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Abstract. This paper focuses on the problem of switched static output feedback (SOF)
control for discrete-time switched linear systems under arbitrary switching laws. The
considered class of systems is characterized by a particular structure of system matrices.
Our principle idea is addressed in the derivation of new sufficient linear matrix inequali-
ties conditions for the synthesis of a switched controller for a particular class of switched
systems. The adopted methodology is based on the using of a special congruence trans-
formation and a switched quadratic Lyapunov function. We propose important sufficient
LMI conditions for SOF stabilization in the general case which guarantee the switched-
quadratically stability of the closed-loop system. The various conditions are given through
a family of LMI (linear matrix inequalities) parameterized by a scalar variable which of-
fers an additional degree of freedom, enabling, at the expense of a relatively small degree
of complexity in the numerical treatment (one line search), to provide better results com-
pared with previous ones in the literature. A numerical example is presented to illustrate
the effectiveness of the proposed conditions.
Keywords: Switched system, Static output feedback, LMI

1. Introduction. Switched linear systems are an important class of Hybrid Dynamical
Systems (HDS) [1, 3, 16]. A switched system is represented by a set of continuous-time
or discrete-time subsystems and a rule that orchestrates the switching among them. In
this area, the suitable control problem is directed towards the determination of an adap-
tive switched control assuming the real time knowledge (possibly by identification) of the
switching process. Switched systems have numerous applications in control of mechanical
systems, the automotive industry, aircraft and air traffic control, switching power con-
verters, and many other fields which include the modelling of communication networks,
networked control systems, the modelling of bio-chemical reactions, the control of systems
with large uncertainty using logic-based supervisors, etc. In recent years, an increasing in-
terest in the study of stability analysis and control design for switched systems [4, 7, 26, 27]
can be noticed. The stability and control synthesis issues for discrete switched systems
under arbitrary switching sequences are addressed [28, 29]. In practice, switched systems
can be applied to various modelling and control problems present in robotics, automotive
systems, process control, power systems, air traffic control, switching power converters,
and many other fields which include the modelling of communication networks, networked
control systems, the modelling of bio-chemical reactions, the control of nonlinear systems
that cannot be stabilized by continuous control laws, the control of systems with large
uncertainty using logic-based supervisors, etc. [16, 17]. In recent years, particular efforts
of researches have received an increasing interest and a growing attention in the study
of the stability analysis and control design for switched systems [4, 7, 21, 22, 23]. The
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stability issues and control synthesis for discrete switched systems under arbitrary switch-
ing have been addressed. Rapid progress in the field has generated many new ideas and
powerful tools as multiple Lypunov functions (MLF), piecewise Lyapunov function (PLF)
and switched Lyapunov function (SLF) [5, 12, 13]. The basic concepts and the main
properties of this approach are based in the existence of a particular Lyapunov function
which has the same switching signals as the switched system. The results provided in this
paper are less conservative. We discussed the problem of stabilization of discrete switched
systems by static output feedback. The main motivation for studying switched systems
comes partly from the fact that static output feedback (SOF) control is very useful and
more realistic, since it can be easily implemented with low cost [19, 20, 24]. A new LMI
formulation that uses a scalar variable is proposed, which makes it useful and interesting
for design problems. It is shown that the proposed method can work successfully in situ-
ations where the existing methods fail [8, 20, 21, 23]. The paper is organized as follows.
Section 2 gives the problem statement. Section 3 is the main result of this paper. New
sufficient LMI conditions are deduced to obtain stabilizing SOF controller gains based
on a switched quadratic Lyapunov function. Section 4 gives numerical evaluation and
an example to illustrate the effectiveness of the proposed approach. Finally, the paper is
concluded in Section 5.
Notation. Notation used in the paper is standard. In general capital letters denote

matrices. For two symmetric matrices, A and B, A > B means that A − B is positive
definite. A′ denotes the transpose of A, diag(x; y; ...) denotes the diagonal matrix obtained
from vectors or matrices x, y, .... When no confusion is possible, identity and null matrices
will be denoted respectively by I and 0. Furthermore, in the case of partitioned symmetric
matrices, the symbol • denotes generically each of its symmetric blocks. N is the number
of subsystems. Conv{} stands for convex combination. E = {1, ..., N} denotes the set of
indexes.

