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Abstract. Ventilator weaning is the process of discontinuing mechanical ventilators
from patients with respiratory failure. This study designed a clinical decision support
system (CDSS) using support vector machine (SVM) to predict if a patient can be weaned
from mechanical ventilator successfully. A filter method based on logistic regression anal-
ysis (LRA) and a wrapper method based on recursive feature elimination (RFE) were
adopted to select salient features in 27 variables, including demographic information,
physiology and disease factors, and care and treatment factors for CDSS. Data of 348
patients were collected at four different periods from all-purpose respiratory care cen-
ter. Seven significant variables (p < 0.05) using LRA contrasted to eleven variables
using RFE algorithm were selected. The predictive accuracy under cross-validation is
88.33% (LRA) and 92.73% (RFE), respectively. The systems outperform predictors (75-
78%) built using frequency-to-tidal volume ratio (f/VT ) and a model (78.6%) constructed
recently using a combination of sample entropy of inspiratory tidal volume (VTI), ex-
piratory tidal volume (VTE), and respiration rate (RR). The CDSS constructed using
SVM was shown to have better accuracy (91.25%) than using neural network (88.69%).
Additionally, the designed CDSS with a graphic user interface (GUI) provides a valuable
tool to assist physicians to determine if a patient is ready to wean from the ventilator.
Keywords: Ventilation weaning, Clinical decision support system, Neural network,
Support vector machine, Recursive feature elimination, Logistic regression analysis
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1. Introduction. In the daily practice of an intensive care unit (ICU), weaning is typ-
ically regarded as the whole process of discontinuing mechanical ventilation. Among the
ICU patients, 39%-40% need mechanical ventilator for sustaining their lives [1], of which
90% of the patients can be weaned from the ventilator within a few days [2], while other
patients need longer ventilator support [3,4]. Ventilator support should be withdrawn
promptly when it is no longer necessary so as to reduce the likelihood of known nosoco-
mial complications and costs [5,6].
Because prolonged use of ventilator can have great risks of subglottic injury, respiratory

infections, and chronic lung disease [7], discontinuing mechanical ventilation and remov-
ing the artificial airway as soon as possible reduce the risk of ventilator-induced lung
injury (VILI), nosocomial pneumonia, airway trauma from the endotracheal tube, and
unnecessary sedation. However, premature ventilator-discontinuation or extubation can
cause respiratory muscle fatigue, gas exchange failure, loss of airway protection, and an
increase of patient mortality [8-10]. Therefore, catching the correct time to begin weaning
process is very important but difficult in clinical practice.
The rate of successful weaning reached only 35-60% [11-13] if the decisions were made

by physicians. Therefore, it is desirable to have objective measurements and weaning
predictors that decrease dependence on the knowledge, experience, and skill of individual
physicians whose judgments are prone to be unreliable. A clinical decision support system
is expected to be able to effectively identify the earliest time of ventilator weaning for a
patient to resume and sustain spontaneous breathing, so that unnecessary prolongation
of ventilator use can be avoided. By identifying patients who are likely to fail a trial of
spontaneous breathing, such indices can prevent a premature weaning attempt and the
development of severe cardiorespiratory and/or physiological decompensation.
Several physiological indices, such as rapid shallow breathing index measures by fre-

quency-to-tidal volume ratio (f/VT ), maximal inspiration pressure (PImax), vital capacity
(VC), minute ventilation (VE), pH and pCO2 values of stomach mucosa, arterial blood
gas levels, fraction of inspired oxygen, alveolar-arterial oxygen pressure difference (A-a
gradient), blood urine nitrogen (BUN) level, serum creatinine level, and serum albumin
level, have been reported to be useful for weaning prediction [14-20]. However, no agree-
ment has been made so far to determine which indices should be monitored [12,13]. In
addition, previous studies only focused on physiological variables, while other factors in-
cluding diseases, for example, pulmonary, cardiac, respiratory and brain vessel diseases,
and therapeutic progression indexes, such as acute physiology and chronic health eval-
uation II (APACHE II) and coma scales, were seldom considered. Predictors designed
using indices obtained from a single device tend to incur systematic errors [21]. Hence,
adoption of multiple indices obtained from various modalities is useful in eliminating
systematic errors. Furthermore, some of these indices, such as pH and pCO2 values of
stomach mucosa, are not easy to measure clinically and not widely adopted in ICU for
assessing ventilator weaning. APACHE II is a classification system for evaluating disease
severity for a patient based on 12 routine physiological tests [22]. A higher score implies
more severe disease and high risk of death. Galsgow coma scale, on the other hand, aims
at objectively evaluating the conscious state of a patient based on the neurological sta-
tus. The scale spans a range from 3 to 15 points with a smaller point indicating deeper
unconsciousness for a patient.
As mentioned above, the main shortcoming of the existing results is that the determi-

nation of weaning is generally based on single indices, which is easily to be affected by
systematic error. Additionally, the predictive performance is too low (< 78.6%) that is not
applicable in clinical settings. Most of the work done previously only considered indices
individually by showing their powers in predicting patients who have greater probability



DESIGN OF A CDS FOR DETERMINING VENTILATOR WEANING USING SVM 935

to successfully wean from the ventilator [14-20]. The statistic analyses were done using
retrospective data without conducting prospective studies. In addition, as investigated
by Tobin and Jubran with meta-analysis, predictors designed using indices obtained from
a single device tend to incur systematic error [21]. There are two types of errors generally
encountered in an investigation: random error and systematic error. Random error can
be decreased by increasing the sample size, while, if systematic error presents, an increase
of sample size does not decrease it but reinforces it [23]. As manifested in previous in-
vestigations, the predictive power of successful ventilation weaning using a single index is
fair [24-26]. For example, the predictive accuracy by using f/VT is only 75-78% [25,26].
Currently, the most successful model is the one proposed by Casaseca-de-la-Higuera et al.
[24] using a combination of sample entropy of 3 variables acquired from a single instrument
achieving the predictive performance of only 78.6%. Hence, we suggest that adoption of
multiple indices obtained from diverse instruments or modalities be expected to be able
to compensate system errors incurred by indices acquired from a single instrument, which
in turn elevates the predictive performance.

