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Abstract. A quaternion-based attitude synchronization tracking problem is treated for
satellite formation flying without using absolute and relative angular velocity measure-
ments. More specifically, an adaptive control based output feedback attitude synchroniza-
tion tracking control law is first developed under the requirement of communication links
between each satellite in formation and the desired trajectory. The controller structure
includes a low-pass linear filter state that is derived without explicit differentiation of
attitude to synthesize angular velocity-like signals, and a parameter updating law is also
involved to identify the satellite inertia matrix such that no knowledge of the inertia of
the satellites in formation is required prior. Then, a modified control law is investi-
gated by involving distributed finite-time sliding mode estimator to relax the requirement
that every satellite has access to the desired angular velocity from the practical view of
inexpensive online computations. Simulation results are presented to demonstrate the
effectiveness of the control law, especially, potential advantages derived through the in-
clusion of the integral feedback term within the control law being evaluated by computing
the attitude synchronization tracking error convergence in the presence of unknown dis-
turbance torques.
Keywords: Satellite formation flying, Attitude cooperative, Output feedback, Sliding-
mode estimator

1. Introduction. Satellite formation flying (SFF) is a perfect concept providing for the
distribution of a large satellite assignment to several simpler, cheaper and smaller satel-
lites to get better space mission performance in the future. Precise formation of satellites
or other spacecrafts makes applications such as large-scale distributed sensing (radar,
interferometry, imaging, etc.) possible. Motivated by the development of the synthetic
aperture technology, the satellites within a formation system are required to synchronize
their attitudes and angular velocities while tracking the desired attitudes and angular ve-
locities, especially, the time-varying cases. So, the SFF attitude synchronization problem
receives more and more attentions in recent years.

However, the assumption that each spacecraft needs the feedback information of its
own angular velocity and the angular velocity of its neighbor, but this cannot be always
satisfied due to either cost limitation or implementation consideration. As a remedy for
such situation, several researchers proposed attitude synchronization approaches without
using angular velocity measurements, called output feedback based attitude synchroniza-
tion. Based on the basic work of [1], the authors introduced an auxiliary system for each
spacecraft and for each pair of spacecraft with a communication link in [2] such that no
velocity information was used in the feedback loop. To this end, [3] extends the result of
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[2], and a velocity-free control law was developed, but it required a single dynamic aux-
iliary system for each spacecraft. Under the control law, the system will not be affected
by the number of neighbours in the formation and also can guarantee the same global
asymptotic stability. In addition, based on passivity concept, [4] proposed a passivity-
based output feedback approach for attitude synchronization and tracking of multiple
spacecrafts with attitude dynamics represented by Euler-Lagrange equations of motion.
To reduce the required control torque, the bounded functions were designed in [5] using
the output feedback technique, but only synchronizing the angular velocity of each space-
craft to its neighbours without tracking the desired value was considered. In addition,
the orbiting spacecraft also suffers from structured uncertainty and external disturbances
practically. Especially, it is affected by constant external disturbance torques that are
the main reason of increasing the steady-state attitude error. For a single spacecraft,
there are various schedules to handle this problem [6-10]. However, for the case of multi-
ple spacecrafts in the desired formation, there are few works in the literature, especially,
only attitude information measurement. Hence, designing attitude based output feedback
control for the SFF in the presence of unknown inertia parameters and disturbances is
another challenge that needs to be tackled.
In the research of multiple spacecrafts system, another main challenge is how to design

simply control rules with limited computing power and information interaction capability
for each satellite to achieve a desired group behavior. In order to reduce the commu-
nicate computation, [11] proposed an algorithm for distributed estimation of the virtual
reference’s unaccepted state variables to each follower agent with first-order dynamic, and
further [12] extends this result the case with a time-delay. [13,14] proposed distributed
observers for the second-order follower-agents together with the neighbor-based control
rules under the assumption that the velocity of the desired reference cannot be obtained
by each follower agents. Also, [15] shows that the first-order decentralized sliding mode
estimator can guarantee accurate position estimation and that the second-order decen-
tralized sliding mode estimator can guarantee accurate position and velocity estimation
in finite time when there exists a dynamic virtual reference in the absence of velocity
or acceleration measurements. Nevertheless, all above papers discussed the distributed
observer only for the linear dynamic systems, while, for the nonlinear system, it cannot
be extended directly. Instead, in this paper, we investigate the control law design method
with distributed sliding mode observers for nonlinear dynamic models and the disturbance
is also considered.
In this work, the main contribution is that the distributed adaptive output feedback

