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Abstract. Many flow regime classification systems based on Electrical Capacitance To-
mography (ECT) sensor data have been developed, but they only focused on fixed ECT
sensor parameters. Due to fixed sensor parameters, the systems are not generic because
they can only work with data based on the particular ECT sensor parameters. This paper
presents the work on developing a generic flow classifier which can flexibly accept data
obtained from different ECT sensor parameter values. The generic system employs an
Artificial Neural Network (ANN) trained with ECT data based on a range of ECT pa-
rameters. The developed system has shown to be able to handle ECT data of different
sensor parameters and correctly classify their corresponding flow regimes to a certain
degree of accuracy. Industries are able to save design costs by using such a system.
Keywords: Generic classifier, Flow regime, Electrical capacitance tomography, Artifi-
cial neural network

1. Introduction. Multiphase flows have been employed frequently in numerous indus-
trial applications such as petroleum extraction and processing, nuclear power plant and
various chemical reactors. Therefore, an understanding of the internal characteristics of
such processes is critical. The information on dynamic flows is certainly one of the most
important subjects to enact the efficiency and safety in aggressively fast-moving fluids of
multiphase mixture in a process equipment. This justifies the large number of technical
and scientific studies in this area, some of which have focused on specific applications such
as modelling of pressure drop [1,2] and heat transfer correlations [3,4] and others on wider
aspects such as the construction of systems that used various methods for identification
of multiphase flow regime.

In 1970s, researchers in the petroleum industry began to predict flow regimes in liquid
columns using some basic physical mechanisms which have been used in other industries.
During this time, Wallis and Dobson [5] published a simple criterion to predict flow regime
transition based on the relations of geometrical parameters of a pipe and liquid velocity.
Hubbard and Dukler [6] suggested a method by which the flow pattern can be determined
from the spectral distribution of the wall pressure dustribution. Other researches by
Govier et al. [7], Chaudry et al. [8] and Isbin et al. [9] have tried to relate the flow
pattern to the pressure gradient variation. While all these studies have contributed to
the understanding of flow regime classification, the traditional identification methods of
flow regime have some shortcomings such as high requirements of complex measuring
systems and production of non-systematic results. Besides, there is also a conventional
way to classify flow regimes based on visual observation using high speed photography
and video. The major difficulty in visual observation is that the pictures produced are
often confusing and difficult to interpret, especially when dealing with high velocity flows.
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Moreover, visual observation can only be successful in transparent process equipments,
and thus flow visualisation is impossible in opaque systems. Hence, an alternative to
the traditional classification methods and a conventional way of classifying flow regime is
required.
Various modalities of process tomography have been developed for flow observation

and measurement in the past few decades [10]. X-ray, the earliest tomography system,
has not only been used in the medical field but also in industry. For instance, work
by Jones and Zuber [11] obtained the probability density function of void fraction mea-
sured by an x-ray absorption technique. Even though x-ray tomography can be applied
non-invasively through metal containers, the potential hazards of using radioactive and
ionizing radiation, along with high costs for installation and operation, remain as major
concerns. Examples on other tomographic techniques for visualisation and flow regime
identification can be found in [12-18]. However, these techniques require bulky equip-
ment, high installation cost, considerable maintenance and are dangerous. Therefore, it
is highly attractive to have relatively simple and cheap tomography technique, which is
capable of obtaining measurements non-invasively, non-intrusively and with no radiation
involved.
Electrical Capacitance Tomography (ECT) is a measuring technique suitable for in-

dustrial processes involving non-conducting mixture such as gas-oil [19-21]. In ECT,
several electrodes are mounted around a process equipment. These electrodes measure
the changes in the capacitance between all possible pairs of electrodes for various material
distribution. From these measurements of capacitance changes, a cross-sectional image
can be reconstructed with the aid of an image reconstruction algorithm. In turn, pro-
cess flow parameters can be interpreted from the cross-sectional image based on further
calculation and analysis.
The Linear Back Projection (LBP) algorithm [19] is the first and simplest reconstruction

algorithm ever proposed for ECT [22]. However, images produced by LBP algorithm
appear distorted due to the soft-field effect [23]. This fact has prompted many researchers
to opt for different reconstruction methods to overcome the problem associated with the
conventional image reconstruction algorithm. The work by Noralahiyan et al. [24] was
the first to show the capability of ANN in reconstructing accurate tomography images.
Besides an ANN approach, a number of improved or new algorithms have been introduced
to obtain more accurate images. These include the Landweber [25-27] and Tikhonov
algorithms [28-30]. Although the advanced reconstruction methods have shown to be
able to produce slightly more accurate images for some flow regimes, distortion of images
is still a problem for other regimes. Furthermore, the process of image reconstruction is
time-consuming [31].
Many researchers have then devoted to the study on obtaining better accuracy of pro-

