International Journal of Innovative
Computing, Information and Control ICIC International ©)2012 ISSN 1349-4198
Volume 8, Number 2, February 2012 pp. 1299-1312

SOME APPLICATIONS OF S.T. (SHAFIABADY-TESHNEHLAB)
EVOLUTIONARY OPTIMIZATION ALGORITHM

NIUSHA SHAFIABADY'!, MOHAMMAD TESHNEHLAB? AND MOHAMMAD ALI NEKOUI?

1Scientific Association of Mechatronics
Department of Mechatronics Engineering
Science and Research Branch
Islamic Azad University
P.O.Box 14515/755, Tehran 1477893855, Iran
nshafiabady@yahoo.com

2Department of Electrical Engineering
K.N.T University of Technology
470 Mirdamad Ave. West, P.O.Box 15875-4416, Tehran 1969764499, Iran
{ teshnehlab; manekoui } @eetd.kntu.ac.ir

Received November 2010; revised March 2011

ABSTRACT. Considering that optimization methods firmly affect the error and the dura-
tion of solving a problem in science and engineering fields, applying a quick and efficient
algorithm, suitable for the relevant problem is of much importance. This paper briefs a
number of applications of a new evolutionary optimization algorithm, first presented by
N. Shafiabady and M. Teshnehlab (referred hereinafter as “S.T.” algorithm), which is
efficient and quick in comparison with other popular conventional algorithms. The opti-
mal solutions to a problem via S.T. algorithm, are found remarkably fast due to that the
said algorithm is appropriate for online applications in compare with other conventional
algorithms.

Keywords: S.T. evolutionary optimization algorithm, Genetic algorithm, Particle swarm
optimization

1. Introduction. Optimization algorithms have played important roles in vast areas of
science, engineering and technology. The many different kinds of optimization algorithms
have been categorized in various approaches. Evolutionary optimization algorithms —
one of the above categories — are suitable for many applications. For example, aircraft
traffic control has been modeled and handled by a constraint multi-objective optimization
problem [10]. Evolutionary algorithms have also been widely used as an aid to neural
networks and fuzzy systems in control applications [9,11,13].

PSO and GA are two of the most efficient and well-known optimization algorithms that
numerous well-known optimization algorithms have been founded upon [1,12,14,15]. GA
is an evolutionary optimization algorithm whereas PSO is a kind of swarm intelligence
optimization algorithm. These two optimization algorithms have proven to be powerful
tools applicable on nonlinear problems by which the optimal values and nonlinear pa-
rameters, which are quite complicated or even impossible to derivate via conventional
methods, are derived. Since GA and PSO derive the solutions through large numbers of
iterations, the long run-time makes it impossible for these algorithms to be applied on
online applications whereas the optimization power of these algorithms is extensive and
they are applicable to vast fields of science and engineering. The mentioned problem led
the authors of this paper to a new evolutionary optimization algorithm which is capable
of carrying out the optimization task as well as GA and PSO through much less number

1299

1300 N. SHAFIABADY, M. TESHNEHLAB AND M. A. NEKOUI

of iterations. As indicated herein above some applications of S.T. evolutionary optimiza-
tion algorithm, first initiated by N. Shafiabady, have been indicated and compared with
common algorithms like PSO and GA. The results that have been derived using GA, PSO
and S.T. through the problems that have been solved, show that S.T. has had a faster
performance and has been able to do its task via less number of iterations in comparison
with the other methods.

This paper is organized as follows. Section 2 represents S.T. algorithm, Section 3
shows the solved problems and the related simulation results and Section 4 represents the
conclusion.

2. S.T. Evolutionary Optimization Algorithm. The initial idea of S.T. algorithm
was originated from the classic perspective of propagation of sound waves through the
medium of air molecules spreading randomly in atmosphere of the earth, although it is
not its exact simulation. Consider a three dimensional closed system consisting of a sound
producer and air as medium. The sinusoidal-spherical shaped sound waves are propagated
in three dimensions of air medium when the molecules of the index element of air adja-
cent to the sound producer are vibrated respectively due to the vibration of the sound
producer and the said element collides randomly with other layers of the medium. Hence-
forth the motion of the sound layers propagates and the energy of the sound producer is
transmitted as a state wave function to all the directions in the system. This idea led to
a new evolutionary optimization algorithm named S.T., although it is not its exact sim-
ulation. The structure of this algorithm is similar to the other evolutionary optimization
algorithms. The pseudo code of S.T. algorithm is given below.

