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ABSTRACT. Several passive methods like Shape from Focus (SFF) have been proposed
for recovering 3-D shape of the objects from their 2-D images. Presence of noise in the
images affects the accuracy of shape recovery. Most of the existing approaches show feeble
performance when noise is present in the images. In this paper, we propose a new method
based on a simple low pass filter, especially designed for SFF methods. The proposed
scheme is experimented and evaluated using different image sequences of synthetic and
real objects. It provides better results as compared with previous approaches; especially
its performance is impressive for noisy images.

Keywords: 3D shape reconstruction, Shape-from-focus, Depth estimation, Robustness,
Focus measure, Noise

1. Introduction. Recovery of 3D shape from its 2D image can be broadly categorized
into active and passive techniques. In active methods, sonar, laser range finders, etc.
are included. Whereas, passive methods include shape from shading, shape from motion
(motion parallax), stereo vision, shape from defocus and shape from focus. In microscopy
active methods, being expensive, are sometimes impractical to use. Whereas, passive
methods are more popular because of being cheap and easy to implement. Shape from
focus (SFF) has many advantages over other passive methods such as stereo and motion
parallax since these methods encounter the correspondence problem. However, accuracy
of SFF methods needs to be further improved for better 3D shape.

In SFF methods, a stack of images is acquired by a single camera at different focus levels.
The first step is to compute the focus quality of each pixel of every frame by applying a
focus measure operator, and then the depth map is computed by maximizing focus value
along the optical axis. A focus measure is defined as a quantity for locally evaluating the
sharpness of a pixel. In literature, many focus measures have been reported in spatial as
well as in transform domains. Laplacian, modified Laplacian, sum of modified Laplacian
(SML), Tenenbaum, gray level variance (GLV') and M, are the famous focus measures
among them [1, 2]. The Laplacian operator, being a point and symmetric operator, is a
commonly used focus measure [3, 4, 5]. The focus value of an image is obtained by adding
second derivatives in the z- and y-directions. In the case of textured images, the x and y
components of the Laplacian operator may cancel out and subsequently yield no response
[1]. Therefore, Laplacian is modified (M L), which can be computed by adding the squared
second derivatives. Tenenbaum focus measure is based on first derivatives of and image in
x- and y-directions. It is a gradient magnitude maximization method that measures the
sum of the squared responses of the horizontal and vertical Sobel masks. For robustness,
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it is also summed in a local window. One of the other well known focus measures is the
G LV focus measure, based on the idea that in the case of a sharp image, the variance of
the intensities is higher than that for a blurred image. The M, focus measure is actually
modified version of Tenenbaum focus measure. The effects of illumination and change in
window size on focus measure application in SFF have also been studied [6].

SFF can be implemented through a variety of techniques including traditional methods
[4, 7, 8], wavelet analysis [9], neural networks [10], dynamic programming [3, 11], discrete
cosine transform (DCT) [12], etc., but all these techniques start with the estimation of
depth map using focus measures. Hence, the techniques for the estimation of this initial
depth map become quite significant, and any error that occurred in them is carried forward
to next stage, too. Also these algorithms must show robustness when the images used for
SFF are corrupted with noise.

In this paper, we have proposed a new focus measure which normalizes the pixel values
along the optical axis, and a Low-Pass-Filter is designed to remove the noise which consists
of high frequencies. Then, the best focus points are found by maximizing the focus curve
and the corresponding frame number is taken as depth for the particular point. The
process is repeated to recover the shape of the object.

The paper is organized in the following way. In Section 2, some details of related work
about SFF are given from the literature. Section 2.1 provides the motivation of the work.
Section 2.2 describes the low pass filter. In Section 3, the proposed algorithm has been
discussed. Section 4 gives the details of experimental setup. Section 5 describes the noise
and its affects. Section 6 gives the results of shape reconstruction in the presence of noise
and the comparisons with other commonly used focus measures. In Section 7, we have
concluded the outcome of the results.