cess interpretation in a much shorter processing time by employing a direct ANN method
without going through the time-consuming image reconstruction phase. In research by
Sun et al. [32], ECT data in a form of differential pressure signal are processed us-
ing wavelet analysis to extract six significant features. Then, a Multi-Layer Perceptron
(MLP) neural network is adopted to train the features and classify four different flow
regimes, namely annular, bubble, plug and slug flows. The correct flow regime identifi-
cation percentage obtained was 86.76%. Yan et al. [33] presented 10 features extracted
from ECT measurements to an MLP. Then, the MLP neural network which is utilised
was trained with the features to classify eight different flow regimes. The MLP attained
an average of 93.7% correct identification percentage. Barbosa et al. [34] considered two
different types of two-phase flows; gas-solid and gas-liquid, in flow regime identification
using a Self Organizing Map (SOM) neural network. The data used contain not only ECT
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measurements but also values of pressure drop and fluctuating pressure in a pipe. Using
this data, the ANN is trained to identify four different flow regimes and obtain 66.67% of
overall identification percentage. Meanwile, Yu et al. [35] used the Principle Component
Analysis (PCA) method to reduce 66 ECT values to only 10 principle components. An
MLP network was trained and the results showed the ability of MLP to correctly classify
six different flow regimes for over 96% recognition rate.

Despite the successes of previous works for flow regime classification based on ANN
approach, they all focused on fixed ECT sensor parameters, producing interpretation
systems that were not generic. The employed ANNs were trained based on fixed ECT
sensor parameters making them limited in “intelligence” and hence they cannot give
accurate process interpretation and for data of different sensor parameter values [36].
Therefore, it would be desirable to have an intelligent system which can accommodate
a range of sensor parameter values. Such a system would be an intelligent generic flow
regime classifier that is able to save cost.

2. ECT System. Figure 1 illustrates the basic components of an ECT system; the sen-
sors, data acquisition system (DAS) and a computer system. The primary sensor consists
of copper electrode plates mounted equidistantly around the periphery of an insulating
process equipment. Different materials have different values of dielectric constants also
known as relative permittivities. Hence, the distribution of two-component flows within
an ECT sensing region produces a change in the capacitance measurements between two
electrodes. This fundamental theory is used in ECT. Experiments have found that the
sensitivity of an ECT sensor greatly depends on the electrode angular angle whilst other
ECT sensor parameters can be considered insignificant [37].
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Figure 1. A schematic diagram of an ECT system

The sensors measure the capacitances of all possible electrode combinations. These
measurements are taken by the DAS which is also responsible for converting the ECT
measurements into digital signal and sending the signal to the computer system. The
computer has two main functions. First, it controls the measurement operations per-
formed by the capacitance sensors. Second, by means of an appropriate algorithm, it uses
the measured capacitance data to produce useful information represented either qualita-
tively in the form of a reconstructed image of flow process or quantitatively in the form
of flow parameter estimations.

The current work aims to develop a generic intelligent system for classification of gas-oil
flow regimes from ECT data. As previous literature work has shown that the primary
electrode size is the most significant sensor parameter, this work specifically focuses on
using a range of ECT primary electrode sizes to produce a generic intelligent flow regime
classifier.
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3. Approach and Method. Figure 2 illustrates the ECT sensor parameters used in this
investigation. As reported by Flores et al. in 2005 [38], the sensors with driven guards
possess large effective sensing space with a condition that the size of electrode must be
as large as possible. This finding shows that the size of electrode plays an important role
in determining the effectiveness of sensor sensitivity. Hence, this investigation focuses on
varying the sensor electrode size.

3.1. 12-electrode ECT sensor design. The number of electrodes used is 12 to com-
pensate for the tradeoff between sensitivity (i.e., low if too many electrodes such as 16
is used) and resolution (i.e., low if less number of electrodes such as 8 is used) [38]. As
shown in Figure 2 the inner pipe (R1), outer pipe (R2) and screen (R3) walls have been
chosen to be 1, 1.05 and 1.15 units, respectively. The guard electrodes α have subtended
angle of 2◦ while the primary electrode sizes, θ are varied.