control law is investigated for cooperative attitude synchronization tracking of satellite
formation flying, without requiring explicitly absolute and relative angular velocity feed-
back in formation and any sort of prior information on the body inertia matrix. First, a
class of filter is derived to synthesize angular velocity-like signal, which is forced by the
absolute and relative attitude errors, and the integral parts. Then, a distributed finite-
time sliding-mode estimator is further developed for the control law such that the desired
angular velocity is only available to a single satellite called leader which needs no absolute
control. The conditions of the communication topology are also relaxed for the formation
system under this modified control law such that the requirement for this undirected com-
munication topology is a tree. The rest of the paper is organized as follows. In Section 2,
the attitude tracking control problem of satellite formation flying is formulated using the
unit quaternion to represent the attitude orientation. In Sections 3 and 4, the attitude
synchronization tracking control algorithms and the passivity filter formulations are pre-
sented. Numerical simulations are presented in Section 5 to demonstrate the performance
of the proposed control method. Finally, conclusions of the paper are given in Section 6.
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2. Mathematical Model. Attitude kinematics and dynamics of the ith satellite using
quaternion are given by [16-19]

q̇i = −1

2
ω×
i qi +

1

2
q0iωi (1a)

q̇0i = −1

2
ωT
i qi (1b)

Jiω̇i = −ω×
i (Jiωi) + τi + di (1c)

where q̄i =
[
q0i qTi

]T
is the quaternion denoting the rotation from the body frame

of the ith satellite to the inertial frame, q̄∗i =
[
±q0i −qTi

]T
denotes the inverse of

the quaternion, ωi, Ji and τi are respectively the angular velocity, inertia tensor and
control torque of the ith satellite, di is the external disturbance torque, and the notation
ω×
i represents the skew-symmetric matrix. For the latter analysis, let q̄ei = q̄∗d q̄i and

ωei = ωi −Reiωd denote, respectively, the attitude and angular velocity tracking error for
the ith satellite. Note that here q̄d and ωd denote, respectively, the desired attitude and the
desired angular velocity. Without loss of generality, it is assumed that ωd, ω̇d and ω̈d are
all bounded. Accordingly, denote q̄ij = q̄∗j q̄i = q̄∗ej q̄ei and ωij = ωi − Rijωj = ωei − Rijωej

respectively the relative attitude and velocity error, and here Rei denotes the rotation
from the body frame of the ith satellite to the desired frame, and Rij denotes the rotation
from the body frame of the jth satellite to the body frame of the ith satellite. To this end,
the satellite attitude tracking error kinematics and dynamics can be described as [16-19]:

q̇ei = −1

2
ω×
eiqei +

1

2
q0eiωei (2a)

q̇0ei = −1

2
ωT
eiqei (2b)

Jiω̇ei = τi − [ωei + (Reiωdi)]
× Ji [ωei + (Reiωdi)]− Ji

[
Reiω̇di − ω×

eiReiωdi

]
+ di (2c)

Note that it can be concluded from Equation (2) that the ith satellite attitude tracking
problem is equivalent to an stabilization problem for q̄ei and ωei.