2. Problem Statement and Preliminaries. Consider a linear switched system in the
discrete time domain described by the following state equation:{

x(k + 1) = Aσ(k)x(k) +Bu(k)
y(k) = Cσ(k)x(k)

(1)

where x(k) ∈ Rn is the state vector of the system at time k, u(k) ∈ Rm is the control
input vector, y(k) ∈ Rp is the measured output vector. The switching rule σ(k) takes
values in the finite set E.

σ(k) ∈ {1, ..., N}
and it changes its value at an arbitrary discrete time. This means that the switched
system is described by the following set of modes:

{(Ai, B, Ci) \i ∈ E}

and that the evolution of σ(k) gives the switching sequence between these modes.
As in [8, 20, 23], the following assumptions are made:

H1: The pairs (Ai, B) and (Ai, Ci) are assumed to be stabilizable and detectable,
respectively, and Ci of full rank.
H2: The switching rule σ(k) is not known a priori but its value is real-time available.
We assume also without loss of generality that:

B =

[
1m
0

]



STATIC SWITCHED OUTPUT FEEDBACK STABILIZATION 3205

In this paper, we investigate the switched output feedback stabilization problem, that
means the problem of designing a switched static output feedback control law.

u(k) = Kσ(k)y(k) (2)

where Kσ(k) ∈ {Ki ∈ Rm×p\i ∈ E}.
Such that the resulting closed-loop system:

x(k + 1) = (Aσ(k) +BKσ(k)Cσ(k))x(k) (3)

is asymptotically stable.
Defining the indicator function:

αi(k) =

{
1 if the system is in the i-th mode
0 otherwise

with i = 1, ..., N , the switched system matrices can also be written as:

Aσ(k) =
N∑
i=1

αi(k)Ai

Cσ(k) =
N∑
i=1

αi(k)Ci

and the closed-loop state matrix as:

Aσ(k) +BKσ(k)Cσ(k) =
N∑
i=1

αi(k)(Ai +BKiCi)

In the following, we investigate new LMI-based conditions for the SOF stabilization
problem by using the concept of switched Lyapunov function and the notion of congruence
transformation. The influence of the state vector description and the characteristic matrix
on the determination of the controller is also studied.

We introduce the concepts of switched Lyapunov function used later in order to develop
the results given in this paper.

To check stability of the switched system (1) let the switched Lyapunov function be
defined as [8]:

V (k, x(k)) = x(k)
′
P (σ(k))x(k) (4)

V (k, x(k)) = x(k)
′

(
N∑
i=1

αi(k)Pi

)
x(k) (5)

P1, ..., PN are symmetric positive definite matrices. If such a positive definite Lyapunov
function exists and its increment:

∆V (k, xk) = V (k + 1, xk+1)− V (k, xk) (6)

is negative definite along the solution of (1) then the origin of the switched system is
globally asymptotically stable.

According to Lyapunov stability theory, the closed-loop system (3) is asymptotically
stable with a switched Lyapunov function of the form (4) if and only if

A
′

cli
PjAcli − Pi < 0, ∀(i, j) ∈ E × E

where Acli = Ai +BKiCi.
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Let Pi positive-definite symmetric matrix partitioned into:

Pi =

[
P1i P2i

P
′
3i P4i

]
(7)

with P1i ∈ Rm×m, P2i ∈ Rm×(n−m) and P3i ∈ R(n−m)×(n−m) and define the matrix D =[
0

1(n−m)

]
and the state x(k) =

[
xD(k)
xB(k)

]
, where xD(k) = D

′
x(k) and xB(k) = B

′
x(k).

Let

Ai =

[
A1i A2i

A3i A4i

]
(8)

and

Ci =
[
C1i C2i

]
partitioned according to the partition of Pi.
Let Ti ∈ Rn×n, be nonsingular matrices such that:

Ti =

[
I Yi

0 Z

]
(9)

Let Ts ∈ Rn×n, be nonsingular matrices such that:

Ts =

[
I 0
0 εI

]
(10)

Using the matrix Ts as a similarity transformation for system 1, we have system (4) is
stable if and only if Ãcli = Ãi + B̃KiC̃i is stable, where Ãi = TsAiT

−1
s , B̃ = TsB = B,

and C̃i = CiT
−1
s .