Figure 2. ECT sensor model

For a 12-electrode ECT system, it is possible to obtain 66 capacitance values from pairs
of electrodes based on [39]

N =
n(n− 1)

2
(1)

where N is the total number of capacitance measurements and n is the number of elec-

trodes.
In ECT, high sensor sensitivity is important, hence the primary electrode size, θ are

chosen to vary within [20◦, 26◦] with 0.5◦ intervals. The minimum size of 20◦ and no
smaller is chosen because too small a primary electrode angle leads to lower sensitivity
of the ECT sensor [20]. The maximum size of θ is selected to be 26◦. Larger than 26◦

results in ECT sensors without guard electrodes due to insufficient spacing.
Figure 3 shows the schematic diagrams of six commonly formed flow regimes. These

flows are used in the training process to develop the generic intelligent classifier system.

3.2. ECT dataset collection. There are two types of ECT data; the actual plant data
and the ECT simulated data. In this work, the simulated ECT data [40] are used to
facilitate the generation, regeneration and repetition of various complex flow patterns
that are required for the purpose of training an intelligent system. The numbers of flow
patterns simulated for each flow regime are given in Table 1. Only one empty and full flow
patterns can be generated for each θ. Unlike the full and empty flows, many stratified
flows can be simulated based on different oil heights as well as different tilted angles of
gas-oil interface. Similarly, bubble flow patterns can be simulated based on various bubble
radii as well as different bubble locations and thus, a large number of this flow regime can
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Figure 3. A schematic diagram of the flow regimes to be classified with
their corresponding class representation (a) empty (b) full (c) bubble (d)
stratified (e) annular (f) core

Table 1. Number of flow patterns used for each flow regime of a single θ

Flow Regime Number of data
Full 1
Stratified 1224
Bubble 1436
Core 199
Annular 199
Empty 1

be generated. The annular and core flows are just the opposite of each other and their
flow patterns are simulated by varying the sizes of air or oil core, respectively.

3.3. Development of generic intelligent classification system. In this work, the
intelligent system is based on an ANN. An ANN can be classified by the type of learning
scheme; either supervised or unsupervised. Each learning scheme can be categorised into
its architectural types. Unsupervised learning is not as good as supervised learning at
classification task [41]. Hence, only supervised learning is considered in this work. There
are three types of supervised ANN architectures; Single-Layer Feed-Forward (SLFF),
Multi-Layer Feed-Forward (MLFF) and recurrent. To develop an intelligent system, a
variant of the supervised MLFF ANN known as the Multi-Layer Perceptron (MLP) is
selected due to its simple structure, but yet capable of solving most nonlinear problems.
Classification is one of the most successful applications that has been solved with MLP.
The MLPs are programmed to learn various input patterns in association to corresponding
classes or categories. After learning, it has to correctly classify any unseen set of patterns
into one of the possible classes. Furthermore, its simple structure results in high execution
speed compared with other ANN models. Hence, it is employed in this work.
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Figure 4 shows the architecture of an MLFF ANN. An MLP consists of three layers; an
input layer, an intermediate hidden layer and an output layer. Input signals, x1, x2, . . . ,
xn are fed to an MLP via its input neurons. Then, these input neurons pass the signals
to the hidden neurons via the input weight connections, w11, w21, . . . , w4n. The hidden
neurons execute some computations and transmit the results to the output neurons via
the output weight connections, w211, w221, . . . , w2m4. The output neurons then carry
out further computation and present the final results, y1, . . . , ym.

Figure 4. A schematic diagram of multi-layer perceptron (MLP) for neu-
ral network [41]

A three-layer MLP networks with 66 input neurons (for 66 capacitance measurements)
and 6 output neurons (six flow regimes as shown in Figure 3 has been designed for this
investigation. The number of optimal hidden neurons is determined experimentally.
Each output neuron should give the value of either ‘0’ or ‘1’; therefore, the most suitable

transfer function to be applied to each of them is the logarithmic sigmoid (log). As for the
hidden neurons, hyberbolic tangent (tanh) sigmoid transfer function is applied because
the input values of the hidden neurons are within [−∞,+∞]. Hence, a tanh function
provides a larger range of transfer. The Levenberg-Marquardt (LM) training algorithm
is used because it is one of the best and most commonly used algorithm for classification
applications [42,43]. It also has the ability to avoid local minima trap, a problem that
often occurs in ANN training [44].
Besides local minima trap, over-training is another problem in ANN learning. Over-

training can lead to over-fitting of training data which leads an MLP to memorise the
training data and become inflexible and hence, incapable of generalising. This situation
degrades the MLP’s performance over new sets of data. To avoid the MLP from being
overtrained, cross-validation method is used [45]. This is a well-established early stopping
method when a separate data set known as the validation set is incorported into the
training process to check for the ANN’s generalisation performance. Based on validation
method, a training process is terminated when there is no longer improvement in the
validation performance. This way the ANN is not overtrained.
In this study, raw simulated data has been used to train the MLP toward developing a

