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Abstract. In this paper, we aim to explore properties of a class of NCP-functions and
investigate a related semismooth Newton method for complementarity problems. Some
favorite properties about the class of NCP-functions and its merit function are discussed
including strong semismoothness, continuous differentiability and the nonsingularity of
the element in C-subdifferential. In particular, we present an exact expression of the
generalized gradient for the NCP-function. The level boundedness of the merit function
is discussed. Based on these results, we investigate a semismooth Newton method and give
its convergence analysis. As an application, we use this method to solve the frictionless
contact problem.
Keywords: Complementarity problem, Semismooth Newton method, Complementarity
function

1. Introduction. The nonlinear complementarity problem (simplified by NCP) is to find
a point x ∈ Rn such that

x > 0, F (x) > 0, ⟨x, F (x)⟩ = 0, (1)

where F : Rn → Rn is a continuously differentiable mapping. The concept of comple-
mentarity is synonymous with the notion of system equilibrium; as a consequence, com-
plementarity problems have numerous applications in engineering and economic science
[1, 2, 3, 4]. Realistic complementarity problems arise from contact mechanics, structural
mechanics, nonlinear obstacle, traffic equilibrium and economic equilibrium problems. An
exhaustive review of the theory, algorithms and applications of NCP is given in [3]. A
function-based policy problem was converted into a parameter-based policy problem in
[5].

There is a great deal of practical interest in developing robust and efficient algorithms
for solving the NCPs, including merit function approaches [6, 7, 8], nonsmooth Newton
methods [9, 10], smoothing methods [11, 12, 13, 14, 15, 16] and regularization methods
[17, 18, 19]. All the above mentioned methods are to reformulate each problem as an
equivalent equation system via NCP-functions and then use Newton method to solve the
equation system. A function ϕ : R2 → R is called an NCP-function if it satisfies

ϕ(a, b) = 0 ⇐⇒ a > 0, b > 0, ⟨a, b⟩ = 0. (2)

Many NCP-functions have been proposed [10, 20, 21, 22]. Among them, the FB function
is one of the most popular NCP-functions, which is defined by

ϕFB(a, b) = a+ b−
√
a2 + b2. (3)
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One of the main generalization of the FB function is defined by [10]:

ϕλ(a, b) = a+ b−
√
a2 + b2 + (λ− 2)ab (4)

where λ is a fixed parameter such that λ ∈ (0, 4). It has been proved in [10] that the func-
tion given by (4) possesses a system of favorite properties, such as strong semismoothness,
Lipschitz continuity and directional differentiability. However, it has limitations in deal-
ing with some monotone complementarity problems since the global convergence of the
semismooth Newton method based on this function needs serious condition.
In view of the above shortcoming, the authors recently have proposed a new class of

complementarity functions over symmetric cones [22]. When considering the nonnegative
cone, this class of complementarity functions reduces to the NCP-function:

ϕ(a, b) = a+ b−
√

a2 + b2 + (τ1 − 2)ab+ τ2a+b+ (5)

where τ1 ∈ (0, 4) and τ2 > 0 are arbitrary but fixed parameters. In the setting of Jordan
algebra, the authors have considered the continuous differentiability of the smoothed func-
tion of (5) in [22]. Also, they have discussed the level boundedness of the complementarity
function (5) over symmetric cones in [23]. However, they do not investigate its subdiffer-
ential theory in the setting of Jordan algebra. Here, we explore all the properties about
subdifferential of the function ϕ defined by (5) in the setting of Rn. The NCP-function
ϕ defined by (5) inherits all the favorite properties from ϕλ. In particular, we give an
exact expression of the generalized gradient ∂ϕ(a, b). In this expression, when τ2 = 0, the
generalized gradient for ϕλ can be obtained, which is more convenient and more exact
in computation than the one given in [10]. Furthermore, we give the level boundedness
property under much milder condition than the ones in [10, 23]. This property makes the
function ϕ defined by (5) take greater advantage than ϕλ defined by (4) in guaranteeing
the global convergence of the related semismooth Newton method.
With the above characterization of ϕ defined by (5), the NCP is equivalent to the

following system of nonsmooth equations

Φ(x) = 0, (6)

where the equation operator is

Φ(x) =

 ϕ(x1, F1(x))
...

