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Abstract. A classifier to classify the normal sample or sample with hepatoma based on
the sample’s surface-enhanced laser desorption/ionization time-of-flight (SELDI-TOF)
mass spectra is designed in this paper. A modified genetic algorithm (GA) called gene-
weighted GA (GWGA) is proposed to design the classifier based on the SELDI-TOF
mass spectra of hepatoma. To reduce the computation efforts, an approach dividing the
measurement intensities within different range of m/z values into several data sectors
and finding the peak intensity within each data sector is proposed. The peak intensity
at each data sector is taken as features for classification. The proposed GWGA aims
to select the features and minimize the number of selected features while maximizing the
classification accuracy.
Keywords: SELDI-TOF mass spectra, Genetic algorithm, Hepatoma, Support vector
machine

1. Introduction. Cancer ranks the first among the 10 causes of death in Taiwan. Among
all cancer-type causes of deaths in Taiwan, hepatoma (liver cancer) ranks the second
following the lung cancer. Taiwan government has spent a lot of efforts on prognoses,
diagnoses and curing of hepatoma. Recently, surface-enhanced laser desorption/ionization
time-of-flight (SELDI-TOF) mass spectra have been successfully used to detect protein
patterns of several cancers including hepatoma. With the SELDI-TOF mass spectra,
the serum proteomic patterns in the tissue affected by cancers or by the development of
cancer can be analyzed. The analysis results of SELDI-TOF mass spectra can be applied
to the cancer diagnosis, monitoring of cancer progression and verification of therapeutic
effects of drugs. The procedure to obtain SELDI-TOF mass spectra from an examinee is
simple and minimally invasive. By collecting a good number of SELDI-TOF mass spectra
samples from patients with cancer and from normal persons, a classifier can be built so
that an unknown sample is classified as either cancer or normal by this classifier [1,2].
However, each spectrum is composed of several thousands to several hundred thousands
of measurement signals. It is both inefficient and inaccurate if all the measurement signals
are utilized as features for classification. It has been a challenge for the researchers in this
area finding an appropriate approach solving the problem of feature selection from the
measurement signals and the pattern classification based on the selected features. The
SELDI-TOF mass spectra contain different intensities at different mass-to-charge ratios
(m/z values). In this paper, a grouping and peak finding approach is proposed that divides
the measurement intensities within different range of m/z values into several data sectors
and finds the peak intensity within each sector. Instead of taking SELDI-TOF mass
spectra measurement signals as features of the prototype data points for the classifier,
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peak intensity at the different m/z values is taken as features in this paper. It greatly
reduces the number of features for the classification. The cancer samples tend to have a
pattern of intensity distribution at certain m/z values compared with normal samples [3].
Among the peak intensities measured at different range of m/z values, it is found that
it is not necessary to use all features to have good classification accuracy [4]. A feature
selection approach called gene-weighted genetic algorithm (GWGA) is to be proposed in
this paper so that the classification accuracy is maximized while the number of features
utilized in the classification is minimized. In [5], a different approach yet based on similar
concept has been used in the microarray data selection. A three-stage gene selection
method was proposed in [5] to select a smaller subset of informative genes that is most
relevant for the cancer classification. More accurate classification results are achieved if
a smaller subset of informative genes is used for classification.
In [6,7], fuzzy logic inference has been applied to identify the normal sample and the