Algorithm 2.1. Pseudo code of S.T. Algorithm

e Produce the initial population (called particles) with the initial velocities and posi-
tions.

o Fori=1: Maximum_iteration

e {Forj=1: Number_of-population

o {Calculate the FITNESS function’s value
° Decide which particle has had the best performance
. Update the population’s velocity and position } }

The initial population is produced giving each particle a weighting factor a. Figure 1
shows the initialization of the method. The particles have been produced with different
positions randomly and each of the produced particles has a random velocity. The initial
velocity of a sample particle is known as v(;) that is a combination of v, and v,.

If the acceleration of the particle (due to Y F' exerted on it by the environment) during
a time interval At is a(, then the velocity function will be as mentioned in (1). This

v

FIGURE 1. The initial particles with different positions

SOME APPLICATIONS OF S.T. EVOLUTIONARY OPTIMIZATION ALGORITHM 1301

method can be symbolized by the following relations.

aix = random_number X 1,

Viy (t + 1) = Q;Vsy (t) + aiyAt

a;y = random_number X 1;, (1)
l‘iy(t + 1) = l'ly(t) + Uiy(t + 1) X BAt

X; = real <\/xw(t + 1) + a4 (t + 1))

Here i denotes the particle number and there can be n genes in each of them denoting the
number of the parameters of the target vector to be found. Each particle has a velocity
in two directions that are shown by v, and v,. Then the new position of the particle is
decided, again in two directions by z, and z,. The final new value of the particle is X
that is decided according to its position in both directions. In the mentioned relations,
BAt =1 and [is a constant value.

The weighting factor a; that symbolizes the mass of each particle, which is a random
uniform number that is produced only once, and represents the virtual weight given to
each particle that remains unchanged during the run of the algorithm. Its proposed best
bound is given in (2). This bound is found by ‘try and error’.

—5<a; <5h (2)

The other parameter is v that is another random uniform number applied to produce
the random force. Its best bound is given in (3) that is found by ‘try and error’ respectively.

—25 <1 <25 (3)

The last parameter is At that its best value is proposed to be At = 0.1 using ‘try and
error’. Here ¢t symbolizes the time.

The parameters mentioned above are free from the optimization model and by changing
them no improvements were shown in the results.

Like PSO algorithm, the calculated velocities are assumed to have a bound and if
they exceed this bound that is [—5, 5] in most of the problems, they have to be cut and
put in the mentioned limits. This does not let our particles move wherever they wish
without supervision. For most of the applications including the applications that have
been elaborated in this article, the best value for this bound is [—5, 5] that is achieved by
‘try and error’. This bound is changeable according to the optimization problem. This
works as a tuning device and if we want to let the particles move more freely it can be
defined to have a bigger range.

It is to be mentioned that the X produced by X = real (\/xm(t +1) + a2, (t + 1)) can

only be positive but the optimal values might be negative. In order to solve this problem
this piece of code has to be used after determining X each time.

Algorithm 2.2. Pseudo code for making the genes in each particle negative or positive

e Produce a Random_Number
o for Gen=1: Max_Gen
{if Random_Number > 0.5
{a=-1;
else
a=1}
X (Particle, Gen) = a x X (Particle, Gen)}

1302 N. SHAFIABADY, M. TESHNEHLAB AND M. A. NEKOUI

This makes the particles be able to cover the negative space too. This part can be
omitted if the search space does not include negative numbers.

2.1. Simulation results comparing S.T. with popular optimization algorithms.
To show the optimization ability of S.T. algorithm, it has been applied on some bench-
mark optimization problems and the results have been compared with GA and PSO. The
simulations are done using MATLAB.