ϕ(xn, Fn(x))

 . (7)

A natural merit function Ψ : Rn → R+ is obtained for the complementarity problems

Ψ(x) =
1

2
Φ(x)TΦ(x) =

n∑
i=1

φ(xi, Fi(x)), (8)

where

φ(a, b) =
1

2
ϕ(a, b)2. (9)

Some favorite properties of the equation operator (7) and the corresponding merit func-
tion (8) are discussed, including strong semismoothness, continuous differentiability and
the nonsingularity of the C-subdifferential. A procedure is provided to calculate an ele-
ment of the C-subdifferential ∂CΦ(x). Based on the results, we investigate a semismooth
Newton method to solve the nonsmooth Equation (6). The algorithm is similar to the one
in [10] but with some nice properties that the complementarity functions have one more
parameter; the condition to get the global convergence is the weakest; the C-subdifferential
is more convenient to calculate. The proposed method has the global convergence and
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quadratic convergence under suitable conditions. Instead of solving the original NCP (1),
we can get the solution based on the method. As an application, we use this method to
solve the frictionless contact problem.

2. Preliminaries. In this section, we review some basic concepts that will be used in the
subsequent analysis. We begin with the concept of generalized Jacobian. Let G : Rn →
Rm be a locally Lipschitz continuous mapping. Then G is almost everywhere differentiable
by Rademacher’s Theorem [24]. In this case, the generalized Jacobian ∂G(x) of G at x
(in the Clarke sense) is defined as the convex hull of the B-subdifferential

∂BG(x) :=
{
V ∈ Rm×n

∣∣ ∃{xk} ⊆ DG : {xk} → x and G′(xk) → V
}
,

where DG is the set of all differentiable points of G and G′(z) =
(

∂Gi(z)
∂zj

)
m×n

. In other

words, ∂G(x) = co ∂BG(x). If m = 1, we call ∂G(x) the generalized gradient of G at
x in which the element is a row vector. The calculation of ∂G(x) is usually difficult in
practice, and hence, Qi [25] proposed the concept C-subdifferential of G:

∂T
CG(x) = ∂TG1(x)× · · · × ∂TGm(x)

which is easier to compute than the generalized Jacobian ∂G(x). Here, the right-hand
side denotes the set of matrices in Rn×m whose i-th column is given by the transpose of
the generalized gradient of the i-th component function Gi. By [24, Proposition 2.6.2],
∂TG(x) ⊆ ∂T

CG(x). We assume that the reader is familiar with the concepts of (strongly)
semismooth functions, and can refer to [18]. We also need the definitions of P-property
which can be found in [26].

Definition 2.1. A function F : Rn → Rn has the

(a) P0-property if for every x and y in Rn with x ̸= y, there exists an index i such that

xi ̸= yi, (xi − yi)[Fi(x)− Fi(y)] > 0.

(b) P-property if for every x and y in Rn with x ̸= y, there exists an index i such that

xi ̸= yi, (xi − yi)[Fi(x)− Fi(y)] > 0.

It is obvious that if a continuously differentiable function has the P0-property, then its
Jacobian matrix also has the P0-property. Furthermore, if a matrix has the P0-property
(P-property), then all its principal minors are nonnegative (positive).

3. Properties of the NCP-Function. In this section, some properties of the NCP-
function ϕ, the equation operator Φ and the merit function Ψ are discussed.

Proposition 3.1. The function ϕ defined by (5) satisfies the following properties:

(a) ϕ(a, b) = 0 ⇐⇒ (a, b) ∈ Nϕ = {(a, b) | a > 0, b > 0, ab = 0}.
(b) The generalized gradient ∂ϕ(a, b) is equal to the set of all (va, vb) such that

(va, vb) =


(
1− a+

τ1−2
2

b√
a2+b2+(τ1−2)ab

+ τ2b+∂a+, 1−
b+

τ1−2
2

a√
a2+b2+(τ1−2)ab

+ τ2a+∂b+

)
if (a, b) ̸= (0, 0)(

1− ξ, 1− τ1−2
2

ξ −
√

τ1(4−τ1)

2
η
)

if (a, b) = (0, 0)

(10)

where (ξ, η) is any vector satisfying ∥(ξ, η)∥ 6 1 and

∂z+ =

 1 if z > 0
[0, 1] if z = 0
0 if z < 0

.
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(c) ϕ is strongly semismooth on R2.
(d) ϕ(a, b) is continuously differentiable on R2\Nϕ.
(e) Let {(ak, bk)} ⊆ R2 be a sequence. Then, |ϕ(ak, bk)| → ∞ if one of the following

conditions is satisfied:

ak → ∞ and bk → ∞; ak → −∞; bk → −∞.