Computer-driven mechanical ventilators such as closed-loop knowledge-based and au-
tomated protocol-driven mechanical ventilator systems have been developed recently and
used for more rapid extubation than the conventional protocol-driven ventilation [27-
29]. The computer-driven system is a real-time system which acquires and interprets
the patient’s clinical data and gradually adjusts the level of pressure to intubated or
tracheotomized patients by keeping them at a comfortable state. It was claimed to be ca-
pable of reducing the duration of mechanical ventilator and ICU stay [28,29]. The systems
intend to either reduce the pressure to a minimal level to achieve spontaneous breathing
while a message will be prompted on the screen to suggest a ventilator weaning [28,29] or
automatically switch from mandatory to spontaneous ventilation mode if two consecutive
spontaneous breaths are detected [27]. For the protocol-driven system, it will automat-
ically switch back to the mandatory mode if continuously spontaneous breaths are no
longer detected. Although computer-driven mechanical ventilators seem to be promising
in facilitating ventilation weaning, before their popularity, it still needs a clinical decision
support system (CDSS) to identify the earliest time when the patients can be weaned
from ventilators and the patients who are likely to fail or succeed a trial of weaning based
on the current settings of individual respiratory care centers (RCC).

In this study, filter and wrapper feature selection methods were used to select salient
variables from 27 variables recorded in the RCC of our hospital. The filter method
based on inferential statistic analyses such as t-test, Pearson chi-square test and logistic
regression analysis (LRA), as well as the wrapper method based on recursive feature
elimination (RFE) was adopted for feature selection. A comparison was also made to
determine which feature selection method could select a better subset of features used
for CDSS construction. Since support vector machine (SVM) has been recognized as a
powerful computational tool for problems with nonlinearity having high dimensionalities
[30-32], it was used to design a CDSS based on the selected features to assist physicians
to determine if a patient can be successfully weaned from a mechanical ventilator to avoid
unnecessary prolongation of period on ventilator support.

The motivations of this study are summarized as follows: (1) the successful weaning
rate is too low (35-60%) if determined by physicians; (2) no agreement has been made
so far to determine which physiological indices should be used for predicting successful
ventilator weaning; (3) some variables are not easy to measure clinically and some are
not widely monitored in ICU; (4) previous studies only focused on physiological variables,
and we observed that other disease and therapeutic progression indexes should also be
considered; (5) computer-driven ventilators are very expensive and not popular in general
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ICUs, especially in undeveloped and developing countries; and (6) current available pre-
dictive models designed using indices acquired from a single instrument can only achieve
a successful weaning rate for less than 78.6%, which still needs improvement for clinical
application.
The objective of this study is to design a CDSS to achieve greater predictive perfor-

mance and assist physicians in determining the right time for ICU patients to wean from
mechanical ventilators successfully on daily basis without further investment of new equip-
ment for the acquisition of additional physiological indices, thereby reducing nosocomial
complications and healthcare costs. The advantages and key features of our proposed
CDSS include (1) the adoption of multiple physiological indices accompanied with disease
and therapeutic progression indexes; (2) a friendly and easy-to-use GUI; (3) daily-base
decision support of ventilation weaning; (4) a progressive model construction by training
the model using retrospective data and testing with data obtained prospectively and (5)
high predictive performance.

2. Clinical Decision Support System. CDSS is promising in providing useful infor-
mation and expert knowledge to enhance diagnostic performance and improve healthcare
quality in clinical setting. Garg et al. (2005) reported that 64% of the 97 proposed CDSS
applications, including 10 diagnostic systems, 21 reminder systems, 37 disease manage-
ment systems, and 29 drug-dosing or prescribing systems, demonstrated improved out-
comes in medical practitioner performance [33]. Apart from being applied in the diagnoses
of lower back pain [34], otological disease [35], cardiovascular disease [36], and cancer us-
ing endoscopic images [37]; management and care of chronic heart failure [38] and chronic
kidney failure [39]; and management of operational risk in hemodialysis [40], CDSS was
also designed to care for patients who received mechanical ventilation [41-43]. A CDSS
implemented as an electronic reminder was reported to be useful for nurses to increase
their adherence to guidelines and to improve the positioning of patients who received me-
chanical ventilation [41]. Predictors including pulmonary and gastrointestine diagnoses,
body mass index, and tube-feeding are important for determining head-of-bed position
for patients. On the other hand, Eslami et al. reported that a significant effect was found
by adopting the CDSS to improve a guideline recommending the administration of lower
tidal volume for ICU patients receiving mechanical ventilation longer than 24 hours [42].
It is effective in preventing patients with acute lung injury from ventilator-associated lung
injury.

3. Material and Methods. The experimental procedure is illustrated in Figure 1. Af-
ter data collected from the patients who were managed and cared under an integrated
delivery system (IDS) in the RCC strictly following the weaning protocol for considera-
tion of ventilation weaning, variables were selected using filter and wrapper methods. The
selected features are then applied for CDSS construction using SVM and neural network.
The predictive performance of the CDSS was verified with cross-validation and progres-
sive testing [31]. Finally, a program with friendly graphical user interface (GUI) had been
designed to provide a tool to assist physicians in decision-making.