samples with cancer. The GA has been widely applied to the classifier and/or clustering
approaches design [8-12]. The classification rules or structure of the classifier are pa-
rameterized and the GA is applied to automatically learn the parameters in [8-11]. The
GA with binary coded chromosomes has also been applied to feature selection [12-14]
where “1” and “0” in the binary chromosome denote the feature being selected or not.
In other words, every gene of a chromosome represents the selection status of the cor-
responding feature. With selection status of every candidate feature being encoded as
a binary number of GA’s chromosome, the GA can evolve to generate the best chromo-
some corresponding to the features finally selected. In [12-14], although the features are
learned by the GA, the classification approach based on the selected features is usually
not automatically designed by the GA in order to save computation time. One of the
most commonly used classification schemes is the support vector machine [15-19] due to
its capability of learning highly nonlinear decision regions for classification. In this paper,
the support vector machine (SVM) will also be used as the classification scheme as the
proposed GWGA evolves to learn the features from the candidate features. Every bi-
nary chromosome in the GWGA consists of the selected features. The SVM is utilized as
the classification scheme calculating the classification rate based on the features selected
within the corresponding chromosome. The classification rate associated with every chro-
mosome is further used to calculate the cross-over probability. Recently, the GA has also
been used to find the biomarkers of the SELDI-TOF mass spectra [20,21]. It is difficult
for the regular GA to assign a specific gene the binary number 1 in the chromosome since
every gene is generated with equal probability in the crossover operation. However, if
some features lead to high classification rate, it greatly helps the feature selection if these
features are assigned larger probability of appearing at the chromosomes in the following
generations. To overcome the difficulty that every gene in the chromosome is generated
with equal probability, the proposed GWGA assigns every gene a weighting based on clas-
sification rate associated with the chromosome. By analyzing every chromosome in the
gene pool, the gene appearing more often in the chromosomes of gene pool tends to have
larger weighing. Moreover, the gene appearing in the chromosome with higher classifica-
tion rate is also assigned a larger weighting. The crossover approach is modified in the
GWGA so that every gene generated in the crossover process is based on the weighting
associated with every gene.
The organization of this paper is arranged as follows. The SELDI-TOF mass spectra of

normal samples and samples with hepatoma are introduced in Section 2. The background
information about how the feature selection scheme is introduced to the classifier design
based on SELDI-TOF mass spectra is also introduced in Section 2. In Section 3, the
technical details of GWGA for feature selection are described. The effect and efficiency of
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the proposed GWGA are verified in Section 4. Finally, the conclusion is drawn in Section
5.

2. SELDI-TOF Mass Spectra and Feature Selection. The processed SELDI-TOF
mass spectra contain different intensities at different mass-to-charge ratios (m/z values).
The data in SELDI-TOF mass spectra for hepatoma ranges from 0 to 150000. Obviously,
there are too many data to be analyzed for the classification. The biomarkers of certain
type of cancer usually do not appear at specific m/z value, and yet appear at certain
range of m/z values. Assume that the SELDI-TOF mass spectra from N samples (i.e.,
persons) are to be utilized as the prototype data for classifier training. Let ci be the class
that the ith sample is classified, ci ∈ {−1, 1}, where ci = −1, if the ith sample is classified
as a patient with hepatocellular carcinoma (hcc) being detected while ci = 1 if the ith
sample is classified as a normal person. The SELDI-TOF mass spectra for the ith sample
can be represented as (ci;Di), where Di is the data set containing the measurement data
of SELDI-TOF mass spectra, i.e.,

Di = {(xik, yik)| k = 0, . . . , L}, (1)

xik denotes the m/z value, yik denotes the intensity corresponding to xik, and L denotes the
total number of measurements. To reduce the data processing effort, the data analysis
range is divided into M sectors. For the jth data sector, assume that xik ∈ [rjs, r

j
e].

Although several data might be in a data sector, the maximum value is calculated and
taken as the prototype data for further analysis. Let zij be the maximum value among
all intensities in the jth data sector for the ith smaple, i.e.,

zij = max
xik∈[rjs,rje]

(yik), (2)

the prototype data can be simplified as (ci;di), where

di = {zij| j = 1, . . . ,M}, i = 1, . . . , N. (3)

Figure 1. The processed SELDI-TOF mass spectra of all 97 samples

Figure 1 shows the SELDI-TOF mass spectra of a group of 97 samples, among which
55 samples are with hepatocellular carcinoma (hcc) and 42 samples are normal. In other
words, the prototype data (ci;Di), i = 1, . . . , 97, are shown in Figure 1. Zooming into
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the range 1000-1700, the data in Figure 1 are shown as in Figure 2(a). With the sim-
plification stated in (3), the simplified data (ci;di), i = 1, . . . , N , are shown in Figure
2(b). Comparing Figures 2(a) and 2(b), it is obvious that the data (ci;di) in the data
sector greatly reduce the amount of data to be processed compared to the data (ci;Di),
i = 1, . . . , N . Reviewing distribution of the processed SELDI-TOF mass spectra of all 97
samples in Figure 1, the data sectors chosen for further simplification are list in Table 1.