generic classification system. Raw data are used because the system needs to be generic
and able to deal with a vast range of ECT θ parameter. Various experimental methods
have been devised for investigation towards developing generic classifier as illustrated in
Figure 5. They are:
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(a) Method A is a common method used by all previous researchers whereby the MLP
is trained with ECT data involving flow patterns generated with one θ. This is a non-
generic method aimed as comparison purpose. 1250 simulated data are generated for each
θ and divided into training, validation and testing sets with 4:2:4 ration, respectively. In
this investigation, separate MLPs are trained with ECT data of a single θ in the range
[20◦, 26◦] with 1◦ interval. The MLPs are then tested with unseen ECT data.

(b) Method B is employed by training separate MLPs with ECT data of a single θ. The
MLPs are tested with data of other θs. This method is used to test the generic capability
of the intelligent system other than trained θ values.

(c) Method C involves training an MLP based on ECT data that contain various flow
regimes of various θ ranging from 20◦ to 26◦ with 1◦ interval. 2750 simulated data are
used for the training process. Then, the MLP is tested with unseen data of θ = [20◦, 26◦].

Figure 5. Schematic diagram of proposed methods A, B and C

Upon completion of the MLP training processes for all methods, the best network of
each method is chosen based on the testing data set. The performance of the MLP is
evaluated based on the highest correct classification percentage (CCP) given by,

Best performed MLP = Max

[(
Number of correctly classified data

Total number of data

)
× 100%

]
(2)

The best MLP is then executed with a total of 6000 verification data. The verification
data are ECT data obtained from θ values other than the sizes used during the training
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process. They are θ values of 20.5◦, 21.5◦, 22.5◦, 23.5◦, 24.5◦ and 25.5◦. The MLP training
process is illustrated in Figure 6.

Figure 6. Flowchart of MLP training process

4. Results and Discussion. The MLP training results for Models A is depicted in
Table 2. From Table 2, it can be seen that a MLP with θ of 23◦ achieved the highest
CCP which is 90.2% followed closely by a MLP with θ of 26◦ with CCP of 90%. However,
the MLP trained with θ = 23◦ failed to classify full flow regime whereas an MLP trained
with θ = 26◦ has been able to classify full flow with CCP of 100% while other MLPs have
failed. This means that other MLPs are unable to classify full flow when trained with
only 50 data sets of this flow regime. Hence, in order to increase the capability of the
MLPs in classifying the full flow, the data of this flow regime may need to be repeated
more than 50 times. By looking at the competency of each MLP at classifying all flow
regimes, the MLP with θ = 26◦ is the best network as it is able to successfully obtained
high CCP for all flow regimes. This is explained by its largest θ value, leading towards
highest sensitivity within the sensing region.
Table 3 shows the results for Method B. It can be seen that the overall performances

deteriorate for all flow regimes. This means all the MLPs cannot generalise the new data
sets which are totally distinct from its training set. For example, an MLP that has been
trained with ECT data of θ = 20◦ is not be able to respond correctly when presented with
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Table 2. CCP for method A

Flow
Correct classification percentage (%)

20◦ 21◦ 22◦ 23◦ 24◦ 25◦ 26◦

Full 0.00 0.00 0.00 0.00 0.00 0.00 100.00
Stratified 80.00 84.00 77.00 89.00 80.50 79.50 85.00
Bubble 91.00 93.00 93.50 92.50 92.50 88.50 93.00
Annular 95.92 79.59 91.84 97.96 83.67 77.55 91.84
Core 100.00 93.88 85.71 79.59 100.00 95.92 95.92
Empty 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Overall CCP 87.80 88.00 85.80 90.20 87.40 84.40 90.00

Table 3. CCP for model B

Flow
Correct classification percentage (%)

20◦ 21◦ 22◦ 23◦ 24◦ 25◦ 26◦

Full 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Stratified 58.0 22.0 56.0 66.0 80.0 60.0 83.0
Bubble 63.0 84.0 67.0 3.0 34.0 17.0 0
Annular 64.0 63.0 28.0 66.0 32.0 19.0 7.0
Core 23.0 49.0 44.0 69.0 43.0 81.0 99.0
Empty 0.0 0.0 0.0 16.0 0.0 82.0 0.0

Overall CCP 41.6 43.6 39 42.4 37.8 43.6 37.8

Table 4. CCP for model C

Flow CCP(%)

Full 100.00
Stratified 75.00
Bubble 71.00
Annular 86.00
Core 96.00
Empty 100.00

Overall CCP 93.46

data based on θ = [21◦, 22◦, . . . , 26◦] because the dissimilarity of patterns between the
training and testing sets. This demonstrates poor classification ability of MLP developed
based on Method B. Hence, this Method B is not able to produce a generic classifier.