3.1. Subjects and weaning protocol. In Taiwan, the patients who need mechanical
ventilator support have to be cared under the IDS mandated by the National Health
Insurance Bureau (NHIB).
Patients who have been supported by mechanical ventilator for more than 14 days

should be registered under the IDS and reported to the NHIB. Only the patients who are
clinically stable and have been on mechanical ventilation within 21 days after starting
ventilator support can be transferred to all-purpose RCCs [11]. Subjects who had been
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Figure 1. Experimental procedure

on mechanical ventilation for longer than 21 days and were clinically stable such that
their primary physicians considered they were ready to undergo a weaning trial [11],
were recruited at four different periods from two all-purpose respiratory care centers of a
national hospital located in the central Taiwan area. Table 1 shows detailed information
regarding the data collected at four different periods. The successfully weaned group
consisted of patients who were able to sustain spontaneous breathing for more than 120
hours. The protocol procedure, including clinical assessment, objective test, justification
of spontaneous breathing trial (SBT) and extubation of initial weaning were conducted by
clinicians for ventilator weaning [43]. Those patients whose mechanical ventilators were
reinstituted within 120 hours were classified as the failed weaning group. Although the
data collected have spanned several years, the successful weaning rates (44%-50%) are
very consistent in different periods and to the previous reports (35%-60%) [11-13].

Table 1. Patients recruited at three different periods

Data Collected Period
Successful Failed

Samples
Aggregated

Weaning Weaning samples
1 Nov. 2002-Nov. 2003 83 (44.2%) 105 188 188
2 Jun. 2005-Dec. 2005 19 (44.2%) 24 43 231
3 Feb. 2008-May 2008 26 (46.4%) 30 56 287
4 Feb. 2009-Aug. 2009 30 (49%) 31 61 348

Total 158 (45.4%) 190 348

3.2. Support vector machine. SVM was first developed by Vapnik and his group in
former AT&T Bell Laboratories. It is a useful technique for data classification and has
become an important tool for machine learning and data mining. In general, SVM has
better performance when compared with other existing methods, such as neural networks
and decision trees [44-46]. The goal of SVM is to separate multiple clusters with a set
of unique hyperplanes having greatest margins to the boundary, consisting of support
vectors, of each cluster. In contrast, each hyperplane which separates two clusters is not
unique for other linear classifiers. Given a two-class linearly separable problem, the hyper-
plane separating two classes leaving the maximum margin from both classes is represented
as [47]:

g(x) = wTx+ w0 = 0 (1)

in which w indicates the weights of the input vector x and w0 is a bias term of the
hyperplane. The training data of two classes can be represented as (xi,yi) with xi ∈ Rn
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and yi ∈ {+1,−1} for i = 1, 2, . . . , N , in which sample xi is an N -dimensional input vector
and yi is its corresponding label indicating the class of xi. By scaling the orthogonal
vector w and bias w0 in Equation (1) to make the values of g(x) at the nearest points in
class 1 and class 2 equal to 1 and −1, respectively, the problem of obtaining the optimal
hyperplane becomes a nonlinear quadratic optimization problem, which can be formulated
as:

Min
w,w0

∥w∥2

2
, Subject to yi(w

Txi + w0) ≥ 1, i = 1, 2, . . . , N (2)

The problem can be solved by considering Lagrangian duality and stated equivalently
by its Wolfe dual representation form with the constraints satisfying the Karush-Kuhn-
Tucker (KKT) conditions, i.e., ∂L(w, w0, λ)/∂w = 0, ∂L(w, w0, λ)/∂w0 = 0, λi[yi(w

Txi+
w0)− 1] = 0 and λi ≥ 0 for i = 1, . . . , N , as indicated in the following equation.

Max L(w, w0, λ) =
∥w∥2

2
−

N∑
i=1

λi

[
yi(w

Txi + w0)− 1
]

(3a)

Subject to w =
N∑
i=1

λiyixi,

N∑
i=1

λiyi = 0 and λi ≥ 0 for i = 1, . . . , N (3b)

where L(w, w0, λ) is a Lagrangian function and λ = [λ1, λ2, . . . λN ] is the vector of La-
grangian multipliers corresponding to the constraint in Equation (2). In contrast to
Equation (2), the first two constraints in Equation (3b) become equality constraints and
make the problem easier to handle. By substituting the first two constraints in (3b) into
(3a), the problem is formulated as:

Max
λ

(
N∑
i=1

λi −
1

2

N∑
i,j=1

λiλjyiyjx
T
i xj

)
,

Subject to
N∑
i=1

λiyi = 0 with λi ≥ 0, i = 1, . . . , N

(4)

As soon as the Lagrangian multipliers have been obtained by maximizing the above
equation, the optimal hyperplane can be obtained from w =

∑N
i=1 λiyixi shown in Equa-

tion (3b). And then, classification of a sample is performed based on the sign of the
following equation:

f(x) = sgn(wTx+ w0) = sgn

(
Ns∑
i=1

λiyix
T
i xi + w0

)
(5)

where Ns is the number of support vectors.
For a nonlinear classification problem, the optimization problem shown in Equation (2)

is changed to Equation (6) with a penalty term being added:

Min
w,w0

(
∥w∥2

2
+ C

N∑
i=1

ξi

)
,

Subject to yi(w
Tϕ(xi) + w0) ≥ 1− ξi and ξi ≥ 0, i = 1, 2, . . . , N

(6)

where C is a positive penalty parameter, variables ξi are used to weigh the cost of misclas-
sified samples, and ϕ(xi) is a function applied to map the training sample xi to a higher
dimensional space. For a vector x ∈ Rn in the original feature space, it is assumed that
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there exists a function ϕ for mapping x ∈ Rn to ϕ(x) ∈ Rk with k > n. Then, the class
of a sample can be determined from the following equation:

f(x) = sgn
[
wTϕ(x) + w0

]
= sgn

[
Ns∑
i=1

λiyiϕ(x)
Tϕ(xi) + w0

]
(7)

in which ϕ(x)Tϕ(x)i) is the inner product needed for calculation and is performed by a
kernel functionK(x, z) = ϕ(x)Tϕ(z) which is a symmetric function satisfying the following
condition: ∫

K(x, z)g(z)dxdz ≥ 0 and

∫
g(x)2dx ≤ ∞ (8)

Finally, the optimization problem in Equation (4) is reformulated as:

Max
λ

(
N∑
i=1

λi −
1

2

N∑
i,j=1

λiλjyiyjK(xT
i xj)

)
,

Subject to
N∑
i=1

λiyi = 0 with 0 ≤ λi ≤ C

(9)

For a nonlinear classifier, various kernels including polynomials, radial basis functions,
and hyperbolic tangents can be used for mapping the original sample space into a new Eu-
clidian space with Mercer’s conditions satisfied. The linear classifier can then be designed
for classification. Among them, radial basis function, as shown in the following equation,
is the most widely used function and is adopted in this study for feature mapping.