(a)

(b)

Figure 2. Comparison of the original with the simplified version of the
processed SELDI-TOF mass spectra, (a) the original SELDI-TOF mass
spectra and (b) the simplification of the SELDI-TOF mass spectra

3. Gene-weighted Genetic Algorithm. The GWGA is proposed to select appropriate
features among all candidate features. Based on the features evolved in the GWGA, the
SVM is included in the GWGA for the classifier training using the prototype data (ci;di),
i = 1, . . . , N . Assume that Q chromosomes are used in the gene pool in every generation.
Let the jth chromosome in the kth generation of the GWGA be denoted as hj(k), then

hj(k) = {gj1(k), . . . , gjM(k)}, j = 1 . . . , Q, (4)

where gjr(·) ∈ {0, 1} is the rth gene in the chromosome hj(·), r = 1, . . . ,M . Since GA has
the characteristics of keeping strong and eliminating weak, the feature that dominates the
classification results tends to appear more often as the GWGA evolves. The dominating
importance of the rth feature, i.e., the gene gjr(·), r = 1, . . . ,M , to the classification result
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Table 1. Data sectors selected for classification

data sector data sector data sector
1 1250 ∼ 1700 16 8675 ∼ 8790 31 27950 ∼ 28300
2 2050 ∼ 2450 17 8800 ∼ 8860 32 28600 ∼ 29100
3 2750 ∼ 3500 18 8900 ∼ 9020 33 33200 ∼ 33700
4 3850 ∼ 3950 19 9100 ∼ 9175 34 34450 ∼ 34700
5 4300 ∼ 4375 20 9275 ∼ 9335 35 36450 ∼ 37200
6 4450 ∼ 4500 21 9405 ∼ 9470 36 42200 ∼ 44200
7 5750 ∼ 6000 22 9700 ∼ 9730 37 44950 ∼ 45450
8 6400 ∼ 6500 23 10245 ∼ 10310 38 50700 ∼ 52200
9 6600 ∼ 6700 24 10950 ∼ 11900 39 55700 ∼ 56200
10 6800 ∼ 6900 25 12500 ∼ 12700 40 65750 ∼ 66750
11 7550 ∼ 7665 26 12750 ∼ 12950 41 73000 ∼ 84300
12 7750 ∼ 7875 27 13250 ∼ 14200 42 88200 ∼ 102700
13 7910 ∼ 8005 28 14580 ∼ 16200 43 107700 ∼ 150000
14 8120 ∼ 8230 29 16700 ∼ 18200
15 8550 ∼ 8650 30 22700 ∼ 23900

can thus be weighted by calculating the number of 1’s appeared at the corresponding jth
gene in the rth chromosome of the gene pool, r = 1, . . . , Q, as GWGA evolves. The gene’s
weighting can be further refined by multiplying the classification rate αj(·) corresponding
to the chromosome hj(·) with the value of gene gjr(·), and then accumulating all the
multiplied weighting among all the chromosomes in the gene pool.

Let Γ(s) be a threshold function for a logic statement s as following:

Γ(s) =

{
1, if s is true;
0, if s is false.

(5)

The classification approach SVM is utilized based on the features determined by the
chromosome. Let ĉji (k) be the class of the ith sample determined by SVM based on the
features determined by the chromosome hj(k) in the kth generation. Denote αj(k) as the
classification rate associated with the chromosome hj(k), then

αj(k) =

N∑
i=1

Γ(ĉji (k) = ci)

N
, j = 1, . . . , Q. (6)

Denote br(k) as the weighting of the rth gene in the kth generation as following:

br(k) =

Q∑
j=1

gjr(k)αj(k). (7)

Since the value of br(k) varies from gene to gene, it is normalized between [−δ, δ] for every
gene. Denote b̄(k) and b

¯
(k) as the maximum and minimum of br(k) for r = 1, . . . ,M , i.e.,

b̄(k) = max
r=1,...,M

(br(k)); (8)

b
¯
(k) = min

r=1,...,M
(br(k)). (9)

The value br(k) can be normalized between [−δ, δ] as hr(k) based on b̄(k) and b
¯
(k) ac-

cording to the following:

hr(k) =
2δ

b̄(k)− b
¯
(k)

br(k)−
b̄(k) + b

¯
(k)

b̄(k)− b
¯
(k)