We present now a useful lemma used in the proofs later in the paper.

Lemma 2.1. Let Φ a symmetric matrix and N , M matrices of appropriate dimensions.
The following statements are equivalent:

(i) Φ < 0 and Φ +NM ′ +MN ′ < 0
(ii) There exists a matrix F such that:(

Φ M +NF
M ′ + F ′N ′ −F − F ′

)
< 0

Proof: See [25].
We present in the following a sufficient condition for the static output feedback stabi-

lization (SOF).

3. Main Results. The next theorems formulate new sufficient LMI conditions for the
synthesis of a stabilizing switched SOF controller.

Theorem 3.1. System (1) is switched-quadratically stabilizable by a static output feedback
(2) if there exist positive definite symmetric matrices Pi portioned as in (7) and gains
Ki ∈ Rm×p such that ∀(i, j) ∈ E × E:(

−Pi + Ãi
′
DP3jD

′Ãi 0
• −P1j

)
+

(
Ãi

′
B + C̃i

′
K ′

i

0

)
(11)

(
P2jD

′Ãi P1j

)
+

(
Ãi

′
DP ′

2j

P1j

)(
B′Ãi +KiC̃i 0

)
< 0
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Proof: Let V (k) = x̃′(k)Pix̃(k), where x̃(k) = Tsx(k). System (1) is switched-
quadratically stabilizable by a switched static output feedback (2) if and only inequality
A

′

cli
PjAcli − Pi < 0,∀(i, j) ∈ E × E holds.

Hence:

V (k + 1)− V (k) = x̃′(k)[(Ãi
′
+ C̃i

′
K ′

iB
′)BP1jB

′(Ãi +BKiC̃i)

+ (Ãi
′
+ C̃i

′
K ′

iB
′)BP2jD

′(Ãi +BKiC̃i)

+ (Ãi
′
+ C̃i

′
K ′

iB
′)DP ′

2jB
′(Ãi +BKiC̃i)

+ (Ãi
′
+ C̃i

′
K ′

iB
′)DP3jD

′(Ãi +BKiC̃i)]x̃(k) < 0

given that D′B = B′D = 0 and B′B = I, the last inequality is equivalent to:

− Pi + Ãi
′
DP3jD

′Ãi + (Ãi
′
B + C̃i

′
K ′

i)P1j(B
′Ãi +KiC̃i)

+ (Ãi
′
B + C̃i

′
K ′

i)P2jD
′Ãi + Ãi

′
DP2j(B

′Ãi +KiC̃i) < 0

and then by Schur complement we leads to (11).

Remark 3.1. The condition of Theorem 3.1 is nonlinear in the unknown variables Pi

and Ki. The problem of solving numerically (11) is non-convex. Using Lemma 2.1 and a
suitable congruence transformation, the nonlinearity of the condition 11 can be eliminated
and sufficient LMI conditions can be obtained for particular class of systems. These
conditions have the advantage to be convex and are numerically well tractable.

In the following, we provide the main result of this paper. First, two sufficient scaling
LMI conditions for particular class of systems are given. Then, a sufficient condition is
presented for the general case. All the results are proved using condition of the Theorem
3.1, Lemma 2.1 and suitable congruence transformation. Indeed, the proposed condition
(11) of Theorem 3.1 is linear in the unknown variables and it can be so easily solved
using convex optimization techniques using the Lemma 2.1. This can be achieved only by
verifying the following condition:

−Pi + Ã
′

iDP3jD
′
Ãi < 0; ∀(i, j) ∈ E × E

and thus, sufficient LMI conditions can be obtained. The controller synthesis method
presented in the Theorem 3.1 is applied to some particular class of switched systems.

3.1. Case Ai4 = 0. The basic idea is to guarantee the negativity of the matrix in order
to apply the Lemma 2.1 and to deduce thereafter the stability of the switched system.
To reach this objective, we proceed by imposing some hypothesis like the partitioning of
the Lyapunov matrices Pi and the blocks Ai of the state matrices which composed the
switched system.