3. Adaptive Output Feedback Attitude Synchronization Tracking Control Law
Design. In this section, a distributed control system design for attitude synchronization
tracking problem without absolute and relative angular velocity is considered. Then,
motivated by [8], the following filters are given as

ẋi = −xi + 2kx
i qei + ki

i

t∫
0

qeidτ , (3a)

ẋij = −xij + 2hx
ijqij + hi

ij

t∫
0

qijdτ (3b)

where the scalar constants kx
i ≥ 0 and ki

i ≥ 0; while for hx
ij, h

x
ji, h

i
ij and hi

ji, if the ith

satellite and jth one communicate with one another, and then hx
ij = hx

ji > 0 and hi
ij =

hi
ji > 0 is selected respectively, otherwise they equal to zero, i.e., hx

ij = hx
ji = hi

ij = hi
ji = 0.
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Then, the control law for the ith satellite in the formation is chosen as

ui = −ki
i (k

x
i − ki

i/2)
(
q0eiI3 − q×ei

) t∫
0

qeidτ − (kx
i − ki

i/2)
(
q×ei − q0eiI3

)
xi +Wiθ̂i

− [kp
i + 2kx

i (k
x
i − ki

i) q0ei] qei −
n∑

j=1

[
hp
ij + 4hx

ij

(
hx
ij − hi

ij

)
q0ij

]
qij

−
n∑

j=1

hi
ij

(
hx
ij − hi

ij/2
) [(

q0ijI3 − q×ij
)
+Rij

(
q0jiI3 − q×ji

)] t∫
0

qijdτ

−
n∑

j=1

(
hx
ij − hi

ij/2
) [(

q×ij − q0ijI3
)
xij −Rij

(
q×ji − q0jiI3

)
xji

]
(4)

where θ̂i is the estimated parameter of θi and updated by the following adaptive law

θ̂i = θ̂i(0) + 2
t∫
0

Λi

d
(
WT

i (q
×
ei+q0ei)

−1
)

dt
qei

−2ΛiW
T
i

(
q×ei + q0ei

)−1
qei + 2ΛiW

T
i

(
q×ei + q0ei

)−1
qei(0)

(5)

with Wi = (Reiωd)
×L(Reiωd) + L(Reiω̇d), Λi > 0 and the parameter θi is defined as θi =[

(Ji)11 (Ji)12 (Ji)13 (Ji)22 (Ji)23 (Ji)33
]T
. Note that the matrix L(x) is defined as

L(x) =

 (x)1, (x)2, (x)3, 0, 0, 0
0, (x)1, 0, (x)2, (x)3, 0
0, 0, (x)1, 0, (x)2, (x)3

 (6)

Then, the following statement can be concluded as:

Theorem 3.1. Consider the system given in Equation (2) with the control law in Equation
(4) and Equation (5) under the ideal case d(t) = 0. Assume that there exist scalar

constants kx
i ≥ 0, ki

i ≥ 0, kp
i ≥ (ki

i)
2
/2, and hx

ij = hx
ji > 0, hi

ij = hi
ji > 0, hp

ij ≥
(
hi
ij

)2
/2,

when the ith satellite and jth one communicate with one another, otherwise, they are set
to zero, i.e., hx

ij = hx
ji = hi

ij = hi
ji = 0. If the control gains also satisfy

Pi ≥ 2
n∑

j=1

aij (7)

where Pi = kp
i − q0ei (k

i
i)

2
/2 and aij = hp

ij − q0ij
(
hi
ij

)2
for i, j = 1, · · ·, n. Then qi → qj →

qd, ωi → ωj → ωd as t → ∞.

Proof: Consider the following candidate of Lyapunov function

V =
1

2

n∑
i=1

ωT
eiJiωei +

1

2

n∑
i=1

θ̃Ti Λ
T
i θ̃i +

n∑
i=1

kp
i

[
(q0ei − 1)2 + qTeiqei

]
+
1

2

n∑
i=1

ẋT
i ẋi −

n∑
i=1

ki
iq

T
eiẋi +

1

2

n∑
i=1

n∑
j=1

hp
ij

[
(q0ij − 1)2 + qTijqij

]
+
1

2

n∑
i=1

n∑
j=1

ẋT
ijẋij −

n∑
i=1

n∑
j=1

hi
ijq

T
ijẋij

(8)

with the estimation error θ̃i = θi − θ̂i. From Equation (8), it can be shown that the
Lyapunov function is positive definite so long as kp

i and hp
ij are selected according to the

constrain kp
i ≥ (ki

i)
2
/2 and hp

ij ≥
(
hi
ij

)2
/2. In view of Equation (8), the time derivative of

V taken along trajectories of the closed-loop system can be evaluated through laborious
yet relatively straightforward algebra and then is given by