The benchmark optimization functions are shown in (4)-(7). The related figures of the

test functions are shown in Figures 2-5.
Schwefel (f;):

n

o= [nom (V)

7 € [-500, 500]" (4)
min f, (Z*) = f1(420.9687) = —418.9829n

FIGURE 2. The shape of Schwefel function

Rastrigin (fs):

NE

f2=> (z? — 10 cos(2rz;) + 10)
7€ [25.12,5.12]"

min f5(7*) = f2(6) =0

0
—
ot
~

F1GURE 3. The shape of Rastrigin function

SOME APPLICATIONS OF S.T. EVOLUTIONARY OPTIMIZATION ALGORITHM 1303

Rosenbrock (f3):

i € [—2.048,2.048]" (6)
min f3(2*) = f3(f) =0

etridi)
ety e
i, g
) L
S

FI1GURE 4. The shape of Rosenbrock function

Zakharov (fy):
fo=300 2 + (301 1/2im:)* + (3] 1/ 26;)"
7 € [-10,10]" (7)
min f4(#*) = f4(0) =0

FIGURE 5. The shape of Zakharov function

The simulation results using two variables that represents T = [:Ul :Ug] for the above-
mentioned functions’ minimum points are given in Table 1. This table shows the best,
worst and the mean of the results in ten different runs for the three algorithms that have
been compared with each other. Table 2 shows the number of iterations that are used
for each run of the algorithms accordingly. The results show that S.T. has been able to
derive the minimum point in apparently less number of iterations than the other methods
and this shows that S.T. algorithm is clearly faster than the conventional methods.

In order to show the efficiency of the algorithm in higher search space dimensions the
same functions have been simulated using ten variables and its related results are given

1304 N. SHAFIABADY, M. TESHNEHLAB AND M. A. NEKOUI

TABLE 1. The comparison of results of the algorithms’ runs consisting of
two variables

Mean of the Results

Test Best Results Worst Results
Function (10 Runs)
GA PSO S.T. GA PSO S.T. GA PSO S.T.
Schwefel |—837.9658|—837.9658|—836.6151(—747.4487|—717.0748|—769.9438|—828.9139| —798.9427 |—829.2813
Rastrigin | 1.2403e-6 0 0 0.009 1.0100 0 0.0010 0.6000 0

Rosenbrock| 0.7624 0.7624 0.7750 5.2256 0.7716 2.1232 1.8833 0.7634 1.4824
Zakharov | 0.0202 |[1.2737e-8| 0.0383 0.2263 0.0020 0.2284 0.1259 | 2.4139e-4 | 0.1060

TABLE 2. The comparison of the number of iterations of the algorithms’
runs consisting of two variables

Number of Number of Number of Number of
Test Function Iterations for Iterations for Iterations for)
GA PSO S.T. population
Schwefel 100 100 5 20
Rastrigin 100 100 2 20
Rosenbrock 100 100 10 20
Zakharov 100 100 5 20

TABLE 3. The comparison of results of the algorithms’ runs consisting of
ten variables

Mean of the Results

Test Best Results Worst Results
Function (10 Runs)
GA PSO S.T. GA PSO S.T. GA PSO S.T.
Schwefel [—4.1898e3|—4.1411e3|—4.2636e3|—3.7161e3|—5.1143e3|—3.9153e3|—3.9767e3| —4.617e3 |—4.2512e3
Rastrigin |1.6026e-4 | 3.3530 0 8.4816e-4 | 18.7894 0 3.5071e-4| 11.3623 0

Rosenbrock| 3.8120 10.5696 | 16.8615 6.0437 | 61.4309 | 38.0288 4.4816 34.9817 | 30.5677
Zakharov | 0.3134 0.0581 0.4848 0.6007 0.4881 0.9731 0.4377 0.2300 0.7687

TABLE 4. The comparison of the number of iterations of the algorithms’
runs consisting of ten variables

Number of Number of Number of Number of
Test Function Iterations for Iterations for Iterations for)
GA PSO S.T. population
Schwefel 800 400 10 20
Rastrigin 400 600 10 20
Rosenbrock 700 800 300 20
Zakharov 100 100 10 20

in Table 3 for ten different runs. Table 4 shows the number of iterations that are applied
to achieve the results. As the results show, S.T. is able to derive the minimum point
in incomparably less number of iterations that is especially clear in the environments
with higher dimensions in comparison with popular algorithms like GA and PSO. This
represents S.T. as a fast optimization algorithm that can be used when computation time
is an important issue.

As it was mentioned before the velocities’ bounds work as a tuning device to control
the velocities. For most of the applications including the applications that have been
elaborated in this article, the best value for this bound is [—5, 5] that is achieved by ‘try
and error’.

SOME APPLICATIONS OF S.T. EVOLUTIONARY OPTIMIZATION ALGORITHM 1305

The part regarding generating negative numbers in Rosenbrock function has been
deleted as it is not necessary.