In the following section, we propose a new method for the synthesis of stabilizing
switched SOF controllers which is formulated as a feasibility problem of a set of sufficient
LMI conditions for system (1) with Ai4 = 0 and partitioned as (8).

Theorem 3.2. System (1) with Ai4 = 0 is switched-quadratically stabilizable by a switched
static output feedback (2) if there exist positive definite symmetric matrices Pi partitioned
as in (7), matrices Gi and Ri, and a real ε sufficiently small such that ∀(i, j) ∈ E × E:(

−Pi + ε2Φ
′
1P3jΦ1 Φ2Gi + Φ3Ri + εΦ4P

′
2j

• P1j −Gi −G
′
i

)
< 0 (12)

where

Φ1 =
[
A3i 0

]
,Φ2 =

[
A

′
1i

ε−1A
′
2i

]
,Φ3 =

[
C

′
1i

ε−1C
′
2i

]
,Φ4 =

[
A

′
3i

0

]
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The stabilizing output feedback controller gains are given by:

Ki = (RiG
−1
i )′ (13)

Proof: Applying similarity transformation Ts (10) (ε sufficiently small) to the switched
system (1) with Ai4 = 0, the stabilization by SOF (2) is equivalent by Lemma 2.1 to:(

−Pi + ε2Φ
′
1P3jΦ1 0

• −P1j

)
+ sym

(
Φ2 + Φ3K

′
i

0

) (
εP2jΦ1 P1j

)
< 0

There exists ε, such that:

Φ =

(
−Pi + ε2Φ

′
1P3jΦ1 0

• −P1j

)
< 0

and by Lemma 2.1, for ε sufficiently small, this equivalent to the existence of matrix Gi

such that:  −Pi + ε2Φ
′
1P3jΦ1 0 Φ2Gi + Φ3K

′
iGi + εΦ4P

′
2j

• −P1j P1j

• • −Gi −G
′
i

 < 0

where

Φ1 =
[
A3i 0

]
,Φ2 =

[
A

′
1i

ε−1A
′
2i

]
,Φ3 =

[
C

′
1i

ε−1C
′
2i

]
,Φ4 =

[
A

′
3i

0

]
Letting Ri = K ′

iGi, we obtain by Schur complement (12).

3.2. Case A3i of full row rank. The following theorem is deduced by taking matrices
A3i of full row rank and applying a suitable congruence transformation which transforms

the state matrices Ãi into Ãi =

[
Ã1i Ã2i

Ã3i 0

]
and then we obtain a sufficient condition for

SOF by using the result of the Theorem 3.2. Now, we give a new sufficient LMI conditions
to compute the controller gains Ki.

Theorem 3.3. System (1) with A3i full row rank, is switched-quadratically stabilizable
by a switched static output feedback (2) if there exist positive definite symmetric matrices
Pi partitioned as in (7), matrices Gi and Ri, and a real ε sufficiently small such that
∀(i, j) ∈ E × E:(

−T
(−1)′

i PiT
−1
i + T

(−1)′

i Φ
′
5P3jΦ5T

−1
i T

(−1)′

i Φ2Gi + T
(−1)′

i Φ3Ri + T
(−1)′

i Φ5P
′

2j

• P1j −Gi −G
′
i

)
< 0(14)

with: Ti =

[
I −Ã4i

(
Ã3iÃ

′
3i

)−1

Ã3i

0 I

]
, Φ2 =

[
A

′
1i

ε−1A
′
2i

]
, Φ3 =

[
C

′
1i

ε−1C
′
2i

]
, Φ5 =[

εA3i A4i

]
.

The stabilizing switched output feedback controller gains are given by

Ki = (RiG
−1
i )′ (15)

Proof: Let V (k) = x̃′(k)Pix̃(k), where x̃(k) = Tsx(k). System (1) is switched-
quadratically stabilizable by a switched static output feedback (2) if and only inequality
A

′

cli
PjAcli − Pi < 0, ∀(i, j) ∈ E × E holds. Hence:

V (k + 1)− V (k) = x̃′(k)[(Ãi
′
+ C̃i

′
K ′

iB
′)BP1jB

′(Ãi +BKiC̃i)