V̇ = −
n∑

i=1

∥∥ẋi − ki
iqei

∥∥2 −
n∑

i=1

n∑
j=1

∥∥ẋij − hi
ijqij

∥∥2 ≤ 0 (9)
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Thus, Vi, ωei and ẋi, ẋij are all bounded. Recalling that qei is always bounded because of

unit norm constraint on the quaternion, and also, because V̇i ≤ 0 and Vi ≥ 0, then from
Equation (9), it can be obtained

∞∫
0

n∑
i=1

∥∥ẋi − ki
iqei

∥∥2
+

∞∫
0

n∑
i=1

n∑
j=1

∥∥ẋij − hi
ijqij

∥∥2
= V (0)− V (∞) (10)

then using Barbalat’s lemma [20], it can be concluded that ẋi − ki
iqei → 0 and lim

t→∞
ẍi −

ki
i q̇ei = 0 as t → ∞. Then we have lim

t→∞
q̇ei = 0 when kx

i − ki
i/2 ̸= 0. Further considering

the unit norm constraint on the quaternion vector q20ei+qTeiqei = 1 and using the Barbalat’s
lemma, lim

t→∞
q̇0ei = 0 can be concluded. To this end, Equation (2c) can be differentiated

again with time to show the fact that ω̈ei ∈ L∞, which implies that ω̇ei is uniformly
continuous, and by applying Barbalat’s lemma once more time, then we can conclude
ω̇ei → 0, as t → ∞.

Then, just like the process of the proof for ωei → 0 previously, we can get the result that
lim
t→∞

q̇ij = 0, lim
t→∞

q̇0ij = 0, ωij → 0 and ω̇ij → 0, since the relative attitude qij and relative

angular velocity ωij still scarify the satellite attitude error kinematics and dynamics as
given in Equation (2). Then using the above result that ω̇ei → 0 and ωei → 0 as t → ∞,
the closed-loop system in Equation (2c) with Equations (3) and (5) reduces to

− (kp
i − ki

ik
x
i q0ei) qei − (kx

i − ki
i/2)

(
q0eiI3 − q×ei

)
ẋi −

n∑
j=1

(
hp
ij − hi

ijh
x
ijq0ij

)
qij

−
n∑

j=1

(
hx
ij − hi

ij/2
)
·
[(
q0ijI3 − q×ij

)
+Rij

(
q×ij + q0ijI3

)]
ẋij

⇒
t→∞

−
[
kp
i − q0ei (k

i
i)

2
/2
]
qei −

n∑
j=1

[
hp
ij − q0ij

(
hi
ij

)2]
qij →

t→∞
0

(11)

With the notion Pi = kp
i − q0ei (k

i
i)

2
/2 and aij = hp

ij − q0ij
(
hi
ij

)2
, the above Equation

(11) can be rewritten as

Piqei +
n∑

j=1

aijqij →
t→∞

0, i, j = 1, · · ·, n. (12)

Accordingly, Equation (12) can be further rewritten in matrix form [21]

(M ⊗ I3)Q → 0 (13)

where Q =
[
qTe1, · · ·, qTen

]T
is the column vector composed of qei, i = 1, · · ·, n, ⊗ denotes the

Kronecker product, andM = [mij] ∈ Rn×n is given bymii = P+
n∑

j=1

aijq0ej,mij = −aijq0ei.

Then we can see that the formation will be convergence only when Q = 0. While, a
sufficient condition for Q = 0 is that the matrix M has full rank; the matrix M is

strictly diagonally dominant if Pi ≥ 2
n∑

j=1

aij. Then the attitude tracking error qei → 0

is guaranteed. Thus we are able to show that lim
t→∞

[qei, ωei] → 0, thereby completing the

proof of achieving the stated attitude synchronization tracking stabilization objective.