3. The Problems and Simulation Results. Here a number of optimization problems
are introduced and solved with GA, PSO and S.T. and their results have been compared
with each other. The represented problems are goal programming, niching, TSP and multi
objective optimization problems. All the programs are written using MATLAB software.

3.1. Goal programming problem. In order to compare S.T. with GA and PSO, these
algorithms have been applied on another group of optimization problems that is goal
programming problem. Goal programming is an approach to optimize one or a number
of functions with the ability to define the desired priorities.
The general form of goal programming problem is given in (8) [3].
g mo
Min zy =Y Y P(widf + wpdy)
k=11=1
st fi(@)+d —df =b; i=1,2,...,mg
gi(z) <0 i=mo+1,...,my
=0 i:m1+1,...,m2
SdF >0 i=1,2,...,mg

(8)

Here P is the priority of the goals, d;’, d; are the deviations from the i goal, wy;, w;

are the weights, f; is the objective constraint that represents the main goal, g;, h; are
equality and inequality constraints, b; is the objective value and z is the result vector [3].
An example of the goal programming problem is shown in (9) [3].

Min {di,2d; +dj}

s.t. ziwe +dy —df =16 9
(x1 =3+ a3 +dy —dy =9)
T+ T +dy —df =6

The three objective constraints have to be satisfied with respect to the mentioned
priorities. The solutions to this problem using GA, PSO and S.T. are shown in Table 5.
The last row of the table shows the desired value and as the given solutions show S.T.

TABLE 5. The comparison of different methods for goal programming problem

Result vector & = [x1 2] Z=1[3.1924 3.1030]
GA Deviations from the 15t and the 224 constraints
B {0, 30.4491}
{df,2d; +d3’}
Number of iterations 300
Result vector & = [x1 3] 7 =[3.0588 3.0557]
PSO Deviations from the 15t and the 224 constraints
{0, 30.3339}
{d3,2dy +d3'}
Number of iterations 300
Result vector & = [x1 3] 7 = {3.026 2.9708}
S.T. Deviations from the 15t and the 2" constraints
{0, 32}
{di,2dy +d3'}
Number of iterations 30
The Desired Value Result vector & = [x1 2] Z =[3.01858 2.98136]

1306 N. SHAFIABADY, M. TESHNEHLAB AND M. A. NEKOUI

has been able to achieve the goal better than GA and PSO in a friction of 0.1 numbers
of iterations. The results represent that S.T. has been both fast and efficient.

3.2. Niching problem. Multi-solution problems are the problems with more than one
optimum point. Niching is an algorithm for solving these kinds of problems. As niching
points to the problems with multiple solutions as desired results, one of the parameters
that are to be defined is the number of the optimal solutions or the number of niches that
is q. Figure 6 shows the search space that is divided into five niches that are shown as
Ay,...,A5 in the figure and five different niche radiuses that are labeled by R;,... ,R5 in
the search space.

Rl RZ R3 R4 R5
4+—pr 4> 44— <+ <>

Fr t f 1

Ay Ay Ay Ay As

FiGURE 6. Different niches with different niche radiuses

The niche radius is defined in this way.

1 n
r= 5 Z (xk,max - xk,min)Z (10)
k=1
r
11
7 (1)
Here n denotes the problem’s dimension. At first r is calculated and then p that is the

niche radius is derived for each dimension. The niching algorithm using GA is imple-
mented as mentioned below.

Algorithm 3.1. Pseudo code of Niching Algorithm

e Produce every niche.
e For every niche [1, el q] produce the next generation:
— Choose the first parent as the best individual of the current niche.
— Choose the second parent as the second best individual of the current niche.
— Apply crossover and mutation.
— Select niche_size of the population by grouping the population into q niches using
DPS algorithm.
— If the produced population is smaller than niche-size then produce the rest of the
population randomly in the initial bounds.

p:

The Dynamic Peak Set (DPS) Algorithm is mentioned below and it is used for grouping
the produced population [4].

Algorithm 3.2. Pseudo code of DPS Algorithm

e Define ns = number_of_seen_peaks

SOME APPLICATIONS OF S.T. EVOLUTIONARY OPTIMIZATION ALGORITHM 1307

o While all the population is not seen to
— If chromosome(i) is within the radius of peak ns
x Add this Chromosome to DPS(ns)

The problems that are solved using GA, PSO and S.T. are four benchmark problems
with five optimal solutions as mentioned here.