2. Shape from Focus. In shape from focus (SFF) methods, a sequence of images are
used, taken by a single camera at different focus levels, to compute the depth of the object
in the scene. Focus measure (FM) operators are applied to this image sequence. Then,
the entire image sequence is searched to find the best focused points in the image space;
and, camera parameter settings are used to compute the distance of focused points. In
Figure 1, the point ‘P’ is best focused at image distance ‘A;’ from the lens. To compute
the distance ‘A,’ of the corresponding object-point, Thin-Lens-Formula is used:

1 1 1
?:K+A_’ (1)

where ‘ f’ is the focal length of the lens and ‘A,’ is the object distance from the lens. The
equation for the blur radius ‘R’ caused by the focusing of the object surface is given by

Equation (2):
sD(1 1 1
= 2(?‘Aon>’ @)

where ‘D’ is the diameter for the lens aperture and ‘s’ is the distance for the image sensor
plane from the lens as shown from Figure 1. Using Equation (1), when the point ‘P’ on
the object is best focused in the focused plane, its corresponding pixel intensity value in
the image is its true value (i.e., in a gray scale image, for white points on the body the
pixel intensity value in the image will be near to maximum and for the black points the
pixel intensity value will be near to minimum), whereas, when the point is defocused it
will have the defused value (i.e., between white and black). This change in pixel intensity
follows a ‘Generalized Gaussian’ curve [3]. Figure 2 shows the typical pixel behavior for
two different pixels of an object in the image sequence.
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FIGURE 2. Pixel behavior in an image sequence ((left) white pixel and
(right) black pixel)

2.1. Motivation. In conventional SFF methods, depth values for each object point are
found by maximizing focus values, which are computed by using focus measures, along the
optimal axis. Most of the focus measures reported in literature are either gradient based
or statistical based focus measures. The gradient based focus measures, like Tenenbaum
and SML, take the first and second derivatives of the image to compute the sharpness
in the image. The statistical based focus measures, like GLV and normalize variance,
exploit the statistical components of the image to find the focused regions in the image.
In all these approaches, if a pixel is vitiated by noise, it affects the neighboring pixels too;
for example if 3 x 3 window size is used then the corrupted pixel affects 24 other pixels
in its neighborhood. In literature, the use of larger window size is employed to overcome
this problem. However, taking a larger window size introduces averaging effect [1], and
false depth detection occurs.

This phenomenon motivated us to propose a new method. As discussed in earlier, in the
gray scale image, white object points are well focused at maximum gray levels, whereas,
black object points are well focused at minimum gray levels. The suggested focus measure
takes the values of a pixel along the optical axis in a single vector. Then, this vector is
modified by subtracting the mean of the first and last values of the vector and taking the
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square of the resultant. This helps us to reduce the two problems of finding maxima or
minima of focus curve into a single problem of finding maxima only. A simple low pass
filter (LPF) is designed to reduce the noise. The LPF is applied on these modified pixel
values along the optical axis. Next section introduces the derivation of LPF.

2.2. Low pass filter. A low pass filter (LPF) is a filter that passes low frequency signals
but attenuates signals with frequencies higher than the cutoff frequency. The combination
of resistance and capacitance gives the time constant of the filter 7 = RC. The break
frequency, also called the turnover frequency or cutoff frequency (in hertz), is determined

by the time constant:

1 1

= = ) 3

J 2rt 2w RC )

The effect of a LPF can be simulated on a computer by analyzing its behavior in the
time domain, and then discretizing the model. According to Kirchoff’s Laws and the

definition of capacitance:

d ou
Voelt) = Vinlt) — BT )

This equation can be discretized. For simplicity, assume that samples of the input and
output are taken at evenly spaced points in time separated by Ar time. Let the samples
of Vi, be represented by the sequence (z1,s,...,x,) and let V,,; be represented by the

sequence (Y1, Yo, - --,Y,) Which correspond to the same points in time. Making these
substitutions:
Yi — Yi—1
; = Ty — RC’i, 5
y A, (5)
and rearranging terms gives the recurrence relation:
AV RC
=T Tt VYl - 6
ST TRC Y Ay TV RC Y A ©)

This discrete time implementation of a simple RC' low pass filter is same as the ‘ezponen-
tially weighted moving average’.

3. Proposed Algorithm. In Figure 2, the vertical axis shows the ‘pixel intensity’ in
gray scale image and horizontal axis shows ‘image frame numbers’ in the image sequence.
From these figures it is clear that both ‘white’ and ‘black’ pixels in the image sequence
have relatively very close values in defocused region, and only for focused regions these
values vary from each other with great difference.