Remark 3.1. In this work, all design parameters have been set to scalar values to permit
ease in algebra and analysis. They can, however, be easily replaced by appropriate order
matrices without sacrificing any theoretical assurances.
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Remark 3.2. From Equation (13), it can be seen that if q0ej > 0 for all t ≥ 0 is satisfied
under the initial conditions for j = 1, · · ·, n, then matrix M will always be strictly diago-
nally dominant, and the proposed distributed coordinated attitude control law will enable
us to prioritize goal-seeking and formation-keeping behaviors.

4. Adaptive Output Feedback Control Design with Finite-Time Sliding-Mode
Estimator. From above analysis, the attitude synchronization tracking convergence is
achieved under the control law designed in Equation (4). While the burden of communi-
cation links between each satellite in formation and the desired trajectory is heavy, and
will involve a time-consuming design procedure. A distributed finite-time sliding-mode
estimator is introduced into the designed control law such that only one satellite called
leader can obtain angular velocity in the formation.
For the synthesis of the control law, it is assumed that ωd, ω̇d and ω̈d are all bounded

with ∥ω̇d∥∞ < δ. Since ωd cannot be accepted by the formation spacecrafts except the
leader, its value cannot be used directly in the control design. Instead, we have to estimate
ωd during the evolution. That is, each follower has to estimate ωd only by the information
obtained from its neighbors in a decentralized way. The distributed finite-time sliding-
mode estimator is designed as

˙̂xi = −βsgn

 ∑
j∈NB

i

bij (x̂i − x̂j) +Di (x̂i − ωd)

 (14)

where bij ≥ 0, Di ≥ 0 and NB
n denotes the neighbor set of the ith satellite, in which

each pair of the satellites knows the estimate of the desired angular velocity of each other
associated with the undirected graph GB

n . In view of Equation (4), the new control law
for the ith satellite it can be rewritten as

ui = W ∗
i θ̂ − [kp

i + 2kx
i (k

x
i − ki

i) q0ei] qei − ki
i (k

x
i − ki

i/2)
(
q0eiI3 − q×ei

) t∫
0

qeidτ

−
∑

j∈NA
i

hi
ij

(
hx
ij − hi

ij/2
)
·
[(
q0ijI3 − q×ij

)
+Rij

(
q0jiI3 − q×ji

)] t∫
0

qijdτ

− (kx
i − ki

i/2)
(
q×ei − q0eiI3

)
xi −

∑
j∈NA

i

[
hp
ij + 4hx

ij

(
hx
ij − hi

ij

)
q0ij

]
qij

−
∑

j∈NA
i

(
hx
ij − hi

ij/2
) [(

q×ij − q0ijI3
)
xij −Rij

(
q×ji − q0jiI3

)
xji

]
(15)

where W ∗
i = (Reix̂i)

×L(Reix̂i) +L(Rei
˙̂xi), and kx

i > 0, ki
i > 0, kp

i ≥ (ki
i)

2
/2 > 0, if the ith

satellite is the leader which is the only one has absolute control part, but kx
i = 0, ki

i = 0,
kp
i = 0 if it is a follower. Note that NA

n denotes the neighbor set of the ith satellite, in
which each pair of the satellites can transmit the knowledge of the attitude to each other
associated with the undirected graph GA

n . Then, we have the following conclusion.

Theorem 4.1. Consider the formation given in Equation (2) under the control law Equa-
tion (15) with Equation (5), under the ideal case that d(t) = 0. Assume there is only one
satellite can obtain the desired angular velocity in the formation, and there exist undi-
rected graph GB

n that is connected and β > δ as well as the undirected graph GA
n which is

a tree, then qi → qj → qd, ωi → ωj → ωd asymptotically as t → ∞.