Max f5(z) = sin®(5mx)

z € [0,1] (12)
The answer to this problem is the vector © = [0.1 0.3 0.5 0.7 0.9].
Another problem is given in (13).
Max fg(z) = e 2105 (*55Y) " sin® (57x) (13)
z € [0,1]
The answer to this problem is the vector © = [0.08 0.25 0.45 0.68 0.93].
The third problem is shown in (14).
Max fr(z) = sin® (57r (:r;% - 0.5)) : (14)
z € [0,1]
The answer to this problem is the vector ¥ = [0.1 0.3 0.5 0.7 0.9].
The fourth problem is given in (15).
Max fg(r) = e 2108 (758") ¢ sin® (57r (l‘% - 0.5)) : (15)

z € [0,1]

The answer to this problem is the vector & = [0.08 0.25 0.45 0.68 0.93].

Table 6 shows the simulation results of the four test functions. The results show that
all the algorithms specifically S.T. have derived the answer properly and S.T. has been
able to achieve the results in distinctively less numbers of iterations.

In order to demonstrate the results completely, the related figures are also shown in the
following Figures 7-14. Figure 7 shows the simulation result of the first function using
GA and Figure 8 shows the same result using S.T.

1 T T T - T T
asf] o;_ ||"r|"- | ||ﬂ|| | ||ﬂ|| ||" ||"i|
o8 08f / \ ['- \ | I
07} ol 11 || [|! || I
i
o8r osf | L / ‘ | |
A
> oo | / e || |
02r | | [| |
- | R
Hr l lk..) 01F II|I |II |III |III .' l\ Eil]'rll / I'.
% 02 0.4 06 08 1 12 1.4 old L/ Lo/ L A W Ly fa
0 02 04 0.6 08 1 1.2 1.4
FIGURE 7. The result of f5(z) FiGurReE 8. The result of

with GA f5(z) with S.T.

1308 N. SHAFTABADY, M. TESHNEHLAB AND M. A. NEKOUI
TABLE 6. The comparison of different methods for niching problem
GA Output vector Z=1[0.1120 0.2843 0.4991 0.6980 0.8990)]
[terations 100
f5() o | Output vector | 7=[0.1024 0.2082 0.5058 0.7009 0.9015]
[terations 3
Desired output vector Z£=1[0.1 0.3 0.5 0.7 0.9]
GA Output vector 7 =1[0.1104 0.3015 0.4948 0.6968 0.8977]
[terations 100
fo(@) ST Output vector Z =[0.1068 0.3046 0.5022 0.6991 0.9065]
[terations 4
Desired output vector £ =1[0.08 0.25 0.45 0.68 0.93]
GA Output vector Z =1[0.0981 0.2592 0.4554 0.6962 0.9332]
[terations 100
fr(x) o1 | Output vector | 7=[0.0792 0.2423 0.4474 0.6877 0.9371]
[terations 6
Desired output vector Z£=1[0.1 0.3 0.5 0.7 0.9]
GA Output vector Z =[0.1047 0.2443 0.4525 0.6680 0.9371]
[terations 100
fs() o | Output vector | 7=[0.0778 0.2520 0.4445 0.6963 0.9403]
[terations 9
Desired output vector Z =[0.08 0.25 0.45 0.68 0.93]

The simulation results regarding the second problem using GA and S.T. are given in

Figures 9 and 10.

1

[a5-] &

0BF

07 ¢

0BF

D5F

D4F

D3f

02F

01F

J\

09t |3II||
08t || |
0.7F | | | 4

| | ('
“TIl]

osf | | |

./ ||1 ! \l |'!E)

o.n:l | ‘ |

02 04

06

o8 1 12

FIGURE 9. The result of fq(x)

with GA

FIGURE 10. The result of
fe(z) with S.T.

Figures 11 and 12 show the simulation results using GA and S.T. for the third problem.

Figures 13 and 14 show the simulation results using GA and S.T. for the fourth problem.

Finally, we can conclude that S.T. algorithm has been able to achieve the results in less
number of iterations and with a good accuracy.

SOME APPLICATIONS OF S.T. EVOLUTIONARY OPTIMIZATION ALGORITHM 1309

FIGURE 11. The result of FiGUurRE 12. The result of
f7(z) with GA fr(z) with S.T.

FIGURE 13. The result of fs(x) FIGURE 14. The result of
with GA fs(z) with S.T.