Table 4 shows the CCP values achieved for Method C. The overall peformance is 93.46%,
which is the highest of the three methods. Empty and full flows achieved 100% CCP each
as a result of repeated data. Core flow attained CCP of 96% followed by annular 86%,
stratified 75% and bubble 71%. Therefore, Method C has been proved successful and can
be employed in developing an intelligent generic classifier system.

To further verify the generalisation performance of the best trained MLPs from the
three methods, they have been tested with ECT data based on flow regimes from θ =
20.5◦, 21.5◦, 22.5◦, 23.5◦, 24.5◦ and 25.5◦ which are different from the training and testing
sets. Each of the θ consisted of 1000 verification ECT data from various flow patterns.
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Table 5. CCP (%) of the best MLP from method A

Flow 20.5◦ 21.5◦ 22.5◦ 23.5◦ 24.5◦ 25.5◦
Regime

Full 0.00 0.00 0.00 0.00 0.00 0.00

Stratified 0.00 0.00 2.33 7.67 26.67 50.67

Bubble 0.00 0.00 0.00 0.00 0.00 0.00

Core 0.00 0.00 0.00 1.51 4.02 17.09

Annular 0.00 0.00 0.00 0.00 4.02 17.59

Empty 0.00 0.00 0.00 0.00 0.00 0.00

Overall CCP 0.00 0.00 0.70 2.60 9.60 22.10

Table 6. CCP (%) of the best MLP from method B

Flow 20.5◦ 21.5◦ 22.5◦ 23.5◦ 24.5◦ 25.5◦
Regime

Full 0.00 0.00 0.00 0.00 0.00 0.00

Stratified 55.67 60.33 63.00 66.33 73.33 51.33

Bubble 0.00 0.00 0.00 0.00 6.67 72.67

Core 83.42 86.43 46.23 93.47 95.48 83.92

Annular 0.00 0.00 6.53 30.15 63.32 79.40

Empty 100.00 100.00 100.00 100.00 0.00 0.00

Overall CCP 33.40 35.40 29.50 44.60 55.60 69.70

Table 7. CCP (%) of the best MLP from method C

Flow 20.5◦ 21.5◦ 22.5◦ 23.5◦ 24.5◦ 25.5◦
Regime

Full 0.00 100.00 0.00 0.00 0.00 0.00

Stratified 67.00 70.33 69.97 72.67 73.67 74.33

Bubble 52.67 84.67 28.67 88.67 93.00 85.00

Core 92.96 92.46 48.24 92.46 98.49 93.47

Annular 85.93 51.76.91 88.94 83.42 69.85 82.91

Empty 100 100 100 100 100 100

Overall CCP 71.60 75.40 59.60 83.50 83.60 84.30

Tables 5 and 6 show the overall performance for the best MLPs from Methods A and
B, respectively. The best MLP from Method A has shown its incapability at classifying
flow regimes generated from different θ. Meanwhile, the best MLP from Method B has
achieved satisfactory classification for only two flow regimes which are stratified and core.
The CCP results of the best MLP for Method C are depicted in Table 7 showing that the
MLP network is able to correctly classify the ECT data based on θ which are different
from the training set. The overall CCP for 20.5◦, 21.5◦, 22.5◦, 23.5◦, 24.5◦ and 25.5◦ are
71.6%, 75.4%, 56.9%, 83.5%, 83.6% and 84.3%, respectively. The results demonstrate
that a generic flow classifier can be developed by training an MLP with ECT data of
various θ involving various flow patterns.
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5. Conclusion. A generic classifier is more desirable in industry in order to save design
cost. Previous works have only focused on developing classifier based on fixed ECT
sensor parameters. This paper presented the development of a generic intelligent flow
regime classifier based on ECT data. This investigation chose to include various ECT
primary sensor electrode size in the quest of developing a generic flow regime classifier by
employing MLP ANN. Three methods A, B and C of MLP training have been investigated
for the purpose. The results from Method C show that it is feasible to develop a generic
classifier for ECT data by training MLPs with ECT data based on different electrode
sizes of various flow regimes.

In the future, it would be interesting to consider other ANN architectures such as the
Hybrid-MLP for possibility of improving the performance of the generic classifier.
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