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ABSTRACT. Raw slurry blending process is one of the key producing processes in the sin-
tering alumina production. Key technical indices of this blending process are the quality
indices of the raw slurry and the load state of the mill. Operation control objectives are
to control the quality indices into their targeted ranges and control the load state of the
mill in the good state. However, due to the difficulty of measuring the quality indices
and the load state on-line, and the complex dynamical characteristics between the tech-
nical indices and the control loops, these control objectives are difficult to be realized by
using the existing control methods. A hybrid intelligent optimal-setting control of the raw
slurry blending process is proposed. The proposed optimal-setting control with the hybrid
intelligent approaches can automatically adjust the set-points in order to respond to the
variation of the boundary condition. At last, the proposed control approach is applied in
an alumina factory in China, and the application results have proven the validity and
effectiveness of the proposed methods.

Keywords: Raw slurry blending process, Optimal-setting control, Quality indices, Mill
load, Hybrid intelligent control

1. Introduction. Key technical indices of the industrial processes often represent the
product quality, energy consumption, production efficiency, and so on [1]. Controlling
these key technical indices with the satisfactory performance can make enterprises obtain
the higher net return. From a process engineering point of view, the purpose of automatic
control of the industrial processes is not only primarily to control the controlled variables
in the control loops at their set-points as well as possible but also to control these key
technical indices [1-4].

In recent years, optimal control for operation of the industrial process, whose control
objectives are to control the technical indices, has attracted more and more researches
in the academia and industry. In the optimal operation control, how to dynamically
determine the appropriate set-points of control loops on-line is the key problem. Now,
optimal operation control mainly includes the self-optimizing control [5,6], the real-time
optimization (RTO) [7], the direct finite horizon optimizing control [8], and so on. There
are some shortcomings in these existing methods mentioned above:

(1) Accurate process models are necessary [1,9]. However, it is difficult to obtain the
accurate models of some complex industrial processes.
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(2) Energy consumption index or its related index is not considered in the control
objectives.

(3) One of the control objectives is that the actual quality index is accurately equal to its
target value. This objective is difficult to be achieved in the actual processes [9]. In fact,
when the actual quality indices are into their target ranges, the operation performance of
the industrial processes is satisfactory [10].

Raw slurry blending process is a key process in the sintering alumina industry in China.
There are two types of control objectives in this process. One is to control the quality
indices into their targeted ranges, and the other is to control the load state of the mill in
the good state. These control objectives are difficult to be realized by using the existing
optimal operation control.

In this paper, a hybrid intelligent optimal-setting control with multi-objectives of the
raw slurry blending process is proposed. The optimal-setting control is composed of
the compensation model of feeding capacity of the mill, predictive models of the quality
indices, pre-setting model, feed forward compensator and feedback compensator of the
set-points, and the coordination model. Rule-based reasoning and case-based reasoning
are utilized in the compensation model of feeding capacity of the mill. RBF neural
network is utilized in the on-line predictive models of the quality indices. Fuzzy rules
reasoning is utilized in the feedback and feed forward compensator. Although each control
element is well known, their innovative combination can generate better and more reliable
performance. At last, the proposed method is applied in an alumina factory in China,
and the application results have proven the effectiveness of the proposed methods.

2. Description and Analysis of the Raw Slurry Blending Process.

2.1. Process description. Raw slurry blending process is shown in Figure 1. In the
raw slurry blending process, raw materials are the alkali power, red mud, blending ore
and limestone, and the product is the raw slurry. At first, alkali powder and red mud are
translated into the alkali sump. In the alkali sump, alkali powder and red mud are blended
to produce the alkali red mud. Alkali red mud is translated into the mill. Blending ore
and limestone are also translated into the mill. In the mill, alkali red mud, blending ore
and limestone are grinded and blended to produce the raw slurry. The raw slurry are
translated and stored in the tanks. The quality indices of the raw slurry are calcium
ratio, alkali ratio and water content. The load state of the mill is an important technical
index which is closely related to the energy consumption.