K(x, z) = exp(−γ ∥x− z∥2) (10)

Recently, design of CDSSs using SVM has grown rapidly in the diagnosis of cardiovas-
cular disease [36], hypertension [48], and breast cancer [49-51], and in the discrimination
of cervical lymph nodes as malignant or benign during ultrasonography [52]. In this study,
SVM was applied to construct a CDSS for the prediction of successful ventilator weaning.
The effectiveness is compared with the model built with an artificial neural network.

Since the ranges of individual variables have great variations, a normalization scheme
was applied to adjust the data to lie within a range between 0 and 1 for all variables.
For cross validation, all the sample data were randomly divided into n clusters (folds), in
which n− 1 folds were used for training while the remaining one for testing the accuracy
of the model. In this study 6-fold cross-validation was adopted. In this case, data were
divided into 6 folds, in which 5 folds were used as the training set and the remaining one
as the testing set. The procedure was repeated 6 times and then the average sensitiv-
ity, specificity, and accuracy were calculated for a cycle of cross validation. In order to
eliminate the bias produced in sample groupings for only 1 cycle of cross validation, 10
repeated cross-validations were done to obtain the mean and standard deviation of the
average accuracy, sensitivity and specificity of individual cycles.

3.3. Feature selection. Feature selection takes the advantage of reducing the number of
features and the size of storage requirements, decreasing training and computational time,
facilitating data visualization and understanding, and improving predictive performance
[53,54]. The algorithms of feature selection can often be classified into 3 approaches in-
cluding filter, wrapper, and embedded methods [53]. The filter method is a preprocessing
procedure which selects a subset of features based on statistic measures independent of
the designed classifiers. In contrast, the wrapper method assesses individual subsets of
features in a recursive way by considering their predictive efficiency to a given classifier. It
is more computational intensive than the filter method, but is believed to able to provide
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more efficient outcome. The subset with the smallest number of features achieving the
highest predictive accuracy is used for classifier construction. Recently, genetic algorithm,
an alternative wrapper method, was also proposed as a useful method for feature selection
[55,56], and sometimes, this strategy is also used for the adjustments of cost value and
kernel parameter of SVM together with the selection of features when designing a classi-
fier [57]. For example, it was applied to construct predictive models for the diagnoses of
breast cancers [50,51] and hypertension [48]. On the other hand, the embedded method
selects features during the process of model construction by considering the cost function
of a model [58], for example the function shown in Equation (6) for SVM model.

3.3.1. Filter method based on logistic regression analysis. The filter approach used for
feature selection in this study is based on LRA. It is a type of nonlinear regressions which
has been used to delineate the relationship between several independent variables, discrete
or continuous, and a dependent discrete variable, dichotomous or multiple. For binary
LRA, the dependent variable is dichotomous, while for multiple LRA, it is multiple. In
contrast, the dependent variable of a multiple regression analysis is continuous. The
dependent variable (y) is a linear combination of dependent variables (xi) for a multiple
regression, as shown in the following equation:

y = a+
n∑

i=1

bixi + ε (11)

in which a is the intercept of Y axis, bi indicates the regression coefficient, and ε is the
prediction error. Therefore, a model constructed using multiple regression analysis can
be represented as:

g(x) = a+
n∑

i=1

bixi (12)

Hence, the prediction error ε = y − g(x) indicates the difference between a measured
value and the predicted value. Since the dependent variable of a binary LRA is dichoto-
mous, i.e., 1 or 0, it’s modeling is based on the probability associated with the values of
dependent variable, as formulated as natural logarithm of odd ratio in favor of y = 1 in
the following equation.

ln
P (y = 1|x1, x2, . . . , xn)

P (y = 0|x1, x2, . . . , xn)
= a+

n∑
i=1

bixi (13)

The above (Logit) transformation of the dependent variable converts a non-linear rela-
tionship between independent and dependent variables into a linear one. The SPSS 12.0
statistical software package was adopted to perform a statistical analysis of the acquired
data. Descriptive statistics were first used to overview the characteristics of the dataset
with mean and standard deviation calculated for each continuous variable followed by
inferential statistics. Frequency and percentage of each sub-type of a categorical variable
were also calculated for further analysis. Inference statistics such as t-test was used to
test significance of the continuous variables while a Pearson chi-square test was applied to
test the dichotomous variables. The variables which are significantly different (p < 0.05)
between successful and failed weaning groups were further studied using LRA. In the be-
ginning, all of the 27 variables were analyzed using t-test and Pearson chi-square test for
selecting salient continuous and discrete variables, respectively, which was then followed
by LRA to further select significant variables for CDSS training and testing using neural
network and support vector machine. The 27 variables of the collected data are presented
in Table 2. It depicts the effects of demography, physiology and disease, and care and
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treatment factors on a ventilator weaning prediction. Significant variables were selected
from the collected data for constructing the CDSS. The performances of two machine
learning methods, i.e., SVM and neural network, were compared.