Proof: (a) It follows from [23, Theorem 3.1].
(b) Let ϕ(a, b) = a+ b− ϕ1(a, b) + τ2ϕ2(a, b), where

ϕ1(a, b) = gh(a, b) =
√
a2 + b2 + (τ1 − 2)ab, ϕ2(a, b) = a+b+, (11)

where g(a, b) =
√
a2 + b2 and h(a, b) =

(
a+ τ1−2

2
b,

√
τ1(4−τ1)

2
b
)
. Now, we show that ϕ1 and

ϕ2 are C-regular. Since g(a, b) =
√
a2 + b2 = ∥(a, b)∥ is convex and continuous, then g

is C-regular. Because g is locally Lipschitz, h is continuously differentiable and h maps
every neighborhood of u onto a dense subset of a neighborhood of h(u), it follows from [27,
Theorem 2.178] that ∂ϕ1(a, b) = ∂g(h(a, b))h′(a, b) and ϕ1 is C-regular from [27, Corollary
2.179]. Since z+ is convex and continuous, then ϕ2 is C-regular. So, it follows from [27,
Proposition 2.174] that

∂ϕ(a, b) = (1, 1)− ∂g(h(a, b))h′(a, b) + τ2(a+∂b+, b+∂a+).

Since

∂g(h(a, b)) =

{
h(a, b)/∥h(a, b)∥ if (a, b) ̸= (0, 0)
(ξ, η) if (a, b) = (0, 0)

and

h′(a, b) =

(
1 τ1−2

2

0

√
τ1(4−τ1)

2

)
where ∥(ξ, η)∥ 6 1, then we obtain the expression (10).

(c) From [10, Lemma 2.2], we know a+b−
√

a2 + b2 + (τ1 − 2)ab is strongly semismooth.
Moreover, it is easy to see that the plus function z → z+ is strongly semismooth. Since the
composition, product, sum of two strongly semismooth functions is strongly semismooth,
then ϕ is strongly semismooth on R2.
(d) For any (a, b) ∈ R2\Nϕ, we have

ϕ′(a, b) =


(
1− a+

τ1−2
2

b√
a2+b2+(τ1−2)ab

+ τ2b, 1−
b+

τ1−2
2

a√
a2+b2+(τ1−2)ab

+ τ2a
)

if a > 0, b > 0(
1− a+

τ1−2
2

b√
a2+b2+(τ1−2)ab

, 1− b+
τ1−2

2
a√

a2+b2+(τ1−2)ab

)
if a < 0 or b < 0

.

Then, ϕ(a, b) is continuously differentiable on R2\Nϕ.
(e) Let {(ak, bk)} ⊆ R2 be a sequence. We consider the following three cases.
Suppose that ak → ∞ and bk → ∞. For sufficiently large k, we have

ak + bk −
√
(ak)2 + (bk)2 + (τ1 − 2)akbk > ak + bk − |ak + bk| = 0.

This together with ak+b
k
+ → ∞ implies the result.

Suppose that ak → −∞. Then, ak+b
k
+ → 0 and

ak + bk −
√
(ak)2 + (bk)2 + (τ1 − 2)akbk 6 4− τ1

2
ak → −∞,

which implies the result.
For the case bk → −∞, a similar analysis to the case ak → −∞ yields the result.
Since Φ is (strongly) semismooth if and only if all component functions are (strongly)

semismooth, we obtain the following result as an immediate consequence of Proposition
3.1.
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Theorem 3.1. The function Φ defined by (7) satisfies the following properties:
(a) Φ is semismooth.
(b) Φ is strongly semismooth if F is LC1 (i.e., the Jacobian of F is locally Lipschitz
continuous).

Since the generalized Jacobian is difficult to describe, we characterize the C-subdifferential
of Φ below.

Proposition 3.2. For any x ∈ Rn, we have

∂CΦ(x) ⊆ Da(x) +Db(x)F
′(x),

where Da(x) = diag{ai(x)} and Db(x) = diag{bi(x)} are diagonal matrices with entries

(ai(x), bi(x)) ∈ ∂ϕ(xi, Fi(x)),

where ∂ϕ(xi, Fi(x)) denotes the set from (10) being replaced by (xi, Fi(x)).

Proof: By the definition of C-subdifferential, we have

∂T
CΦ(x) = ∂TΦ1(x)× · · · × ∂TΦn(x).

Let Hi(x) = (xi, Fi(x)). Then, Φi(x) = ϕHi(x). Since ϕ is locally Lipschitz and Hi is
continuously differentiable, from [27, Theorem 2.178], we get

∂Φi(x) ⊂ ∂ϕ(xi, Fi(x))H
′
i(x) = ∂ϕ(xi, Fi(x))

(
eTi

F ′
i (x)

)
, (12)

where ∂ϕ(xi, Fi(x)) denotes the set from (10) being replaced by (xi, Fi(x)). Hence,

∂CΦ(x) =
(
∂TΦ1(x), · · · , ∂TΦn(x)

)T ⊆ Da(x) +Db(x)F
′(x)

where Da(x) = diag{ai(x)} and Db(x) = diag{bi(x)} are diagonal matrices with entries

(ai(x), bi(x)) ∈ ∂ϕ(xi, Fi(x)).

We now provide a procedure to calculate an element of the C-subdifferential ∂CΦ(x) at
any point x ∈ Rn. For simplicity, we follow the notation ϕ1 and ϕ2 as (11).