Qi (t) (1 = 1,2, 3) are the target values of the quality indices of the raw slurry. Q;(7T") (i =
1,2, 3) are the actual values of the quality indices. These actual values are obtained by
the manual chemical examination. 7T is the period of the manual chemical examination.
yX(t) (i =1,...,5) are the set-points of the flow rates of the alkali powder, red slurry,
blending ore, limestone and alkali red mud. y;(¢) (i =1,...,5) are the actual flow rates.
L*(t) are the total flow rates of the raw materials translated into the mill, i.e., the feeding
capacity of the mill. V' (¢) and I(¢) are the vibration and current of the mill. B(t) is the
boundary condition, which is the chemical composition of each raw material.

2.2. Multiple control objectives of the optimal-setting control. The operation
control objectives are to control the quality indices of the raw slurry into their targeted
ranges, and to control the load state of the mill in the good state. These multiple control
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FIGURE 1. Schematic diagram of the raw slurry blending process and man-
ual setting control

objectives are shown in Equations (1)-(4):

(
)

S(t) = S5*(t (1)
Qi) — A1(t) < Qi(f) < Q1(t) + At (2)
Q5(1) — Ag(t) < Qa(t) < @Q5(1) + Aa(?) (3)
Qs(t) < Q3(t) (4)

where S(t) is the actual load state of the mill; S*(¢) is the good load state of the mill;
Aq(t) and Ay(t) are the allowable max errors of the calcium ratio and alkali ratio.

There are two differences in the control objectives between the optimal-setting control
proposed in this paper and the existing methods:

(1) The load state of mill, which is closely related to the energy consumption, is pre-
sented in the control objectives. Moreover, there are three quality indices should be
controlled. As shown in Equations (1)-(4), this is a multi-objectives optimal-setting con-
trol.

(2) The quality indices are controlled into their target ranges, not to be equal accu-
rately to their target values. The range control means that it can reduce unnecessary
adjustments in response to allowable errors.

2.3. Process characteristic analysis. There are some complex dynamic characteristics
during the operation of the raw slurry blending process:

(1) Load state of the mill S(¢) is difficult to be measured.

(2) Mil load is controlled by the adjustment of the feeding capacity of the mill L(t).
There are no accurate model between S(t) and L(t).

(3) It is difficult to measure the quality indices of the raw slurry on-line. @Q;(7) is
measured by the manual chemical examination with the long cycle T

(4) There are strong coupling, nonlinear and large time delay characteristics between
Q;(t) and y;(t).

For the shortcomings of the existing methods and the complex characteristics of the
raw slurry blending process, the control objectives shown in Equations (1)-(4) are difficult
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to be achieved by the existing control methods. In order to realize the control objectives,
there are two important points should be solved. One is how to determine L*(t) on-
line according to the control objective shown in Equation (1), and the other is how to
determine the y;(¢) on-line according to the control objectives shown in Equations (2)-(4).

3. Setting Control Strategy of the Raw Slurry Blending Process. The proposed
optimal-setting control strategy is shown in Figure 2, which can realize the multiple control
objectives shown in Equations (1)-(4).
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FIGURE 2. Strategy diagram of the optimal-setting control

L(t) is the initial feeding capacity of the mill. AL(t) is the compensation value of the
feeding capacity. Ql(t) is the on-line predictive values of the calcium ratio, alkali ratio
and water content. Y () = [7(t), ..., 75(t)] are the initial set-points of flow rates. Y (t) =
[71(t), ..., Us(t)] are the intermediate set-points of flow rates. Y*(t) = [y;(t), ..., yi(t)] are
the final appropriate set-points of the flow rates. AYr(t) = [AGir(t), ..., Ajsp(t)] are the
feed forward compensation values of the initial set-points. AYp(T) = [Ay; 5(T),. .., Ays.n