3.3. Traveler’s salesman problem. Traveler’s Salesman Problem (TSP) is an example
of discrete form of optimization problems. TSP is an NP-complete problem and has been
solved by different varieties of optimization algorithms and its aim is to find a minimum
cost Hamiltonian cycle in a complete undirected graph [5-8]. Hamiltonian cycle is a cycle
that traverses all the nodes with the minimum cost.

In order to compare GA, PSO and S.T. in solving a discrete optimization problem
with each other, an example of TSP problem has been solved with all algorithms and the
results have been compared with each other. The complete undirected graph is shown in
Figure 15.

Table 7 shows that all the algorithms have achieved the Hamiltonian cycle that traverses
the nodes (1,3,4,2,1). Twenty population members have been used for all the algorithms.
As it is seen here, S.T. has been able to perform well in less numbers of iterations.

The demonstrated results show that S.T. has been able to derive the solution in a
friction of 0.03 numbers of iterations in compare with GA and PSO for solving this
discrete problem.

1310 N. SHAFIABADY, M. TESHNEHLAB AND M. A. NEKOUI

FIGURE 15. An example of a graph for solving TSP problem

TABLE 7. The comparison of different methods for solving TSP problem

GA PSO S.T.
MinimumHamiltonianlterationsMinimumHamiltonianlterations MinimumHamiltonianlterations
Cost Cycle Cost Cycle Cost Cycle
18 (1,3,4,2,1) 100 18 (1,3,4,2,1) 100 18 (1,3,4,2,1) 3

3.4. Multi-objective problem. Multi-objective optimization problems are the prob-
lems with more than one goal and these goals are in a way contradictory with each other.
This means that one cannot add all the goals and extract a single goal from them. This
is a challenge in optimal decision making that can be mentioned as one of the human’s
concerns in everyday life.

The general form of multi-objective optimization problems is shown in (16).

Max {1 = fi(@), 22 = Fld)o.o. 20 = £} ”
st. g(B)<b; i=1,...,m

Here ¢ objectives with contradictions are present and with m arbitrary constraints [3].
The aim is finding a pareto solution that is a set of the best solution that best satisfies
all the conditions and constraints in compare with other sets of solutions.
One of the test beds of these kinds of optimization problems is the problem mentioned
in (17) [3].
Min fi =2% fo=(z—2)
st. z€R
GA, PSO and S.T. have been applied on this problem to find the pareto solution. The
simulations are done using 200 iterations for all the algorithms. For GA the crossover
rate is assumed to be 0.3 and the mutation rate is assumed to be 0.1. For S.T. algorithm
the velocities’ bound is assumed to be [—4, 4] and this is achieved by ‘try and error’. The
three algorithms’ pareto solutions are shown in Figure 16 that is the same as the results
given in [3]. This figure shows that all three algorithms have been able to find the pareto
solution efficiently all with identical performances.
Now in order to compare the diversity of the solutions, the resulted pareto solution
by each algorithm is shown in a separate figure respectively. Figure 17 shows the pareto

(17)

SOME APPLICATIONS OF S.T. EVOLUTIONARY OPTIMIZATION ALGORITHM 1311

solution found by GA, Figure 18 shows the solutions found by PSO and Figure 19 shows
the pareto solution found by S.T. If all the solutions are drawn together in one figure
the resulting pareto solutions will be overlapped by the others exactly as demonstrated
in Figure 16.

The pareto Solutions The pareto Solutions
4 451
O GA
350 o PSO 44
+ ST
3 % 3.5¢
E
2.5—%
o 2F e%
150 &
%
kN
0.5 'y
T o o
0 . oy o 0 . 2, g
a 1 2 3 4 5 6 7 a 1 2 3 4 5 6 7
f1 f1
FIGURE 16. The pareto solu- FIGURE 17. The pareto solu-
tion for three optimization al- tion for GA
gorithms
The pareto Solutions The pareto Solutions
3 el

2.5F

2
ra

0.5

@ ” %OQ’ O og
0 =N 0 PO@ VO |
a 0.5 1 15 2 2.5 3 a 0.5 1 1.5 2 2.5 3 35 4
f1 f1
FIGURE 18. The pareto solu- FIGURE 19. The pareto solu-
tion for PSO tion for S.T.