We modified these values according to the following:

(i.9) (i+i j+5") [(i’j)pl +@9) D] i
(D] = | D I~ > (7)

Q4,5

nx1

for all 1 < k < n, where ("))p, is the kth value in the original pixel intensity vector ) P;
@1)p, and 7)p, are 1st and last values in pixel intensity vector; (“my is the kth value
in the modified pixel intensity vector /)M, i and j are the  and y position of the pixel
in special domain, €2 is the summing window for the focus measure and n is the total
number of images in the image sequence, given by Equation (8):

S
5 8
Astep ( )

where S is the total displacement of object plane and Ay, is the step size.

n =
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LPF is then applied to the modified pixel intensity vector to remove the noise. Equation
(9) yields the final focus curve of the proposed focus measure.

o . 1 N o0
(4,) :(Z,]) (4,5) 102 9
Uk T <0102+1) + Y1 (0’10’24‘1), ( )

where o, and o5 are tuned for the LPF. The lag in the focus curve is given by [ = o05.
The depth map of the data point (i, j) is recovered by the following:

() D = [arg m]?X ((i,j)yk)] —1 (10)
where 1 < k < n.

4. Experimental Setup. For experiments we have used five different objects (simulated
cone, real cone, real plane, coin and LCD-filter). The simulated cone images are generated
by computer simulations. The real cone and real plane are made from hardboard with
black and white stripes drawn on the surface so that a dense texture is observed in the
images when taken from the CCD camera system. The details of simulated cone, real
cone and real plane are given in [13], we have used the same image sequences. The coin
images are the magnified images on Lincoln’s head at the back of (US) one-cent coin. The
LCD images are microscopic images of LCD-TFT display.

All the images are taken by varying the object plane by ‘Ag,,’, and are stored in a
sequence on every step such that: (i) the object moves towards (or away from) the lens
assuring that the complete object is first defocused then gradually it focuses (on every
point) and then it is again completely defocused; (ii) there is no change in magnification
when the images are taken [3].

Figure 3 shows frames 1st to last of the simulated cone. The images show that the
simulated cone follows the above statements (1&2). Figure 4 shows the 10th image in the
image stack for real cone, real plane, coin and LCD-TFT.

)

(a) First (b) 50th (c) 90th (d) Last

FicURE 3. Image frames of simulated cone image sequence

(a) Real cone (b) Real plane (c) Coin (d) LCD-TFT

FIGURE 4. 10th image frame of each image sequence
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(a) Gaussian (b) Shot (c) Speckle

FIGURE 5. Frame 10th of simulated cone corrupted with different noise
with =0 and o = 0.005

5. Effects of Noise on Shape Reconstruction. When the images used for SFF are
corrupted with noise, the computation of depth map becomes difficult. In real time ap-
plications, various type of noises (like Rayleigh, Exponential, Uniform, Shot, Speckle and
Gaussian) may occur. Therefore, a robust method is required to deal with noisy situations.

Many focus measures discussed in the literature are based on the second-derivative on
the image gradient and hence, are more prone to noise. Laplacian and its variants are
based on second-derivative, whereas Tenenbaum is based on single derivative technique
which is again sensitive to noise (but less than second-derivative techniques). Similar
problems occur when mean and variances are incorporated as a focus measure.

We have used Gaussian noise, shot noise and speckle noise [12, 14, 15, 16], to the image
sequence with zero mean (= 0) and different variances, to compare our results. The
results are compared and discussed in the next section. Figure 5 shows the 10th frame
of the simulated cone image sequence, degraded by the Gaussian noise, shot (salt and
pepper) noise and speckle noise.

6. Results and Discussion.

6.1. Metric measures. An image quality metric can be defined as a measure of the
perceived difference from a reference image. The fundamental assumption is that, any
reduction in quality is caused by some perceived difference. In this paper, the image
quality metrics are implemented to depth map comparison. If no differences can be
perceived, then the computed depth map is indistinguishable from the original shape and
the shape-quality is at its maximum. Hundreds of metrics have been proposed to deal
with both general and specific aspects. Some of the metrics are mentioned here.