δ. (10)
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The weighting of every gene in the previous generation is taken into consideration be-
cause the domination of features rarely shows right away in the current generation. It
usually takes several generations for the feature to become dominated. However, the
weighting of every gene calculated at the generation farther away from the current gener-
ation should have less impact to the gene weighting calculated in the current generation.
Therefore, a forgetting factor λ is assigned and multiplied with the gene weighting cal-
culated in the previous generation. Let wr(k) be the accumulated weighting of the rth
gene, then

wr(k) = hr(k) + λwr(k − 1) (11)

where hr(k) is calculated as in (10) and the forgetting factor λ < 1.
After calculating the accumulated weighting of every gene as in (11), the weighting is

utilized to refine the probability of generating 1’s in the crossover operation. The crossover
in GWGA is operated bit by bit (or gene by gene). Assume that β parent chromosomes
are selected for the crossover operation and assume that the probability of generating 1 at
every gene is in uniform distribution. Given that the chromosomes numbered j∗1 , j

∗
2 , . . . , j

∗
β

are selected as the parent chromosomes for crossover at the (k − 1)th generation, the
probability of generating 1 at the rth gene in the jth chromosome for the kth generation,
denoted by fjr(k), is defined as:

fjr(k) = (gj∗1r(k − 1) + gj∗21r(k − 1) + ...+ gj∗βr(k − 1))/β. (12)

The probability of generating 1 at every gene given that 3 parent chromosomes are
selected for crossover operation is illustrated in Figure 3.

Figure 3. Probability of generating 1 at each gene of child chromosome
for 3 parent chromosomes

The probability of generating 1’s in (12) for crossover is refined by the accumulated gene
weighting in (11). Let the updated probability for the rth gene in the jth chromosome of
the kth generation be σjr(k), then

σjr(k) = fjr(k) + wr(k). (13)

The value of σjr(k) cannot be directly utilized as the probability of generating 1’s for
crossover operation because it might be negative or greater than 1. It is normalized by a
sigmoid function

pjr(k) =
1

1 + e−κ(σjr(k)−0.5)
, (14)
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where κ is a tuning factor for sigmoid function. The probability of generating 1 at every
gene in the crossover operation is determined by pjr(·) in (14).

The elitist scheme is adopted in the crossover operation, i.e., only η chromosomes in
the gene pool with comparatively larger classification rates are allowed to be selected
randomly as the parent chromosomes. To assure that the classification rate is monoton-
ically increasing, the best chromosome with largest classification rate is directly passed
into next generation along with child chromosomes generated by crossover. The GWGA
increases weighting as the gene is assigned 1’s more often in the latest generations. Ac-
cording to (13) and (14), the gene is assigned a larger probability of generating 1 with
larger gene weighting. Although this mechanism is effective, it might lead to a pre-mature
gene pool, i.e., the gene pool converges at an early stage. An operation called extinction
and immigration is also introduced in the GWGA preventing the η best chromosomes
chosen as parent chromosomes from becoming uniform. If the η best chromosomes for
parent chromosomes evolve to be uniform, the generated child chromosomes tend to also
become uniform leading to the feature selection process being trapped at local minimum.
The extinction and immigration operator keeps the best chromosome in the gene pool
and replaces the rest of chromosomes by random generation [22]. It is triggered when the
classification rate of the best chromosome and the ηth best chromosome differs less than
a threshold εex, i.e., when the following condition is satisfied:

|α1(k)− αη(k)| < εex. (15)

The stopping criteria is set as the situation when both classification rate and the number
of selected features, i.e., the number of 1’s, associated with the best chromosome are less
than the threshold εca and εfe, respectively, for T generations. Let υr(k) be the number
of features corresponding to the rth chromosome in the kth generation. The stopping
criteria can be defined as

|α1(k)− α1(k − 1)| < εca and |υ1(k)− υ1(k − 1)| < εfe for T generations. (16)