(T)] are the feedback compensation values of the initial set-points. ey z(t), e r(t), €3,7(1)
are the errors between the predictive and target quality indices. ey 5(T), e2 5(T), e3,5(T)
are the errors between the actual and target quality indices. Their definitions are shown
in Equations (5)-(8):

=000 1=l g
es.m(t { Q3(t) — Q3(t) Q?,(t) > @5() (6)
0 Q3(t) < Q5(t)
i8(T) = Qi(T) = Q;(T) i=1,2 (7)
Qs(T) — Q5(T) Qs(T) > Q3(T
cuatt) = { 0B GG )

where T is the long period of manual chemical examination and 7" = nt.
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The function of the each part in Figure 2 is described as follows:

(1) Compensation model of the feeding capacity: This compensation model can au-
tomatically adjust the feeding capacity of the mill on-line. According to V(t) and I(t),
AL(t) can be obtained by using this model. L*(¢) also can be obtained by using Equation
(9):

L*(t) = L(t) + AL(t) 9)

(2) Predictive models of the quality indices: Predictive values of the calcium ratio,
alkali ratio and water content, i.e., Ql(t) can be on-line obtained based-on these models.
In each predictive model, RBF neural network is adopted to predict the quality index.
The detail design process of the RBF neural network is in [11].

(3) Pre-setting model of the control loops: According to QI (t), B(t) and L*(t), the
initial set-points Y (¢) can be obtained by using this model. The technical computation
model with experiences is adopted in this model. The detail process of the pre-setting
model is in [12].

In this pre-setting model, boundary condition B(t) is assumed to be stable and known.
When the unknown fluctuation of B(t) occurs, the initial set-points are not appropriate.
So, the initial set-points should be compensated by using the feed forward compensator
and the feedback compensator.

(4) Feed forward compensator of the set-points: According to ey r(t), e2r(t), €3 r(t)
and L*(t), AYr(t) can be obtained by using this compensator. This is a short period
compensator for the initial set-points, and the compensation period is t.

(5) Feedback compensator of the set-points: According to ey g(7T'), e2,5(T), e3.5(T) and
L*(t), AYg(T) can be obtained by using this model. This is a long period compensator
for the initial set-points, and the compensation period is 7.

According to the output variables of the pre-setting model, feedback and feed forward
compensator, we can obtain the intermediate set-points:

Y (t) = Y(t) + AYr(t) + AY5(T) (10)

Y (t) can realize the control objectives shown in Equations (2)-(4). However, after these
compensations, the load state of the mill may be not good, that is to say:

J1(t) + §2() + g3(t) + 9a(t) # L*(t) (11)
The set-points Y (¢) should be regulated again by using the coordination model.
(6) Coordination model: According to the Y (¢) and L*(¢), the final appropriate set-

points yf(t) can be obtained, and the control objectives shown in Equations (1)-(4) can
be realized. Being different with ¢;(t), y7(t) is satisfactory to Equation (12):

i) +y5(t) + ys5(t) + yi(t) = L*(t) (12)
4. Realization of the Setting Control Strategy.

4.1. Compensation model of the feeding capacity. The compensation model of the
feeding capacity consists of two sub-models including the estimate model of the load state
and the regulation model of the mill load, which is shown in Figure 3.

There are some definitions:

G =7 > V() (13
Galt) = 3 > 17 (14)
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FiGURE 3. Strategy diagram of the compensation model of the feeding capacity

where T} is the sampling period of the vibration and current sensor; 75 is the calculation
period of G (t) and Gy(t).

As described in Subsection 2.3, the load state of the mill is difficult to be measured. Rule
reasoning is adopted in the estimation model of the load state to solve this characteristic.
The feeding capacity is the key variable to control the load state of the mill. There are also
no accurate model between the load state and the feeding capacity of the mill. Case-based
reasoning is adopted in the regulation model of the mill load to solve this characteristic.