Proof: To first prove that the sliding mode estimator in Equation (14) can guarantee
x̂i → ωd in finite time, the following Lyapunov function candidate is considered

Vo =
1

2
x̄T (W ⊗ I3) x̄ (16)



ATTITUDE SYNCHRONIZATION TRACKING CONTROL OF SFF 983

where x̄ = x̂− 1n ⊗ I3ωd, 1n is an n× 1 vector with all one, and x̂ =
[
x̂T
1 , · · ·, x̂T

n

]T
.

Let the Laplacian matrix ℓB = [bij] ∈ Rn×n associated with GB
n be defined as lij ={ ∑

j∈NB
n

bij, i = j

−bij, i ̸= j
, and W = ℓB + diag (D1, · · ·, Dn).

In view of Equation (16), taking the time derivative of Vo leads to

V̇o = x̄T (W ⊗ I3) [−βsgn (W ⊗ I3x̄)− 1n ⊗ I3ω̇d]
≤ − (β − δ) ∥W ⊗ I3x̄∥1

≤ − (β − δ) ∥W ⊗ I3x̄∥2
≤ − (β − δ)λmin (W ) ∥x̄∥2
≤ − (β − δ)

√
2λmin (W )√
λmax (W )

V
1
2
o

(17)

where W is symmetric positive definite when at least one Di > 0, and β > δ. Then by
using Lyapunov stability theory, Vo tend to zero after the settling time T1 given by

T1 =

√
x̄T (0) (W ⊗ I3) x̄ (0)

√
λmax (W )

(β − ρ)λmin (W )
(18)

which implies that x̂i → ωd in finite time as t ≥ T1. Thus, x̂i can be used to replace ωd,
and accordingly ˙̂xican be used to replace ω̇d when t ≥ T1. Assume that only one satellite,
such as the lth one, called the leader which is Dl > 0, kx

l > 0, ki
l > 0 and kp

l ≥ (ki
l)

2
/2 > 0

with Di = 0, i ̸= l, kx
i = 0, ki

i = 0 and kp
i = 0 for i ̸= l. Using the similar development in

Theorem 3.1, Equation (12) can be rewritten as

Plqei +
∑
j∈NA

n

aijqij →
t→∞

0 (19)

where Pl = kp
l − q0ei (k

i
l)

2
/2, and aij = hp

ij − q0ij
(
hi
ij

)2
for i, j = 1, · · ·, n.

For further analyzing of Equation (19), we assign a direction to the undirected links
of the communication graph GA

n , by considering one of the nodes of each edge to be the

positive end of the link, and then we can obtain the directed graph G̃A
n =

(
Nn, Ẽn,Wn

)
,

with Ẽn being the set of ordered edges of the graph. To this end, let m =
∣∣∣Ẽn

∣∣∣ be

the total number of edges in the graph G̃A
n , which is also equal to the total number of

undirected links in GA
n . With the assumption that the communication graph GA

n is a tree,
the obtained directed graph G̃A

n is weakly connected and acyclic, that is m = n − 1. In
addition, we consider that the desired attitude is transmitted to the leader by a fictitious
satellite, described by an additional (n+ 1)th node in the communication graph G̃A

n , via
a directed communication link constituting a new nth edge in G̃A

n , with weight Pl that
we assume al,n+1 = an+1,l. Then, with these assumptions and definitions, a new directed

graph G̃A∗
n =

(
N∗

n, Ẽ
∗
n,W

∗
n

)
, with (n+ 1) nodes and n edges, can be obtained.

Let the weighted incidence matrix of H∗ ∈ R(n+1)×n be defined as

dil(u,v) =

 auv, if node i is the source of the directed edge (u, v)
−auv, if node i is the sink of the directed edge (u, v)
0, otherwise

(20)

where l(u,v): Ẽ∗
n → {1, · · ·, n} is a function that associates a single number from the set

from the set {1, · · ·n} to each edge (u, v) ∈ Ẽ∗
n. It can easily be verified that the directed

graph G̃A∗
n is also weakly connected and acyclic, and hence the rank of H∗ is n [21].
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To this end, let Qu ∈ R3n be the column vector containing the vectors qij, for ∀(i, j) ∈
Ẽ∗

n, and the vector qel. Then using the fact that qij = −qji, Equation (20) can be written
in matrix form

(H ⊗ I3)Qu → 0 (21)

where the matrix H is constructed by deleting the last row of the H∗, and is full rank.
Thus, the only solution to Equation (21) is Qu → 0, that is qij → 0, ∀(i, j) ∈ Ẽ∗

n, and
qel → 0, or qi → qj → qd.