These results show that all the algorithms have worked efficiently and as it can be
observed by the results, S.T. algorithm has been able to find the pareto solution as well
as the other algorithms. Regarding the diversity of the represented solutions, it can be
seen that S.T. has been able to derive the results with better diversity than the other
methods, considering the results shown in Figures 17-19, so it can be proposed as a good
tool for solving multi-objective problems.

4. Conclusion. As the simulation results of the presented problems show, S.T. has been
able to have better or the same performance identical with powerful and popular algo-
rithms like GA and PSO in much less numbers of iterations. This property has been

1312 N. SHAFIABADY, M. TESHNEHLAB AND M. A. NEKOUI

demonstrated in niching, goal programming and TSP problems. The mentioned property
enables S.T. to be used for data transfer in communication networks and best path’s sig-
nification in metropolitan travels. The results that have been achieved in multi-objective
optimization problem show that S.T. is able to derive the solutions with better diversity.
It has also been shown that if the dimension of the problem is increased as in the presented
benchmark optimization functions, S.T. will be able to derive the solutions in distinctively
less numbers of iterations. This allows S.T. to be able to perform the optimization task
even for online tasks that is a good achievement as one of the deficiencies of most of the
evolutionary optimization algorithms is their long run time. It has shown that S.T. is an
optimization algorithm that is efficient and fast and can be used for different optimization
and engineering applications.

REFERENCES

[1] A. P. Engelbrecht, Fundamentals of Computational Swarm Intelligence, John Wiley & Sons, 2005.
[2] Y. Shi and R. C. Eberhart, Fuzzy adaptive particle swarm pptimization, Proc. of the Congress on
Evolutionary Computation, Seoul, South Korea, pp.101-106, 2001.

3] M. Gen and R. Cheng, Genetic Algorithms and Engineering Optimization, John Wiley & Sons, 2000.

[4] O. M. Shir and T. Back, Dynamic niching in evolution strategies with covariance matrix adaptation,
Proc. of the IEEE Congress on FEvolutionary Computation, pp.2584-2591, 2005.

[5] L. Wang, A. A. Maciejewsi, H. J. Siegel, V. P. Roychowdhury and B. D. Eldridge, A study of five
parallel approaches to a genetic algorithm for the traveling salesman problem, Intelligent Automation
and Soft Computing, vol.11, no.4, pp.217-234, 2005.

[6] M. Barth, Approzimation of the Traveling Salesman Problem Utilizing a Genetic Algorithm in a
Parallel System, 2009.

[7] M. Bhattacharyya and A. K. Bandyopadhyay, Comparative study of some solution algorithms for
traveling salesman problem using genetic algorithms, Cybernetics and Systems, vol.40, no.6, pp.490-
507, 20009.

[8] X. Shi, Y. Liang, H. Lee, C. Lu and Q. Wang, Particle swarm optimization-based algorithms for
TSP and generalized TSP, Information Processing Letters, vol.103, pp.169-176, 2007.

[9] S-F. Lin and Y.-C. Cheng, Two-strategy reinforcement evolutionary algorithm using data-mining
based crossover strategy with TSK-type fuzzy controllers, International Journal of Innovative Com-
puting, Information and Control, vol.6, no.9, pp.3863-3885, 2010.

[10] Y. Guo, X. Cao and J. Zhang, Constraint handling based multiobjective evolutionary algorithm
for aircraft landing scheduling, International Journal of Innovative Computing, Information and
Control, vol.5, no.8, pp.2229-2238, 2009.

[11] G.-R. Yu and L.-W. Huang, Design of LMI-based fuzzy controller for robot arm using quantum
evolutionary algorithms, ICIC Express Letters, vol.4, n0.3(A), pp-719-724, 2010.

[12] C. Liu, An evolutionary algorithm for solving dynamic nonlinear constrained optimization, ICIC
Ezpress Letters, vol.4, no.3(B), pp.1039-1044, 2010.

[13] X. Wang, Y. Cheng and W. Sun, A proposal of adaptive PID controller, China University Mining
& Technology, vol.17, no.1, pp.40-44, 2007.

[14] M. A. Montes de Oca, T. Stutzle, M. Birattari and M. Dorigo, Frankenstein’s PSO: A composite
particle swarm optimization algorithm, IEEE Transactions on Evolutionary Computation, vol.13,
no.5, pp.1120-1132, 2009.

[15] N. Noman and H. Iba, Accelerating differential evolution using an adaptive local search, IEEE
Transactions on Fvolutionary Computation, vol.12, no.1, pp.107-125, 2008.