4.1.1. Estimation model of the load state. According to the current ranges of G4 (t) and
G (t), expert rules can be utilized to estimate the load state of mill S(¢). In this paper,
the load state of the mill is divided into five states. S; represents the low load state. S
represents the quasi-low load state. S3 represents the good load state, which is also the
target load state S*. S, represents the quasi-high load state, and S5 represents the high
load state.

At first, G1(t) is divided into three intervals and G(t) is divided into four intervals.
The intervals of G (t) and Go(t) are shown in Table 1.

TABLE 1. Intervals of the vibration and current of the mill

variables intervals
Gy (t) > A,
G1 (t) Al < G1 (t) < AQ
Gi(t) < A4
Go(t) > Bs

By < GQ(t) < Bsy
B; < GQ(t) < By
Gg(t) < By

Ga(t)

In this paper, A; = 800, Ay = 900, B; = 65, By = 70, B3 = 75.

According to the experience and knowledge of the excellent mill operators, and many
results of the industrial experiments, the expert rules are determined. The expert rules
are shown in Table 2.

TABLE 2. Expert rules

rules conditions conclusions
Rule 1 Gl(t) > A2 and GQ(t) < By S

Rule 2 G1 (t) > A2 and B; < Gg(t) < By SQ

Rule 12 Gl(t) < Al and GQ(t) > Bjy S4
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4.1.2. Regulation model of the mill load. The input variables of the regulation model are
the current load state S(t), G1(t) and Go(t), and the output variable is the compensation
value of the feeding capacity AL(t). Case-based reasoning mainly includes case represen-
tation, case retrieval, case matching and case reuse [13]. The case representation can be
described as Table 3. Each case is composed of two parts including the case description
and the case solution.

TABLE 3. Case representations

case description | case solution

fi fo f3 [
S(t) Gi(t) Gat) AL(t)

In the regulation model, case attributes include S(t), G1(t) and Go(t). fs represents
the case solution, which is the AL(t) in the regulation model.

We assume that the description characteristics of the current mill system is C' =
(f1, f4, f4). The cases stored in the case base are C* (k= 1,...,m), and m is the number
of the cases in the case base. The case description of C¥ is (flk, fx, fif), and the case
solution of the C* is fF.

We define the case similarity between C" and C* is sim*(C’, Cy.):

sim* (", C%) = sima (i, f1) x [a x sima(fy, fy) + B x sims(f3, f3)] (15)
e ey [ O fiE S
sim (7,4 ={ 1 HZ4L (16
| f3 = 1|
sime(f5, f& :1—‘7 17
) = s 4] o
. f3 = 1]
sima(fL, f& :1—‘7 18
PB4 1
where o and [ are the weighted coefficients. In this paper, a = 0.57, § = 0.43.
The definition of the max similarity of C’ and C* (1 < k < m) is:
SiMypax = max  sim” (C", C’k) (19)
ke{l,...m}
The definition of the threshold of similarity between ¢’ and C* is:
. 0.91 STMmax > 0.91
ST = { SiMmax  else (20)

In Equation (20), 0.91 is the threshold that is determined by the expert experience.
The cases that satisfy the following Equation (21) will be retrieved as the matching
cases with ranking in ascending order of simy.

sim*(C", Cy) > simy, (21)

Now, we assume that the matching cases are {C',C?,...,C"}. The similarity between
C"and {C',C? ..., C"} are {sim!',sim?,...,sim" }. The solutions of the matching cases
are {f1 f2 ..., fr'}. We assume that sim!' < sim?> < ... < sim”. The solution of the

current case C' is:

fy= (; ar % ff) / (; ak> (22)
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In Equation (22), ay, is determined by using Equation (23):

if sim" =1

lk=r
then aqy —{ 0k +r (23)
else ap=sim" k=1,...,r

f! also is the compensation value of feeding capacity, i.e., AL(t). At last, by using
Equation (9), we can obtain the appropriate feeding capacity of mill L*(t) = L(t)+AL(t).