4. Experiment. A group of 97 examinees’ SELDI-TOF mass spectra processed by (2)
and (3) for the detection of hepatocellular carcinoma (hcc) are shown as in Figure 4 for
the experiment. The mass spectra in Figures 4(a)-(i) is actually the detailed version of
the spectra in Figure 1. In other words, Figures 4(a)-(i) show the spectra obtained by
zooming into different range of m/z values. Among 97 samples, 55 samples have been
identified as the patients with hcc and 42 samples are normal persons. As stated in the
previous section, SVM is utilized as the classification approach based on the features
corresponding to every chromosome in the GWGA. The classification rate calculated by
SVM for every chromosome is based on the 5-fold scheme. For the 5-fold training and
testing scheme, 5 groups of normal samples and samples with hcc are evenly divided
within 97 samples. A total of 43 candidate features have been determined as in Table 1.
The GWGA is applied to search among these 43 features aiming to minimize the number
of selected features while maximizing the classification rate base on the selected features.
The tuning parameters of GWGA are set as following:

Number of genes in every chromosome M = 43,
Number of chromosomes in every generation Q = 50,
Number of parent chromosomes η = 20,
Normalization interval for gene weighting ρ = 0.1,
Tolerance for extinction and immigration εex = 0.01,
Tolerance of classification rate εca = 10−6,
Tolerance of number of features εfe = 1.
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(a) Mass spectra from 0 to 4000 m/z

(b) Mass spectra from 4000 to 7500 m/z

(c) Mass spectra from 7000 to 8400 m/z
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(d) Mass spectra from 8400 to 9100 m/z

(e) Mass spectra from 9100 to 10100 m/z

(f) Mass spectra from 10100 to 13100 m/z
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(g) Mass spectra from 13100 to 30100 m/z

(h) Mass spectra from 30200 to 60200 m/z

(i) Mass spectra from 60200 to 145200 m/z

Figure 4. Mass spectra of 97 examinees SELDI-TOF mass spectra and
selected features
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The classification rate is 82% if all 43 features are used for the classification using SVM.
The experiment is run 10 times as shown in Table 2 to justify the effect and efficiency
of GWGA. Table 2 shows that the average number of selected features is 13.6 and the
associated classification rate is 99.8%. The average times of extinction and immigration
operation triggered is 7.8. It takes 192.9 generations in average for the GWGA to stop
given that the stopping criteria are set as stated above. Table 2 also shows that the
minimum number of features the GWGA can achieve is 11 features. Taking one of the
best experiment result in Table 2 as an illustration example, the 11 features selected by
the GWGA number 5, 8, 9, 11, 15, 16, 27, 19, 21, 22, 26 according to the features list
in Table 1. The selected features are shown in Figure 4 with the feature number being
circled.

Table 2. Experiment results of GWGA

Experiment Classification rate No. of features No. of generations Times of E&I
1 100 11 150 7
2 99 16 285 13
3 100 13 151 7
4 99 12 145 3
5 100 16 126 5
6 100 14 165 3
7 100 16 293 14
8 100 11 133 6
9 100 16 200 10
10 100 11 281 10

average 99.8 13.6 192.9 7.8

The same experiment is also conducted 10 times using simple GA (SGA) with SVM
being utilized as the classification scheme. The average classification rate is 95.9% and
the average selected features is 18.2. This justifies the fact that although SGA is widely
applied to the feature selection problem, the number of features cannot be further reduced
because the learning is constrained by SGA’s regular uniform gene weighting in the chro-
mosome and by SGA;s regular crossover operation. In GWGA, delicate manipulation of
weighting for every individual gene leads to a much smaller number of selected features
while achieve larger classification rate compared to the SGA.

5. Conclusion. The GWGA has been successfully applied to solve the feature selection
problem while obtaining high classification rate. Along with SVM, the GWGA is applied
to select appropriate data sectors and to learn the classifier to identify the sample with
or without hepatoma from the SELDI-TOF mass spectra. The candidate features or the
candidate data sectors for the feature selection performed by GWGA are manually deter-
mined by reviewing the data distribution of the SELDI-TOF mass spectra. Automatic
learning of candidate features from the SELDI-TOF mass spectra bodes well for the future
research. Actually, the proposed GWGA cannot only be applied to the feature selection
and classification of SELDI-TOF mass spectra, it can also be applied to the data with
large number of features in other applications.
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