Algorithm 3.1. (Procedure to evaluate an element V ∈ ∂CΦ(x))

Step 0: Let x ∈ Rn be given and Vi denote the i-th row of a matrix V ∈ Rn×n.

Step 1: Set S1 =
{
i
∣∣ xi = Fi(x) = 0

}
and S2 =

{
i
∣∣ xi > 0, Fi(x) > 0

}
.

Step 2: Set z ∈ Rn such that zi = 0 for i /∈ S1 and zi = 1 for i ∈ S1.
Step 3: For i ∈ S1, set

Vi =

(
1−

zi +
τ1−2
2

F ′
i (x)z

ϕ1

(
zi, F ′

i (x)z
) )eTi +

(
1−

F ′
i (x)z +

τ1−2
2

zi

ϕ1(zi, F ′
i (x)z)

)
F ′
i (x). (13)

Step 4: For i ∈ S2, set

Vi =

(
1−

xi +
τ1−2
2

Fi(x)

ϕ1(xi, Fi(x))
+ τ2Fi(x)

)
eTi +

(
1−

Fi(x) +
τ1−2
2

xi

ϕ1(xi, Fi(x))
+ τ2xi

)
F ′
i (x). (14)

Step 5: For i /∈ S1 ∪ S2, set

Vi =

(
1−

xi +
τ1−2
2

Fi(x)

ϕ1(xi, Fi(x))

)
eTi +

(
1−

Fi(x) +
τ1−2
2

xi

ϕ1(xi, Fi(x))

)
F ′
i (x). (15)

The next result shows that the matrix V calculated by Algorithm 3.1 is indeed an
element from the C-subdifferential ∂CΦ(x).
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Proposition 3.3. The element V calculated by Algorithm 3.1 is an element of the C-
subdifferential ∂CΦ(x).

Proof: By the definition of ∂T
CΦ(x), we only need to consider Vi ∈ ∂Φi(x).

Suppose i ∈ S1. The mapping ϕ2 is C-regular with ∂ϕ2(xi, Fi(x)) = {(0, 0)}. Let
yk = x + εkz, where εk is a sequence of positive real numbers converging to zero. Then,
yk → x, yki > 0 and Fi(y

k) = Fi(x) + εkF ′
i (h

k)z with hk on the line segment from x to yk.
Hence, the mapping xi + Fi(x)− ϕ1(xi, Fi(x)) is differentiable at yk with its Jacobian(

1−
yki +

τ1−2
2

Fi(y
k)

ϕ1(yki , Fi(yk))

)
eTi +

(
1−

Fi(y
k) + τ1−2

2
yki

ϕ1(yki , Fi(yk))

)
F ′
i (y

k)

=

(
1−

εkzi +
τ1−2
2

εkF ′
i (h

k)z

ϕ1(εkzi, εkF ′
i (h

k)z)

)
eTi +

(
1−

εkF ′
i (h

k)z + τ1−2
2

εkzi

ϕ1(εkzi, εkF ′
i (h

k)z)

)
F ′
i (y

k)

→

(
1−

zi +
τ1−2
2

F ′
i (x)z

ϕ1(zi, F ′
i (x)z)

)
eTi +

(
1−

F ′
i (x)z +

τ1−2
2

zi

ϕ1(zi, F ′
i (x)z)

)
F ′
i (x)

So, (13) belongs to ∂Φi(x) when i ∈ S1.
For the case i ∈ S2, it is obvious that (14) belongs to ∂Φi(x).
Suppose i /∈ S1 ∪ S2. If xi < 0 or Fi(x) < 0, the mapping ϕ2 is C-regular with

∂ϕ2(xi, Fi(x)) = {(0, 0)} and the mapping xi +Fi(x)− ϕ1(xi, Fi(x)) is differentiable at x.
Then, we have

∂Φi(x) =

{(
1−

xi +
τ1−2
2

Fi(x)

ϕ1(xi, Fi(x))

)
eTi +

(
1−

Fi(x) +
τ1−2
2

xi

ϕ1(xi, Fi(x))

)
F ′
i (x)

}
.

If xi = 0 and Fi(x) > 0. We choose a sequence {yk} ⊂ Rn such that yk = x − εkei
where εk is a sequence of positive real numbers converging to zero. Then, yki < 0 and
Fi(y

k) > 0 for sufficiently large k. So, Φi is continuously differentiable at these points yk

with

Φ′
i(y

k) =

(
1−

yki +
τ1−2
2

Fi(y
k)

ϕ1(yki , Fi(yk))

)
eTi +

(
1−

Fi(y
k) + τ1−2

2
yki

ϕ1(yki , Fi(yk))

)
F ′
i (y

k). (16)

Taking the limit of the above equality gives the desired expression of Vi in Step 5.
If xi > 0 and Fi(x) = 0. If F ′

i (x) = 0, by Proposition 3.2, ∂Φi(x) ⊆ ai(x)e
T
i . Since

ai(x) is single valued, we have

∂Φi(x) =

{(
1−

xi +
τ1−2
2

Fi(x)

ϕ1(xi, Fi(x))

)
eTi

}
.