Table 2. Statistic analyses of 27 recorded variables for feature selection
(N = 287)

Ventilator Weaning
Variables Successful Failed Significance

(n = 128) (n = 159) (p-value)
Demographic Data
Gender (male/female) 76/52 93/66 0.88
Age 72.10± 14.17 76.72± 13.27 0.005∗

Physiology and Disease Factors
APACHE II score at hospitalization 17.31± 4.93 18.79± 5.88 0.024∗

Coma Scale at hospitalization 9.69± 3.42 9.33± 3.93 0.422
Albumin (mg/dl) 2.80± 0.48 3.08± 3.7 0.403
Blood urea nitrogen (BUN) (mg/dl) 26.22± 18.23 39.10± 30.22 < 0.001∗∗

Creatinine (mg/dl) 1.29± 0.99 4.36± 22.34 0.121
Hemoglobin (g/dl) 10.90± 1.63 10.51± 5.99 0.479
Pulmonary disease 74 (57.8%) 86 (54.1%) 0.528
Cardiac disease 22 (17.2%) 31 (19.5%) 0.616
Historical respiratory disease 28 (21.9%) 57 (35.8%) 0.01†

Brain vessel disease 15 (11.7%) 11 (6.9%) 0.159
Other causes related to int. medicine 66 (51.6%) 107 (67.3%) 0.007†

Acute respiratory distress syndrome 3 (2.3%) 0 (0%) 0.052
Multiple-organ failure 0 (0%) 7 (4.4%) 0.016†

Trauma 0 (0%) 3 (1.9%) 0.118
Brain Surgery 30 (23.4%) 17 (10.7%) 0.004†

Other kinds of surgeries 7 (5.5%) 19 (11.9%) 0.249
Care and Treatment Factors
Tracheotomy 61 (47.7%) 62 (37.7%) 0.14
Coma scale at weaning 9.37± 2.93 7.41± 2.96 < 0.001∗∗

RSBI at weaning 91.52± 43.28 161.05± 79.76 < 0.001∗∗

Length of ICU admission (day) 16.02± 7.08 17.97± 6.85 0.019∗

Days using ventilator 32.67± 12.45 41.11± 17.31 < 0.001∗∗

Ventilator associated pneumonia 16 (12.5%) 61 (38.4%) < 0.001‡

Blood infection 0 (0%) 6 (3.4%) 0.026†

Urinary tract infection 14 (10.9%) 41 (25.8%) < 0.001‡

Nosocomial infection 6 (4.7%) 6 (3.4%) 0.701
t-test: p 5 0.55∗, p 5 0.001∗∗; Pearson χ2 test: p 5 0.55†, p 5 0.001‡

3.3.2. Wrapper method based on recursive feature elimination. The wrapper method as-
sesses individual subsets of features in a recursive way by considering their predictive
efficiency to a given classifier. For a vector space with n features, recursive feature elim-
ination (RFE) algorithm removes unimportant features based on backward sequential
selection by iteratively deleting one feature at a time, resulting in a sub-optimal combina-
tion of r (r < n) features with best predictive performance [53]. For SVM-RFE, it starts
with all features by deleting a feature repeatedly until r features are left, which leads to a
largest margin separating two classes. Weight magnitude which is inversely proportional
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to the margin is generally used as the ranking criterion in determining the importance of
individual features. The eliminated feature p is the one which minimizes the variation of
weight:

∥w−p∥2 =
N∑

i,j=0

λiλjyiyjK(xT
i xj) (14)

In addition to weight or margin, other measures such as generalization error [58], gra-
dient of weight [59] and Fischer’s ratio [60] were also proposed for feature ranking [58].
In this study, mean cross validation accuracy was used as a measure of feature ranking
for determining the eliminated feature in each iteration.

3.4. Progressive CDSS designs. Since the weaning data are not easy to collect, it is
not possible to construct a CDSS with high performance without using a lot of samples.
Hence, in this study, we proposed a strategy, namely progressive CDSS construction,
for gradually improving CDSS performance. First of all, the data collected at the first
period was used to construct the CDSS with the scheme of cross validation used to verify
effectiveness of the system. Secondly, the data collected during the second period were
applied to test the performance of the model. Thirdly, the data collected from the second
period were pooled to the preciously collected data and the training and testing procedures
were repeated. Fourthly, the data collected in the third period were again used to test
the revised CDSS. The above procedure will be repeated until the system is stabilized.
As demonstrated in the next section, the results show that the performance of the CDSS
has gradually improved by using more data. In future clinical application, patient data
collected within a certain period of time containing enough samples will be pooled to the
existing dataset for CDSS reconstruction and testing. The procedure will be repeated
until the CDSS has achieved optimal performance.

3.5. Design of CDSS. A computer-assisted decision support system was designed to
provide physicians with a useful tool for making weaning decisions. The graphic user
interface (GUI) of the prototypic CDSS designed with SVM using 11 features selected
based on RFE is shown in Figure 2. As shown in this figure, the values of salient variables
(upper-left corner) can be input to the system for weaning prediction. Other accompanied
variables (right column) can also be input and stored for later analysis. If the predicted
successful probability is higher than a threshold (0.5), the system predicts that the patient
can be weaned successfully.