+ (Ãi
′
+ C̃i

′
K ′

iB
′)BP2jD

′(Ãi +BKiC̃i)(Ãi
′
+ C̃i

′
K ′

iB
′)DP ′

2jB
′(Ãi

+BKiC̃i) + (Ãi
′
+ C̃i

′
K ′

iB
′)DP3jD

′(Ãi +BKiC̃i)]x̃(k) < 0
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given that D′B = B′D = 0 and B′B = I, the last inequality is equivalent to:

− Pi + Ãi
′
DP3jD

′Ãi + (Ãi
′
B + C̃i

′
K ′

i)P1j(B
′Ãi +KiC̃i)

+ (Ãi
′
B + C̃i

′
K ′

i)P2jD
′Ãi + Ãi

′
DP2j(B

′Ãi +KiC̃i) < 0

and then by Schur complement we leads to (12).
By applying 2.1 this is equivalent to the existence of matrices Gi such that: −Pi + Ã

′
iDP3jD

′
Ãi 0 Ã

′
iBGi + C̃

′
iK

′
iGi + Ã

′
iDP

′
2j

• −P1j P1j

• • −Gi −G
′
i

 < 0

By schur complement formula, these inequalities are equivalent to:[
−Pi + Ã

′
iDP3jD

′
Ãi Ã

′
iBGi + C̃

′
iK

′
iGi + Ã

′
iDP

′
2j

• P1j −Gi −G
′
i

]
< 0

Using a congruence transformation and multiplying these inequalities with

[
T−1
i 0
0 I

]
to the right and its transpose to the left yields to:[

−T
(−1)′

i PiT
−1
i + T

(−1)′

i Φ
′
5P3jΦ5T

−1
i T

(−1)′

i Φ2Gi + T
(−1)′

i Φ3K
′
iGi + T

(−1)′

i Φ5P
′

2j

• P1j −Gi −G
′
i

]
< 0

By taking, Ti =

[
I −Ã4i

(
Ã3iÃ

′
3i

)−1

Ã3i

0 I

]
and Φ2 =

[
A

′
1i

ε−1A
′
2i

]
,Φ3 =

[
C

′
1i

ε−1C
′
2i

]
,

Φ5 =
[
εA3i A4i

]
, the condition (14) is satisfied ∀(i, j) ∈ E × E. We can compute so

the switched output feedback gains as Ki = (RiG
−1
i )′∀i ∈ E.

Remark 3.2. By similarity transformation matrix B can be in the following form:

B =

[
0
1m

]
and then a sufficient conditions for SOF stabilization similar to those of Theorem 3.2 and
3.3 can be deduced, when A1i = 0 or A2i is of full row rank.

3.3. General case.

Theorem 3.4. System (1) is switched-quadratically stabilizable by a switched static output
feedback (2) if there exist positive definite symmetric matrices Pi portioned as in (7),
matrices Gi and Ri, and a real ε sufficiently small such that ∀(i, j) ∈ E × E:(

−Pi + Φ
′
1P3jΦ1 Φ2Gi + Φ3Ri + εΦ4P

′
2j

• P1j −Gi −G
′
i

)
< 0 (16)

where Φ1 =
[
εA3i (I − A3iA

′
3i

λmax(A3iA
′
3i)
)A4i

]
, Φ2 =

[
A

′
1i

ε−1A
′
2i

]
, Φ3 =

[
C

′
1i

ε−1C
′
2i

]
and Φ4 =[

A
′
3i

A
′
4i

]
. The stabilizing switched output feedback controller gains are given by

Ki = (RiG
−1
i )′ (17)

Proof: Follows in a direct way from the LMI given in Section 2 applied on the switched
system (1) obtained after similarity transformation Ts. The resulting LMIs are treated
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by congruence transformation by taking Ti =

[
I

A
′
3iA4i

λmax(A3iA
′
3i)

0 εI

]
and change of variables

Ri = K
′
iGi.

Remark 3.3. By applying 2.1, it is clear that in the general case

Φ =

[
−Pi + Φ

′
1P3jΦ1 0

• −P1j

]
,

the stability condition depends on the negativity of Φ.