So, the expression of Vi in Step 5 is correct. Now, we consider the case F ′
i (x) ̸= 0.

Given this situation, we define anther sequence {yk} ⊂ Rn by yk = x− εk(F ′
i (x))

T where
εk is a sequence of positive real numbers converging to zero. Since F is continuously
differentiable, there is a vector sequence hk on the open line segment from x to yk with
Fi(y

k) = Fi(x)−εkF ′
i (h

k)(F ′
i (x))

T . For sufficiently large k, we have yki > 0 and Fi(y
k) < 0.

Then Φi is continuously differentiable at these points yk with Φ′
i(y

k) being equal to the
expression on the right hand side of (16). Taking the limit of (16), we get the desired
expression of Vi in Step 5.

Proposition 3.4. The function φ(a, b) defined by (9) satisfies the following properties:
(a) φ(a, b) is continuously differentiable on R2 with φ′(a, b) = ϕ(a, b) · V for any V ∈
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∂ϕ(a, b).
(b) φ(a, b) = 0 ⇐⇒ φ′(a, b) = 0 ⇐⇒ ∂φ

∂a
(a, b) = 0 ⇐⇒ ∂φ

∂b
(a, b) = 0.

(c) ∂φ
∂a
(a, b) · ∂φ

∂b
(a, b) > 0.

Proof: (a) From [27, Theorem 2.178], it holds that ∂φ(a, b) ⊆ co{ϕ(a, b) · ∂ϕ(a, b)}.
By simple calculation, we obtain

ϕ(a, b) · ∂ϕ(a, b)

=


ϕ(a, b)

(
ϕ1(a,b)−a− τ1−2

2
b

ϕ1(a,b)
+ τ2b,

ϕ1(a,b)−b− τ1−2
2

a

ϕ1(a,b)
+ τ2a

)
if a > 0, b > 0

ϕ(a, b)
(

ϕ1(a,b)−a− τ1−2
2

b

ϕ1(a,b)
,

ϕ1(a,b)−b− τ1−2
2

a

ϕ1(a,b)

)
if a < 0 or b < 0

0 if a = 0, b > 0
0 if a > 0, b = 0

(17)

Then, co{ϕ(a, b) · ∂ϕ(a, b)} is single valued and hence φ′(a, b) = ϕ(a, b) · V for any V ∈
∂ϕ(a, b). From Corollary to Proposition 2.2.4 in [24], we know φ(a, b) is continuously
differentiable everywhere. By straightforward calculation, we obtain (b) and (c) from
(17).

Proposition 3.5. The function Ψ(x) defined by (8) is continuously differentiable with
Ψ′(x) = Φ(x)T∂CΦ(x).

Proof: By known rules on the calculus of generalized Jacobian, it holds that ∂Φ2
i (x) ⊆

co{2Φi(x) ·∂Φi(x)}. Since Φi(x) ·∂Φi(x) is single valued, then Ψ′(x) =
∑

Φi(x) ·∂Φi(x) =
Φ(x)T∂CΦ(x) is single valued and Ψ(x) is continuously differentiable.

4. Semismooth Newton Method. This section deals with a semismooth Newton meth-
od based on the complementarity function Φ and the merit function Ψ. The convergence
of the algorithm is also discussed.

Algorithm 4.1. (A semismooth Newton method)

Step 0: (Initialization)
Let β ∈ (0, 1), σ ∈

(
0, 1

2

)
, p > 2, ρ > 0 and ε > 0. Choose any x0 ∈ Rn. Set k = 0.

Step 1: (Termination Check)
If ∥Ψ′(xk)∥ 6 ε, stop.

Step 2: (Search Direction Calculation)
Choose V k ∈ ∂CΦ(x

k) and let dk ∈ Rn be a solution of the following linear system of
equations:

V kd = −Φ(xk). (18)

If we cannot find a solution dk or if the descent test

Ψ′(xk)dk 6 −ρ∥dk∥P (19)

is not satisfied, set dk = −Ψ′(xk)T .
Step 3: (Line Search)
Let lk be the smallest nonnegative integer l such that

Ψ(xk + βldk) 6 Ψ(xk) + σβlΨ′(xk)dk. (20)

Step 4: Set xk+1 = xk + βlkdk and k = k + 1. Go to Step 1.