4. Results.

4.1. Feature selection. Table 2 shows the results of descriptive statistics and inference
statistics of 27 recorded variables for the dataset containing 287 samples collected in the
first three periods. As depicted in this table, 7 continuous variables and 7 discrete variables
are significantly different (p < 0.05) between successful and failed weaning groups. After
pooling the 14 variables together, a filter method based on LRA was used for further
analysis and feature selection. As shown in Table 3, it was found that only 7 variables,
including blood urea nitrogen (BUN), brain surgery, coma scale when weaning, rapid
shallow breathing index (RSBI) when weaning, days using ventilator, ventilator associated
pneumonia, and urinary tract infection, were significant (p < 0.05) and selected for CDSS
construction. Other aggregated datasets, which consist of 188, 231, and 348 samples,
also demonstrated similar characteristics such that only 7 variables reached significance
(p < 0.05) after LRA.
The accuracy against the number of selected features based on SVM-RFE method is

shown in Figure 3. As indicated in this figure, using 11 features for the design of a CDSS
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Figure 2. Graphic user interface of the designed CDSS

Table 3. Significant variables after logistic regression analysis

Variables B S.E. Wald P-value
Blood urine nitrogen 0.016 0.007 4.856 0.028∗

Brain surgery −1.191 0.455 6.861 0.00∗

Coma scale at weaning −0.313 0.063 24.319 < 0.001∗∗

RSBI at weaning 0.017 0.003 28.827 < 0.001∗∗

Days using ventilator 0.026 0.011 5.855 0.016∗

Ventilator associated pneumonia 1.172 0.378 9.601 0.002∗

Urinary tract infection 1.429 0.438 10.640 0.001∗

Constant −1.004 0.769 1.704 0.192
∗p 5 0.55, ∗∗p 5 0.001

model achieves maximum accuracy. To compare the features selected using LRA (Table
3) and SVM-RFE (Figure 2), it was found that 5 common features, i.e., coma scale at
weaning, RSBI, days using ventilator, ventilator associated pneumonia and urinary tract
infection, were selected by two methods, while brain surgery and BUN were selected only
by LRA, but coma scale at hospitalization, creatinine, pulmonary disease, brain vessel
disease, tracheotomy and other causes related to internal medicine were selected by SVM-
RFE alone.

4.2. Weaning prediction. In the first experiment, we tested SVM models using differ-
ent combinations of parameters, C and γ, with a grid size of 0.1 to select the optimal
parameters for constructing the CDSS with greatest predictive accuracy. As shown in
Table 4, the optimal SVM parameters were different for different datasets containing
data collected at different aggregated number of periods, i.e., 1, 2, 3 and 4 periods, re-
spectively. In addition, features selected using different methods of feature selection also
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Figure 3. Maximum accuracy against number of selected feature using
SVM-RFE method

affect the optimal parameters because of different number or combination of selected fea-
tures. Performance evaluation was done using 6-fold cross-validation and the experiments
were repeated 10 times for each case. The mean accuracy, sensitivity, and specificity
achieve larger values for the cases with more data samples. It is also observed that the
predictive performance for the CDSS model constructed using features selected based on
wrapper method (11 features) is better than filter method (7 features).

Table 4. Optimal SVM parameters of different datasets containing differ-
ent number of samples for model construction using different combination of
features selected using filter methods (7 features) and wrapper methods (11
features), respectively. Notice that 6-fold cross-validation was used to test
performance using grid search for 10 repetitions. The accuracy, sensitivity
and specificity for wrapper method are better than filter method.

Sample Feature Accuracy Sensitivity Specificity
log2C log2 γSize Selection (SD) (%) (SD) (%) (SD) (%)

348
Filter 88.33 (0.84) 90.32 (1.46) 85.86 (1.18) 32 16

Wrapper 92.73 (0.79) 95.81 (0.94) 88.97 (1.96) 6.2 3.1

287
Filter 85.19 (1.55) 92.17 (0.87) 73.97 (3.48) 4 64

Wrapper 90.56 (1.37) 95.14 (2.05) 85.00 (2.34) 5.9 3

231
Filter 78.73 (1.57) 91.08 (1.03) 63.77 (3.28) 0.0625 64

Wrapper 85.27 (1.57) 92.34 (2.41) 76.35 (2.63) 4.8 3

188
Filter 77.16 (1.16) 86.55 (1.79) 64.91 (1.72) 0.5 8

Wrapper 79.88 (1.34) 91.42 (1.32) 76.35 (4.13) 6 3.2

In the second experiment, the CDSS was constructed using the data collected at the
first q periods, 1 5 q 5 3, and then the data of the (q+1)th period were applied for testing
the system. For q = 1, the data collected at the first period were used for training the
CDSS and the data of the 2nd period applied for testing the CDSS model. In this case,
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prediction accuracy of 72.10% and 81.43% was obtained for features selected with filter
and wrapper methods, respectively. As shown in Table 5, the procedure was repeated
for 3 times with predictive accuracies of 72.10%, 89.36% and 90.15%, respectively, for
models constructed using 7 features and 81.43%, 89.36% and 91.25%, respectively, using
11 features. As indicated in this table, the CDSS has been improved progressively by using
more samples for training. The predictive rate raised more than 8% when the number of
training samples increased from 188 to 231, while it was less than 2% improvement when
the number of training samples increased from 231 to 287.

A comparison of predictive rates for CDSS models constructed using two different
models, i.e., SVM and back-propagation neural network (BPNN), was also demonstrated
in Table 5. As indicated in this table, SVM model achieves higher predictive rates than
BPNN for all cases.

Table 5. Comparisons of progressive models with the data collected at
previous periods used for training and the data at the following period as
testing

Training Testing Feature Accuracy (%) Sensitivity (%) Specificity (%)
Samples Samples Selection SVM BPNN SVM BPNN SVM BPNN

188 43
Filter 72.10 70.00 79.17 74.17 63.16 64.21

Wrapper 81.43 75.53 86.23 78.83 74.78 70.00

231 56
Filter 89.36 83.75 90.00 93.33 87.67 72.69

Wrapper 89.36 83.39 91.78 93.67 86.75 71.15

287 61
Filter 90.15 83.93 91.00 94.84 89.21 73.33

Wrapper 91.25 88.69 92.56 93.55 87.89 82.33

5. Discussion. To minimize the duration of mechanical ventilation, the clinician should
define and treat the underlying causes of respiratory insufficiency and discontinue ma-
chine support at the earliest possible time. MacIntyre et al. (2001) suggested that four
criteria should be assessed before discontinuing ventilation for patients with acute respi-
ratory failure: (1) the causes inducing respiratory failure have been reversed; (2) adequate
oxygenation and pH value of blood; (3) stable homodynamic without active myocardial
ischemia and hypotension and (4) the ability to initiate inspiration. In this study, the
physicians were asked to follow the above criteria [5]. For patients who met the above
criteria, the physicians would soon consider the possibility for the patients to have trials
of ventilation weaning and extubation.