4. Numerical Example.

4.1. Numerical evaluation. To prove the efficiency of the proposed conditions, a nu-
merical evaluation is given in this section. The problem considered here is the design of
a static output feedback controller stabilizing the switched system.The result obtained
using the Theorem 3.3 is compared to the three methods developed in [8, 20, 23] and
summarize in the Table 1. The switched system is characterized by: the number of modes
(N), the system order (n), number of inputs (m) and the number of outputs (p). For fixed
values of (N, n, m, p), we generate randomly 100 switched systems of the form (1). So
the purpose is to design by using four methods a feedback controller in the form (2) such
that the closed-loop system (3) is stable.

1. Method1: This corresponds to conditions in Theorem 3.3 of our paper.
2. Method2: uses the conditions given in Theorem 4 [8].
3. Method3: uses the conditions given in Theorem 4.1 [20].
4. Method4: uses the conditions given in Theorem 1 [23] .

For each switched system, we try to compute a stabilizing output feedback control
using four methods. By using the matlab LMI Control Toolbox to check the feasibility of
the LMI conditions, we introduce a counter (Success Method1, Success Method2, Success
Method3 and Success Method4) which is increased if the corresponding method succeeds
in providing an output feedback stabilizing control. One can see that our proposed static
feedback synthesis conditions given in 3.3 reduce significantly the conservatism. The table
1 summarizes the obtained results.

4.2. Numerical example. To illustrate the applicability of our approach, we present
a numerical example. This example provide a comparison of our result to the result
presented in [8, 20, 23]. This example show that our synthesis method works successfully
in situations where the methods developed in [8, 20, 23] do not. Therefore, we can consider
these approaches as alternative approaches for the class of switched systems of the form
(1) under arbitrary switching law.
Consider the discrete-time switched system (1) with 2 modes described by the following

matrices:

A1 =


0.4970 0.1913 0.9737 0.8015
0.0547 0.7246 0.7045 0.2062
0.7727 0.8047 0.9046 0.6584
0.8727 0.7566 0.4210 0.0013



A2 =


0.1563 0.9613 0.7349 0.4966
0.5578 0.9513 0.2226 0.0070
0.3162 0.7963 0.3999 0.0919
0.7384 0.4003 0.2517 0.6022


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Table 1. Numerical evaluation

Switched System Success N=2
n=2 Method1 51
m=1 Method2 45
p=1 Method3 32

Method4 45
n=3 Method1 99
m=2 Method2 97
p=2 Method3 92

Method4 97
n=4 Method1 36
m=2 Method2 31
p=2 Method3 4

Method4 31
n=5 Method1 36
m=3 Method2 13
p=2 Method3 1

Method4 28
n=6 Method1 27
m=3 Method2 10
p=3 Method3 0

Method4 9
n=7 Method1 20
m=4 Method2 1
p=3 Method3 0

Method4 1

B =


1 0
0 1
0 0
0 0


C1 =

[
0.9820 0.3476 0.4437 0.5295
0.4123 0.6682 0.8399 0.2571

]
C2 =

[
0.8324 0.4655 0.0857 0.7154
0.2935 0.0455 0.5131 0.0354

]
Note that both A1 and A2 are unstable. For this switched system, the methods in [8, 20,
23] does not allow to compute a switched SOF controller. The condition in Theorem 3.3
provides the following controller gains:

K1 =

[
−0.8862 −0.6978
−0.5793 −1.1387

]
K2 =

[
−0.2636 −1.0142
−0.3506 −0.1892

]
We allow the system to switch arbitrarily between these two modes according to the
switching rule σ(k). For a switching sequence as depicted in Figure 2, an initial condi-

tion x(0) = [−0.4 − 0.3 − 0.2 0.1]T , we can see in Figure 1 that by using our switched
controller synthesis procedure, that the trajectory of the closed-loop system is stable.
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Figure 1. States of the switched system in the closed-loop
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5. Conclusion. In this paper, the problem of synthesis of switched SOF controller for
discrete-time switched linear systems under arbitrary switching laws has been investi-
gated. Our main contribution consists in providing a new sufficient LMI conditions for
the SOF control method for a particular class of switched systems. A numerical evalua-
tion is presented to illustrate the effectiveness of the proposed approach. As shown in the
numerical example, our method can work successfully in situations where the methods in
[8, 20, 23]. In addition, we will consider the extension of our result in the future for the
studying of robust SOF control.
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