The algorithm is similar to the one in [10] but with some advantages: (a) the comple-
mentarity function has one more parameter which can be more flexible; (b) the condition
to get the global convergence is much milder than the uniform P-property which is used
in [10]; (c) we choose an element in ∂CΦ(x) instead of taking the generalized Jacobian
∂Φ(x) which is difficult to calculate.
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Definition 4.1. Given a solution x∗ of NCP (F), let M = F ′(x∗). Then x∗ is called an
R-regular solution if Mαα is nonsingular and the Schur-complement Mββ −MβαM

−1
ααMαβ

has the P-property, where

α = {i | x∗
i > 0, Fi(x

∗) = 0}, β = {i | x∗
i = 0, Fi(x

∗) = 0} and γ = {i | x∗
i = 0, Fi(x

∗) > 0}.

Theorem 4.1. If x∗ is an R-regular solution of NCP(F ), then all elements in ∂CΦ(x
∗)

are nonsingular.

Proof: Due to Proposition 3.2, any element V ∈ ∂CΦ(x
∗) can be written as Da(x

∗) +
Db(x

∗)F ′(x∗) for some nonnegative diagonal matrices Da and Db. Without loss of gener-
ality, let

Da = diag{Da,α, Da,β, Da,γ}, Db = diag{Db,α, Db,β, Db,γ}
and

M = F ′(x∗) =

 Mαα Mαβ Mαγ

Mβα Mββ Mβγ

Mγα Mγβ Mγγ


where Da,α = (Da)αα, etc. Also, we know that

Da,α = 0α, Da,β = diag{1− ui}β, Da,γ =
(
2− τ1

2

)
Iγ + τ2diag

{
Fi(x

∗)si
}
γ

(21)

and
Db,α =

(
2− τ1

2

)
Iα + τ2diag{x∗

iwi}α,
Db,β = diag

{
1−

(
τ1
2
− 1
)
ui −

√
τ1(4−τ1)

2
vi

}
β
, Db,γ = 0γ

(22)

where ∥(ui, vi)∥ 6 1 for all i ∈ β, si ∈ [0, 1] for all i ∈ γ, wi ∈ [0, 1] for all i ∈ α. Let
q ∈ Rn be an arbitrary vector with (Da +DbM)q = 0. It can be rewritten as:

(Da,α +Db,αMαα)qα +Db,αMαβqβ +Db,αMαγqγ = 0,
Db,βMβαqα + (Da,β +Db,βMββ)qβ +Db,βMβγqγ = 0,
Db,γMγαqα +Db,γMγβqβ + (Da,γ +Db,γMγγ)qγ = 0.

Taking into account (21) and (22), we have

Db,αMααqα +Db,αMαβqβ +Db,αMαγqγ = 0, (23)

Db,βMβαqα + (Da,β +Db,βMββ)qβ +Db,βMβγqγ = 0, (24)

Da,γqγ = 0.

Since the diagonal matrix Da,γ is positive, we obtain qγ = 0. Hence, Equations (23) and
(24) reduce to

Db,αMααqα +Db,αMαβqβ = 0, (25)

Db,βMβαqα + (Da,β +Db,βMββ)qβ = 0. (26)

Due to the nonsingularity of Db,α and Mαα, we directly obtain from (25) that

qα = −M−1
ααMαβqβ. (27)

Substituting (27) into (26) yields that

[Da,β +Db,β(Mββ −MβαM
−1
ααMαβ)]qβ = 0.

Let N = Mββ −MβαM
−1
ααMαβ. Then, we have

(Da,β)i(qβ)i = −(Db,β)i(Nqβ)i, i ∈ β.

Without loss of generality, suppose

(Da,β)j = 0, j = 0, 1, · · · , β0 and (Da,β)k > 0, k = β0 + 1, · · · , |β|
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where β0 = 0 means Da,β is nonsingular. Then, (Db,β)j = 2 − τ1
2

> 0, and hence,
(Nqβ)j = 0 for j = 0, 1, · · · , β0. Therefore, (qβ)j(Nqβ)j = 0, j = 0, · · · , β0 and

(qβ)k(Nqβ)k = − (Db,β)k
(Da,β)k

· (Nqβ)
2
k 6 0, k = β0 + 1, · · · , |β|.

So, qβ ∗Nqβ 6 0. Since N has the P-property, we have qβ = 0. From (27), we get qα = 0.
Hence, V ∈ ∂CΦ(x

∗) is nonsingular.
If the Jacobian F ′(x∗) has the P-property, then every principal minor of F ′(x∗) is

nonsingular and the Schur-complement of every principal minor has the P-property. So,
we have the following corollary.

Corollary 4.1. Suppose that the Jacobian F ′(x∗) has the P-property, then all the elements
in ∂CΦ(x

∗) are nonsingular.

In order to guarantee the global convergence of the proposed method, we consider the
following condition. It turns out that this condition is sufficient.