On the other hand, The American College of Chest Physicians, the Society of Criti-
cal Care Medicine and the American Association for Respiratory Care also created five
evidence-based guidelines for ventilator weaning based on the following principles. First,
frequent assessment is required to determine whether ventilator support and the artificial
airway are still needed. Second, patients who continue to require support should be con-
tinually re-evaluated to assure that all factors contributing to ventilator dependence are
addressed. Third, with patients who continue to require support, the support strategy
should maximize patient comfort and provide muscle unloading by fitting the physical
needs for individual patients and tuning the operational modes of ventilators to enable
them not to fight the usage of ventilators and to make them feel as comfortable as possi-
ble. Fourth, patients who require prolonged ventilator support beyond the intensive care
unit should go to specialized facilities that can provide more gradual support reduction
strategies. Finally, ventilator-discontinuation and weaning protocol can be effectively car-
ried out by non-physician clinicians. The designed CDSS is efficient in realizing the first
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two guidelines under the supervision of physicians. As soon as the mechanical ventilator
has been successfully weaned, general healthcare providers will take over the patients.

5.1. Predictive variables. A number of physiologic indices have been described to pre-
dict the outcome of attempts at discontinuing ventilator support. Previous investigations
showed that several physiological indexes, such as rapid shallow breathing index [14],
maximal inspiration pressure (PImax) [15,16], vital capacity (VC) [16], minute venti-
lation (VE) [15,17] and pH and pCO2 values of stomach mucosa [18], were useful for
successfully predicting ventilation weaning. It was also shown that several variables, such
as arterial blood gas levels, fraction of inspired oxygen, alveolar-arterial oxygen pressure
difference (A-a gradient), blood urine nitrogen (BUN) level, serum creatinine level and
serum albumin level, were correlated to successful weaning [19,20]. In addition to BUN
level and albumin level [12], race and reason for ventilator dependency were also found
to be major predictors. However, some of the above indices are difficult to measure and
cannot be applied in daily practice.
Chen et al. (2005) found that patients with lower APACHE II scores had higher

incidences of successful weaning from the ventilator in Respiratory Care Center (RCC),
which was also observed in this study (Table 2, p < 0.05) [61]. In addition, it was reported
that long-term survival was inversely associated with age and length of stay in ICU or RCC
[20]. This finding is consistent with our statistical outcome that patients with larger age
(p < 0.01) and longer ICU stay (p < 0.05) were more difficult to wean from mechanical
ventilation. However, these three variables were not selected for CDSS construction.
The main reason might be that they are not compatible with other more important
selected variables. Furthermore, as shown in Table 2, according to our dataset historical
respiratory disease, multiple organ failure, and blood infection are indeed statistically
significant variables (p < 0.05) for discriminating successful and failed weaning patients
if considered individually. Unfortunately, they have been filtered out by both LRA and
SVM-RFE as well because they might not be independent to other salient variables. For
example, APACH II is calculated based on several variables including age, disease and
biochemical data.
In this study, the predictive performance of the CDSS constructed with SVM using

the 11 aforementioned variables is considerably better than that of tradition indices used
in previous investigations, such as PImax [15,16], vital capacity (VC) [16], and minute
ventilation (VE) [15,17]; arterial blood gas levels, fraction of inspired oxygen, alveolar-
arterial oxygen pressure difference (A-a gradient), blood urine nitrogen (BUN) level, serum
creatinine level, and serum albumin level [19,20] and age and length of stay in ICU and
RCC [20]. The model proposed here outperforms previous predictors with accuracies of 75-
78% using f/VT as the predictive index [25,26] as well as a recently reported predictor with
an accuracy of 78.6% using a combination of sample entropy of three variables including
inspiratory tidal volume (VTI) and expiratory tidal volume (VTE), and respiration rate
(RR) [24].
Among the variables, BUN [19,20], RSBI [6,14] and days using ventilator [20] were

also adopted in this investigation. Specifically, Meade et al. found that RSBI is the
most frequently studied and one of the most powerful indexes in successful weaning [6].
From our understanding, variables including brain vessel disease, coma scales at weaning,
ventilator associated pneumonia, trachectomy, and urinary tract infection used in this
study have never been reported elsewhere as indicators of weaning prediction. Weaning
failure is usually multifactor in nature. Although a number of physiologic indexes have
been described to predict the outcome of attempts at discontinuing ventilator support,
indexes that assess a single physiologic function are frequently inaccurate predicators.



DESIGN OF A CDS FOR DETERMINING VENTILATOR WEANING USING SVM 947

Unfortunately, previous studies only focused on physiological variables. We suggest that
other disease and therapeutic progression indexes should also be considered.

5.2. A comparison between SVM and BPNN. Neural network and decision tree
have been widely applied in designing decision systems for clinical applications. Some
of the studies support that neural network is better than decision tree [62-64] while oth-
ers have opposite outcomes [65]. Recently, application of SVM in medicine has grown
rapidly. For example, it has been applied in prediction of RNA-binding sites in proteins
[66], discrimination of malignant and benign cervical lymph nodes [52], disease diagnosis
using tongue images [67], and diagnoses of cardiovascular disease [36] and breast cancer
[49]. Wu et al. (2008) applied artificial neural network and support vector machine to
diagnose the learning disabilities (LD) problem for students [68]. Although their results
showed that neural network performs better than SVM, other investigations reported that
SVM in general has better performance when compared with neural networks and decision
trees [44-46]. In this study, we compared the models constructed using BPNN and SVM
under various sample sizes aggregated from various periods, the results show that CDSS
constructed using SVM outperforms the model constructed using BPNN in weaning pre-
diction, which is consistent to some reports [44,45] but contradicts to the result obtained
by [68]. We suspect that different characteristics of variables and sample sizes might be
the reason causing such a differentiation.

