholders, this work also falls under the category of
multi-stakeholder policy enforcement on smart phones. However, SAINT does not allow
some core stakeholders such as users, device manufacturer and the network carrier to
define their policies and is thus, in our viewpoint, an incomplete effort at this stage. On
the other hand, Nauman et al. [10] describe another runtime policy enforcement frame-
work Apex that allows users to define and enforce fine-grained usage requirements on the
resources of the Android phone. This is a user-centric approach and thus does not allow
some stakeholders to define their policies. It is therefore our belief that a comprehensive
policy mechanism is required as presented in this paper.
Since our multi stakeholder policy model closely mimics the specifications of MPRA, it

would be prudent to include some past efforts at realization of MTM on smart phones. The
high-level concept of realizing stakes of multiple organizations on a mobile device using
the MTM specifications was first described by Schmidt et al. [15]. In close compatibility
with the MPRA specification, different stakeholders are each represented using a trusted
engine which provide services to other stakeholders. This architecture forms part of our
core idea in this paper. However, in the original paper, no description of the stakeholder
policies or the conflict resolution between them was provided. We have described both
these concepts in detail using our multi stakeholder policy model.
RBAC [14] defines a set of permissions associated with a role. In our model, the

notion of a role can be assigned to different categories of stakeholders for example, a
service belonging to a device manufacturer is considered as playing the role of device
manufacturer on the mobile device. In contrast to RBAC, permission dependencies on
services belonging to other stakeholders defines a hierarchy of permissions of services
owned by different stakeholders.
Unlike traditional access control models, UCON [12] has defined two distinguishing

features, namely continuity of access decisions and mutability of attributes. In our target
architecture, we handle the usage control requirements of an individual service using its
internal functions. Suppose, if a medical application wants to allow access to medical
records five times only, or a specific number can be dialed using the dialer service by
a specific application, all these requirements shall be handled within the corresponding
application in our target architecture. Keeping in view variety of these usage control
requirements [2, 7, 8], a global usage control engine at the mobile operating system level
is neither practical nor feasible.

6. Conclusion. In this paper, we have presented an open model for regulating rights for
multi stakeholders on a mobile platform. Our policy model is built on top of the dominant
standards like MPRA specified by the TCG’s mobile phone work group. Resources on a
mobile phone has no single owner and services owned by multiple stakeholders are running
on a mobile platform. Through our approach, it is possible to realize fair behavioral
control on information flows occurring on a mobile device. Further, it is possible to
simulate information flows occurring on a mobile device. There are two types of policies
that a stakeholder can specify namely delegation and access control. A classified object
can have both of these policies configured by its stakeholder. we also presented that how
this idea can be implemented using open source software stack, Android.

MODEL-DRIVEN SECURITY FOR TRUSTED SYSTEMS 1235

In this paper, we have demonstrated our experiences that focuses on packaged objects,
while work is in progress to accommodate other type of objects. These other objects
normally fall into the category of passive resources. Our work has matured to the extent
that we can manage packaged objects based on our regulatory policy model for multi-
ple stakeholders. We have demonstrated our current implementation. Our future work
delves into resources that cannot be packaged. Some exceptional cases are also under our
investigation.

REFERENCES

[1] Trusted Computing Group, TCG specification architecture overview v1.2, Technical Report, pp.11-
12, 2004.

[2] C. Chiu, C.-I Hsu and M. S.-H. Ho, The prediction of PKI security performance using PSO and
Bayesian classifier, ICIC Express Letters, vol.3, no.4(A), pp.1031-1036, 2009.

[3] J. Ekberg and M. Kylänpää, Mobile Trusted Module (MTM) – An Introduction, http://research.
nokia.com/files/NRCTR2007015.pdf, 2007.

[4] Google’s Android Market, http://www.android.com/market/.
[5] IPhone Removing Google Voice from AppStore. http://www.crn.com/mobile/218700215; jses-

sionid=B2JR52TZYV1GVQE1GHRSKH4ATMY32JVN.
[6] A. Jhingran, Enterprise information mashups: Integrating information, simply, Proc. of the 32nd

International Conference on Very Large Data Bases, VLDB Endowment, pp.4, 2006.
[7] K. Wang, J. Ren, C. Hu and R. Ma, A method for discovering security bugs of software based on

AOE network, ICIC Express Letters, vol.3, no.4(A), pp.1081-1086, 2009.
[8] Y. Zhang, J. Ye, B. Fang and Z. Tian, A quantitative method for evaluating the security threats

of grid system to tasks, International Journal of Innovative Computing, Information and Control,
vol.5, no.4, pp.1125-1136, 2009.

[9] TCG MPWG, TCG mobile reference architecture specification, TCG Specification Version 1.0.
[10] M. Nauman, S. Khan, M. Alam and X. Zhang, Apex: Extending Android Permission Model and

Enforcement with User-defined Runtime Constraints, 2010.
[11] M. Ongtang, S. McLaughlin, W. Enck and P. McDaniel, Semantically rich application-centric security

in android, Proc. of the Annual Computer Security Applications Conference, 2009.
[12] J. Park and R. Sandhu, Towards usage control models: Beyond traditional access control, Proc. of

the 7th ACM Symposium on Access Control Models and Technologies, pp.57-64, 2002.
[13] V. Rao and T. Jaeger, Dynamic mandatory access control for multiple stakeholders, Proc. of the

14th ACM Symposium on Access Control Models and Technologies, pp.53-62, 2009.
[14] R. Sandhu, Rationale for the RBAC96 family of access control models, Proc. of the 1st ACM Work-

shop on Role-based Access Control, pp.9, 1996.
[15] A. U. Schmidt, N. Kuntze and M. Kasper, On the deployment of mobile trusted modules, Arxiv

Preprint arXiv:0712.2113, 2007.
[16] Trusted Computing Group, http://www.trustedcomputinggroup.org/.