Condition 4.1. For any sequence {xk} such that

∥xk∥ → ∞, [−xk]+ < ∞, [−F (xk)]+ < ∞,

it holds

max
i

(xk
i )+
(
Fi(x

k)
)
+
→ ∞.

Theorem 4.2. If F satisfies Condition 4.1, then the level sets

L(c) = {x ∈ Rn| Ψ(x) 6 c}

are bounded for any fixed c > 0.

Proof: Assume on the contrary that there exists an unbounded sequence {xk} ⊂ L(c)
for some c > 0 such that Ψ(xk) 6 c for all k > 0. By Proposition 3.1, there is no index
i such that xk

i → −∞ or Fi(x
k) → −∞. Since F satisfies Condition 4.1, there is a fixed

index j such that (xk
j )+
(
Fj(x

k)
)
+
→ ∞ at least on a subsequence. However, this implies

Ψ(xk) is unbounded. In fact,

Ψ(xk) =
1

2

n∑
i=1

ϕ2
(
xk
i , Fi(x

k)
)

=
1

2

n∑
i=1

{
ϕ2
λ

(
xk
i , Fi(x

k)
)
+ τ 22

[
(xk

i )+
(
Fi(x

k)
)
+

]2
+2τ2ϕλ

(
xk
i , Fi(x

k)
)
(xk

i )+
(
Fi(x

k)
)
+

}
> 1

2
τ 22
[
(xk

j )+
(
Fj(x

k)
)
+

]2
since ϕλ

(
xk
i , Fi(x

k)
)
(xk

i )+
(
Fi(x

k)
)
+
is nonnegative. Then, it contradicts with Ψ(xk) 6 c.

To the best of our knowledge, Condition 4.1 is the weakest assumption to guarantee
bounded level sets for NCPs. Indeed, all the uniform P-property, R0-property and mono-
tone property with a strictly feasible point satisfy this condition. This condition is much
milder than the ones in [10, 23].

Theorem 4.3. Assume that x∗ is a stationary point of Ψ such that the Jacobian F ′(x∗)
has the P0-property. Then, x

∗ is a solution of NCP(F ).



1246 Y. LI AND X. WANG

Proof: By Proposition 3.2, we know

Ψ′(x) = Φ(x)T∂CΦ(x) ⊆ Φ(x)T [Da(x) +Db(x)F
′(x)].

Since Φ(x)T [Da(x)+Db(x)F
′(x)] is single valued, then Ψ′(x) = Φ(x)T [Da(x)+Db(x)F

′(x)].
Suppose Ψ′(x∗) = 0 which means that

[Da(x
∗) + (F ′(x∗))TDb(x

∗)]Φ(x∗) = 0. (28)

We want to show that Φ(x∗) = 0. Suppose the contrary. Consider the vectorDa(x
∗)Φ(x∗).

Then, (Da(x
∗)Φ(x∗))i ̸= 0 iff Φi(x

∗) ̸= 0. In fact, if Φi(x
∗) ̸= 0, (Da(x

∗)Φ(x∗))i can be
zero iff ai(x

∗) = 0. However, Φi(x
∗) ̸= 0 means that one of the following situations occurs:

(a) x∗
i ̸= 0 and Fi(x

∗) ̸= 0; (b) x∗
i = 0 and Fi(x

∗) < 0; (c) x∗
i < 0 and Fi(x

∗) = 0. In every
case, it is obvious that ai(x

∗) > 0. So, (Da(x
∗)Φ(x∗))i ̸= 0.

Similar reasoning can be repeated for the vector Db(x
∗)Φ(x∗). Then, it is easy to verify

that if Φ(x∗) ̸= 0, then Da(x
∗)Φ(x∗) and Db(x

∗)Φ(x∗) are both different from zero and
have their nonzero elements in the same positions; such nonzero elements have the same
sign. However, then for (28) to hold it would be necessary for (F ′(x∗))T to revert the
sign of all the nonzero elements of Db(x

∗)Φ(x∗), which contradicts with the fact that the
transpose of F ′(x∗) has the P0-property since F ′(x∗) has the P0-property.
The following lemma follows from the proof of [28, Proposition 3.1], which is useful in

proving the quadratic convergence.

Lemma 4.1. Suppose G : Rn → Rn is locally Lipschitzian. If all V ∈ ∂CG(x) are
nonsingular, then there is a neighborhood N(x) of x and a constant C such that for any
y ∈ N(x) and any V ∈ ∂CG(y), V is nonsingular and ∥V −1∥ 6 C.

Theorem 4.4. The following results hold for Algorithm 4.1:

(a) Any accumulation point is a stationary point of Ψ. Furthermore, if F satisfies Con-
dition 4.1, such an accumulation point exists.