The predictive accuracy of model constructed using LRA alone without applying SVM
was also evaluated with only 76% of predictive accuracy being achieved for the case of
287 samples, which is significantly lower than the SVM models constructed using either 7
(85.19%) or 11 variables (90.56%). There are two ways, transform either independent or
dependent variables, to change nonlinear relationship between independent and dependent
variables into a linear one. One possible reason for low predictive accuracy of LRA model
might be that it transformed the dependent variable using a nonlinear logarithmic function
and constructed in the same dimensional space, while the SVMmodels transform the input
variables to a space with higher dimensions using a nonlinear kernel before being classified
linearly in the high-dimensional space.

5.3. Clinical application. A Clinical Decision Support System (CDSS) has been de-
signed and applied in clinical setting of a national hospital situated in central Taiwan.
Weaning tests were conducted daily by measuring physiological variables of patients and
then, accompanied with disease factors and care and treatment factors, input to the CDSS
for determining if a patient can be weaned. A condition imposed is that for patients whom
the CDSS predicts to have great probability of successful ventilator weaning, the protocol
of initial weaning including clinical assessment, objective test, justification of an SBT and
extubation, as detailed below, will be conducted by clinicians [43].

1. Clinical assessment: the patient’s clinical situations, including adequate cough, ab-
sence of excessive tracheobronchial secretion, and resolution of disease acute phase
for which the patient was intubated, are assessed to determine if he/she can be
considered to wean.

2. Objective test: the patient is tested to determine if he/she meets the following
criteria: clinical stability, adequate oxygenation, adequate pulmonary function, and
adequate mentation. Patients who meet the criteria could be considered as being
ready to wean from ventilation.

3. Justification of an SBT: an SBT should be considered as soon as possible once the pa-
tient meets the aforementioned criteria. Criteria for passing SBT include respiratory
pattern, adequate gas exchange, hemodynamic stability and subject comfort.
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4. Extubation: patients who successfully pass the SBT should be extubated if neuro-
logical status, excessive secretions and airway obstruction are not critical issues.

If a patient fails in the initial weaning trial, he/she will be kept staying in the respiratory
care center (RCC) for continuous monitoring and therapy until the maximum admission
days of 63 days has terminated. Patients who have been admitted in RCC for more than
63 days of ventilator usage without successful ventilation weaning trial will be transferred
to the respiratory care ward (RCW) for afterward chronic care according to the national
health insurance regulation of Taiwan.
The system has been applied in clinical setting from Feb. 2010 to Jan. 2010 and

demonstrated to be efficient in reducing the period of ventilator use for more than 1 day
in average with a saving of NT$9000 (around US$300) per patient, as well as in achieving
a predictive accuracy of 90.1%.

6. Conclusion. Most of the work done previously only considered indices individually
by showing their powers in predicting patients who have greater probability to successfully
wean from ventilator. The statistic analyses were done using retrospective data without
conducting prospective study in previous investigation. The novelty of this study is that
multiple indices, including physiological indices obtained from various instruments daily
accompanied with disease as well as care and treatment factors, were adopted for de-
signing the CDSS. It has been demonstrated that multiple indices obtained from various
instruments or modalities are able to compensate systematic errors incurred by indices
acquired from a single instrument, which in turn is effective in elevating predictive per-
formance. Additionally, progressive modeling was proposed to construct models using
retrospective data and tested with data obtained prospectively. This contrasts with pre-
vious investigations that only retrospective data were used for statistic analyses to find
useful indices.
In this study, in contrast to extubation failure by some investigations, weaning failure

was adopted as the outcome end point [21]. As shown in Table 5, the significance of the
results presented is that the designed CDSS achieves a predictive accuracy of 91.25%,
which outperforms previous studies using f/VT as the predictive index achieving accura-
cies ranging from 75-78% [25,26] and a model proposed recently using a combination of
sample entropy of three variables with an accuracy of 78.6% [24]. Our model was shown
to be able to achieve better predictive performance and reduce healthcare cost in clinical
setting.
In order to reduce the systematic error induced by the CDSS designed using indices

acquired from a single device, multiple indices obtained from various instruments were
adopted for designing the CDSS using SVM. To further improve the predictive perfor-
mance of the CDSS, feature-selection technique was applied to select salient feature. The
wrapper method (SVM-RFE) was demonstrated to be capable of obtaining better combi-
nation of features, 11 features in this case, with better predictive performance (91.46%)
than the filter (LRA) method. Furthermore, two validation methods, cross-validation and
progressive testing, were used to test efficacy of the constructed system. A program with
GUI was design to assist clinical doctors in decision-making for determining which pa-
tients have great probability to be weaned successfully. The predictive rate of the CDSS
constructed using SVM with 11 selected salient variables achieves as high as 92.73% for
cross-validation and 91.25% for progressive testing, which outperforms the models using
f/VT (75-78%) and a model (78.6%) proposed recently using a combination of sample
entropy of three variables, i.e., inspiratory tidal volume (VTI), expiratory tidal volume
(VTE) and respiration rate (RR) [24].
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The key features and advantages of our proposed CDSS include (1) adoption of diverse
physiological indices acquired from multiple instruments accompanied with disease factors
as well as therapeutic progression indices; (2) friendly and easy-to-use GUI; (3) daily-base
decision support of ventilation weaning; (4) progressive model construction by training
the model using retrospective data and testing with data obtained prospectively and (5)
high predictive performance. A preliminary result of this investigation was reported in
[69].
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