4.2. Feedback compensator of the set-points. Fuzzy rule reasoning is utilized in
the feedback compensator. In this compensator, the input variables are e,5(T), eap(T)
and e3p(7), and the output variables are Ay g(T), Ay p(T), Ays p(T) and Ay, p(T).
The fuzzy sets of the input and output variables are shown in Figure 4. According to
the experience of the excellent operator and the result of industrial experiment, we finally
determined 147 fuzzy rules in the fuzzy reasoning system. By using the singleton fuzzifier,
max-min reasoning and weighted mean defuzzification [14,15], the fuzzy reasoning system
can derive the Ay; 5(T) (1 =1,2,3,4). From Ay, p(T) and Ay 5(T), we can obtain
Ag5,B(T)I

Ays,p(T) = Ayr,s(T) + Ayz,(T) (24)

4.3. Feed forward compensator of the set points. Feed forward compensator uses
the predictive values of the quality indices of the raw slurry obtained by the predictive
models, so the feed forward compensator has the short cycle. Being same with the feed-
back compensator, fuzzy rules reasoning is also utilized in this compensator. The input
variables of the fuzzy system are e; p(t), eo,r(t) and e3 p(t). The output variables of the
fuzzy system are Ay p(t), Ajop(t), Ays r(t) and Agyp(t). The fuzzy sets and rules in
the feed forward compensator are same with ones in the feedback compensator. According
to the output variables of the pre-setting model, feedback and feed forward compensator,
we can obtain the intermediate set-points Y (t) by using Equation (10).

4.4. Coordination model of the set-points and the feed capacity. Taking the flow
rate of the limestone as the benchmark, the blending ratio is:

Yi:92: Y3 Ya=ky kot kgt ky (25)

where k4 — 1.
The output variables of the coordination model are:

k.
“(t) = ! xL*(t) i=1,...,4 26
WO = e P (26)
HORSHORNAG 27)

5. Industrial Applications. The hybrid intelligent optimal-setting control presented
in Sections 3 and 4 is applied in the Shanxi alumina factory in China.

For example, in a period of time, the current work state of the mill is L(t) = 189¢/h,
G1(t) = 1176.8 and Gy(t) = 67.3. By using the estimation model of the load state,
we can know that the current load state is the quasi-low load state S5. By using the
regulation model, the compensation value of the feed capacity is AL(t) = 18.6, and the
revised feed capacity is L*(t) = 189+ 18.6 = 207.6. When the feeding capacity is revised,
the curves of the vibration and current are shown in Figures 5 and 6, and we can know
that G1(t) € [800,900] and G4(t) > 75, and the load state is the good load state S*(t).
Long-term application results show that the 3.5% reduction of the energy consumption
has been achieved by using the compensation model of the feed capacity.
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FIGURE 4. Fuzzy sets of the input and output variables

For example, in a period of time, A;(¢) in Equation (2) is 0.06, and the error of the
calcium ratio by using the manual setting control and the intelligent optimal-setting
control are shown as Figures 7 and 8. In Figure 7, the qualified rate of the calcium ratio
is 74%. In Figure 8, the qualified rate of the calcium ratio is 86%. A lot of application
results show that by using the intelligent optimal-setting control, the qualified rates of
the calcium ratio, alkali ratio and water content are increased to 86%, 84% and 90%
respectively. So, the quality of the raw slurry is improved.

6. Conclusions. In response to the difficulties in the controlling set-points manually,
a hybrid intelligent optimal-setting control approach with the multiple objectives has
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been proposed for a raw slurry blending process. Via the innovative combination of
the compensation model of the feeding capacity, the predictive models of the quality
indices, pre-setting model, feed forward and feedback compensator of the set-points and
the coordination model, some complex dynamic characteristics can be overcame and the
set-points of the raw materials can be adjusted automatically. This approach has been
successfully applied in an alumina factory in China. The presented approach can be
extended to a wide range of processes with the similar features.
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