6.1.1. Mean squared error and root mean squared error. Mean squared error (MSE) [2, 9,
17, 18] is one of the many ways to quantify the amount by which depth maps differ from
each other. MSE measures the average of square of the ‘error’. It is the second moment
(about the origin) of the error and is defined as follows:

@) p,,, —09) D|?,

where M is the number of horizontal pixels in the image and N is the number of vertical
pixels, (l’j)Dow is the original Depth map and ) D is the computed depth map. Root
mean squared error (RMSE) is simply the square-root of MSE; RMSE = VMSE.
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6.1.2. Peak signal-to-noise ratio. The peak signal-to-noise ratio (PSNR) [2, 9, 17, 18] is
the ratio between the maximum possible power of signal and the power of corrupting noise
that affects the fidelity of its representation. Because many signals have wide dynamic
range, PSNR is usually expressed in terms of logarithmic decibel scale (dB):

MSE
D? ’

max

PSNR = —10log,, (

where D,y is the maximum pixel value.

6.1.3. Correlation. Correlation or Correlation-Coefficient [19] is a metric measure that
indicates the strength and direction of a linear relationship between two images. In gen-
eral, correlation refers to the departure of two images from independence. The correlation
coefficient is computed as:

Zi Zj((m‘)D‘"‘g - ,U/org)((i’j)D - MC)

where (iJ)Dorg is the original depth map, fir4 is its mean, @)D is the computed depth
and p. is its mean.

We have used RMSE, correlation and PSNR given in above equations to compare the
results.

Cor. =

6.2. 3D shape reconstruction results. We used five different objects described earlier
(simulated cone, real cone, real plane, coin and LCD) for the comparison, as shown in
Figures 3 and 4. Figures 6(a) and 6(c) show the behavior of white and black pixels in the
image sequence. Both type of pixels have nearly similar values (or have less difference)
where they are defocused and differ a lot when focused. In Figures 6(b) and 6(d), the
modified pixel behavior in an image sequence is shown for both white and black pixels
along with the corresponding responce of LPF, respectively.

We chose SML, GLV, M; and Tenenbaum as they are the most commonly used FMs,
to compare with our FM. We found out that the RMSE is lowest, whereas, correlation
and PSNR is highest with proposed method. Table 1 shows the RMSE, correlation and
PSNR for the shape reconstruction for simulated cone, compared with the traditional FMs
(SML, GLV, M, and Tenenbaum). It is clear from Table 1, that the proposed method
gives us better results than that of the traditional FMs. Table 1 also shows that the

TABLE 1. Metric measures for depth estimation methods by different FMs
for simulated cone and real cone

EXPERIMENTED | FOCUS

OBJECT MEASURES RMSE COR. PSNR
SML 12.4475 0.7389 17.8823
GLV 10.9586 0.8021 18.1438

Simulated Cone My 10.8687 0.8081 18.2154
Tenenbaum 10.8675 0.8016 18.2153
Proposed 8.3706 0.9515 20.4837
SML 15.4441 0.5824 15.1489
GLV 10.21551 0.716 18.7048

Real Cone M, 10.2363 0.7148 18.6868
Tenenbaum 10.2886 0.7112 18.6425
Proposed 2.0427 0.9332 32.6868
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FIGURE 6. Examples of pixel behavior and modified pixel behavior in an
image sequence for a simulated cone

FIGURE 7. 3D representation of simulated cone, (a): by Ms, (b): by pro-
posed FM and (c): original depth map of simulated cone

FIGURE 8. 3D representation of real cone, (a): by M,, (b): by proposed
FM and (c): original depth map of simulated cone
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(d)

FIGURE 9. 3D representation M, (top row) and proposed method (bottom
row) of ((a) and (d)) real plane, ((b) and (e)) coin and ((c) and (f)) LCD-

TFT filter

TABLE 2. Metric measures for depth estimation methods by different FMs
for simulated cone, with Gaussian, Shot and Speckle noises with ;= 0 and