Remark 4.1. The decentralized estimator adopted here is the first-order, although both the
desired reference and the formation satellites are described by the second-order nonlinear
dynamic models. In fact, it is preferred to have a first-order sliding mode “observer”
instead of second-order “observers” (corresponding to the second-order nonlinear dynamic
models), regarding the selected observer in Equation (23) which can significantly simplify
the construction of the proper Lyapunov function.

5. Simulation Result and Comparison. To study the effectiveness and performance
of the proposed formation control strategies, the detailed response is numerically simulated
using the set of governing equations of motion (1) in conjunction with the proposed control
law. Note that because the control law in Equation (15) is an extension of control law
given in Equation (4), here only the control law in Equation (15) is conducted in the
simulation to achieve attitude synchronization and tracking among three satellites. The
satellite formation flying system parameters, initial conditions and controller parameters
used in the numerical simulations are given in Table 1.

Table 1. Parameters of satellites

For comparison, two cases are considered in the simulation. In the first case, the
integral terms are introduced in the filters and control law, that is the control gains
k1
1 ̸= 0, hi

ij ̸= 0. Taking satellite 3 for example, the results of the attitude and angular
velocity tracking errors are shown in Figure 2. It can be observed from these simulations
that the distributed attitude synchronization control is able to reject the constant external
disturbance torque, and the satellites 3 can track the desired attitude and angular velocity
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within 25s even if only the satellite 1 can obtain the reference angular velocity value.
Accordingly, the integral terms in filters (3b) driving inputs reject the constant external
disturbance torque when satellites 3 are only controlled by relative control part. For
the second case, there is no integral terms considered, that is, the control gains k1

1 = 0
and hi

ij = 0. All other control gains and initial conditions remain the same for a fair
comparison. From the comparison Figure 2 with Figure 3, respectively, it can be observed
that adding the integral feedback introduces smaller steady state error for the coordinated
attitude tracking without paying much penalty in terms of either increases in control
torque magnitudes or reduction in control speeds.

Figure 1. Absolute attitude and angular velocity errors of sat. 3

Figure 2. Absolute attitude and angular velocity errors of sat. 3 (ki
3 =

0, hi
32 = 0)

Figure 3. Control torque of sat. 3
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Figure 4. Control torque of sat. 3 (ki
3 = 0, hi

32 = 0)

In addition, Figures 5 and 6 show, respectively, the attitudes, angular velocities track-
ing path of satellites 1, 2, 3 from different initial states. From the simulations, it can
be obtained that the distributed control law with sliding-mode estimator could guarantee
attitude synchronization without the requirement for absolute angular velocity measure-
ment and relative angular velocity measurement.

Figure 5. Attitude tracking path of sat. 1∼3

Figure 6. Angular velocity tracking path of sat. 1∼3
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6. Conclusions. Adaptive control based attitude synchronization tracking scheme is
proposed for satellite formation flying (SFF) without using explicitly absolute and rela-
tive angular velocity feedback. To generate the necessary damping that would have been
generated by the angular velocity and the relative one, a class of filter providing an ad-
ditional provision for integral feedback action is derived. Then to relax the requirement
that all satellite has access to the desired angular velocity, a modified control law is de-
veloped by introducing a finite-time sliding mode estimator for each formation satellite to
obtain an accurate estimate of the desired angular velocity. Numerical implementation of
these new results provides the assurance of significantly improved steady-state attitude
error convergence in the presence of constant external disturbances as a result of integral
feedback action.
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