(b) Let x∗ be an accumulation point such that F ′(x∗) has the P0-property. Then, x
∗ is a

solution of NCP(F ).
(c) If x∗ is an R-regular solution of NCP(F ), then the whole sequence generated by

Algorithm 4.1 converges to x∗, and the rate of convergence is Q-superlinear (Q-
quadratic if F is an LC1 function).

Proof: (a) Suppose xk → x∗ but Ψ′(x∗) ̸= 0. If dk is a solution of V kd = −Φ(xk), then

Ψ(xk+1) 6 Ψ(xk) + σβlΨ′(xk)dk = Ψ(xk)− 2σβlΨ(xk) = (1− 2σβl)Ψ(xk).

Taking the limit we have Ψ(x∗) = 0 and hence Ψ′(x∗) = 0 which is a contradiction. If
dk = −Ψ′(xk), then

Ψ(xk+1) 6 Ψ(xk) + σβlΨ′(xk)dk = Ψ(xk)− σβl∥Ψ′(xk)∥2.
Taking the limit we have Ψ′(x∗) = 0 which is a contradiction. Hence, any accumulation
point is a stationary point of Ψ. Furthermore, it follows from Theorem 4.2 that if F
satisfies Condition 4.1, such an accumulation point exists.
(b) By (a), we know any accumulation point x∗ is a stationary point of Ψ. Then, from

Theorem 4.3 that x∗ is a solution of NCP(F ) if F ′(x∗) has the P0-property.
(c) If x∗ is an R-regular solution of NCP(F ), then the elements in ∂Φ(x∗) ⊂ ∂CΦ(x

∗)
are nonsingular by Theorem 4.1. From Theorem 3.1, Φ is semismooth everywhere. Then
x∗ is a BD-regular solution of Φ(x) = 0. So, it follows from [29, Theorem 11] that {xk}
converges to x∗.
To consider the superlinear convergence, we need to show that eventually the direction

is always the solution of (18). For sufficiently large k, by Lemma 4.1, we have that any
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V k ∈ ∂CΦ(x
k) is nonsingular and ∥(V k)−1∥ 6 C (C is a constant). Hence, system (18)

always admits a solution for k sufficiently large.
Since Φ is semismooth, we have

∥xk + dk − x∗∥ = ∥xk − (V k)−1Φ(xk)− x∗∥
= ∥ − (V k)−1(Φ(xk)− Φ(x∗)− V k(xk − x∗))∥
= o(∥xk − x∗∥).

Then, by the Lipschitz continuity of Φ, we get

∥Φ(xk + dk)− Φ(x∗)∥ = O(∥xk + dk − x∗∥) = o(∥xk − x∗∥).

Therefore, for all sufficiently large k, we have xk+1 = xk + dk and

∥xk+1 − x∗∥ = o(∥xk − x∗∥)

proving the suplinear convergence. The quadratic convergence is similar.

5. Application to Frictionless Contact Problem. The frictionless contact problem
of linear elastic bodies with small deformation is considered in this section. The problem
can be approximated using the finite element (FE) technique. The FE-approximation
is in the form of the following complementarity problem, where both the displacement
vector u ∈ Rnd and the contact pressure vector p ∈ Rnc are treated as unknowns [30].

Ku− T Tp = f (29)

−pi > 0, (i = 1, · · · , nc) (30)

(−Tu+ h)i > 0, (i = 1, · · · , nc) (31)

−pi(−Tu+ h)i = 0, (i = 1, · · · , nc) (32)

whereK ∈ Rnd×nd is the stiffness matrix with the P-property, T ∈ Rnc×nd is the constraint
matrix, f denotes the vector of external loads and h denotes the initial gap vector.

The complementarity problem presented by Equations (29)-(32) can be rewritten as
follows:

Φ(p) =

 ϕ(−p1, F1(−p))
...

ϕ(−pnc , Fnc(−p))

 = 0 (33)

where the complementarity function ϕ is defined by (5) and F (−p) = h−TK−1(f+T Tp).
Since K has the P-property, F and F ′ have the P0-property. Then, we can use the above
semismooth Newton method to solve the nonsmooth Equation (33). Instead of solving
the original frictionless contact problem, we can obtain the solution by applying the
semismooth Newton method.

6. Conclusions. In this paper, we investigate a class of NCP-functions which contains
the famous penalized FB function as a special case. The class of NCP-function and its
merit function is shown to enjoy some favorite properties, such as strong semismoothness,
continuous differentiability and the nonsingularity of the element in C-subdifferential.
In particular, we present an exact expression of the generalized gradient for the NCP-
function. The merit function is shown to have the level boundedness property under mild
condition. Based on these results, we present a semismooth Newton method to solve
the NCP and this proposed method has some advantages. It is globally convergent and
quadratically convergent under suitable conditions. Applying this method, we can solve
the frictionless contact problem.
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