o = 0.005
FOCUS
NOISE TYPE MEASURES RMSE | COR. | PSNR
SML 35.0583 | 0.0619 | 8.0430
GLV 11.1016 | 0.8007 | 18.0312
Gaussian M, 11.3369 | 0.7949 | 17.8490
Tenenbaum 11.0811 | 0.8001 | 15.7781
Proposed 9.6961 | 0.9511 | 19.2070
SML 11.4083 | 0.7860 | 17.7945
GLV 11.2605 | 0.7928 | 17.9077
Shot Ms 22.6157 | 0.3987 | 11.8507
Tenenbaum 11.0167 | 0.7994 | 18.0979
Proposed 8.5890 | 0.9506 | 20.2600
SML 15.6328 | 0.6309 | 15.0581
GLV 11.1608 | 0.7984 | 17.9849
Speckle Ms 11.2472 | 0.7996 | 17.9180
Tenenbaum 11.1411 | 0.7963 | 18.0003
Proposed 9.7175 | 0.9512 | 19.1878
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proposed method has the highest correlation and PSNR, and lowest RMSE for the real
cone. Figure 7 shows the reconstruction of simulated cone by M, compared with the
proposed method. Figures 8 and 9 show the reconstruction of real cone, real plane, coin
and LCD filter. It is clear from these figures that the 3D shape representation using the
proposed method, when there is no noise, is much smoother than that of traditional FMs.
The depth map obtained using the proposed method is clear, but the depth map with the

traditional FMs has degraded significantly.

Table 2 shows the comparison of RMSE of different methods with the proposed method,
when Gaussian noise (u = 0, 0 = 0.005) is added to the image sequence. The tables show
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TABLE 3. Metric measures for real cone for Gaussian noise (u = 0, o = 0.0005)

[FOCUS MEASURES | RMSE | COR.. | PSNR |

SML 14.1915 | 0.6402 | 15.8491

GLV 10.4969 | 06.991 | 18.4684

M2 11.7156 | 0.6293 | 17.5143

Tenenbaum 10.6057 | 0.6924 | 18.3789

Proposed 2.9429 | 0.8646 | 29.5141
by M2

FIGURE 10. 3D representation of experimented objects in the presence of
Gaussian noise g = 0 and o = 0.005, left to right: simulated cone, real
cone, real plane, coin and LCT-TFT

the proposed method not only works well for ‘no noise’ but also give good RMSE. Table
2 also shows that the comparison of correlation and also supports the same results. It
is also clear from table that the correlation coefficient of the proposed method is the
highest among all the focus measures. In the same table the comparison of PSNR is
also given by different FMs with Gaussian noise (4 = 0, 0 = 0.005). The PSNR for the
proposed method is also good among the other FMs. Figure 10 shows the reconstruction
of simulated cone by different methods when Gaussian noise (= 0, o = 0.005) is added
to the image sequence.
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by M2

A

FIGURE 11. 3D representation of experimented objects in the presence of
shot noise 4 = 0 and o = 0.005, left to right: simulated cone, real cone,
real plane, coin and LCT-TFT

Also, in Table 2, the RMSE, correlation and PSNR for simulated cone is provided,
when used images are degraded by shot noise (with u = 0, o = 0.005). The results clearly
demonstrate that the proposed method has shown robustness against shot noise.

Figure 11 shows the reconstruction of simulated cone in the presence of shot noise
(u =0, 0 =0.005). The smooth surface is clearly visible in the figures.

In Table 3, the equivalent results are shown for the real cone. It is clear from Table 3
that the proposed method has minimum RMSE and highest correlation and PSNR, values.
In Figures 10 and 11, the shape reconstruction for the real plane, coin and LCD are given
with the Gaussian and shot noise (1 = 0, 0 = 0.005), with M5 used as a focus measure.

7. Conclusions. In this paper, we have proposed a new focus measure especially de-
signed for the shape reconstruction using focus based passive method (Shape from Focus).
For this purpose, we have developed a simple but robust algorithm to calculate best fo-
cused point using the idea of a simple RC Low Pass Filter. The proposed FM has shown
good results even in the presence of noise.

In Shape from Focus the images are taken by varying the focus values in different steps,
and each pixel in the image is taken as a single measurement. The thin-lens-model is used
to estimate the change in pixel’s energy. The pixel values are modified by subtracting
the maximum of first and last frame along the optical axis. An analogous of a simple RC
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filter is used to eliminate the noise present in the modified values. The maximum value
in the modified pixel intensity vector and its corresponding frame number is searched.
The proposed method is more precise as compared with previous methods and also the
robustness of the method to accommodate different types of noise at different standard
deviations makes the FM more vigorous against noisy measurements. The results are
compared using RMSE, Correlation and PSNR.
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