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ABSTRACT. In this paper, we extend the set-membership (SM) adaptive filtering ap-
proach to the various affine projection (AP) adaptive filter algorithms to propose the
computationally efficient algorithms. Based on this, the SM-APA, SM selective regressor
APA (SM-SR-APA), SM dynamic selection APA (SM-DS-APA) and SM selective par-
tial update APA (SM-SPU-APA) are established. The SM-SR-APA reduces complexity
by selecting a subset of input regressors at every iteration. In SM-DS-APA, the dynamic
selection of input vectors is used during the adaptation. The filter coefficients are par-
tially updated in SM-SPU-APA. Also by combination of SM and SPU approaches, the
SM-SPU-SR-APA and SM-SPU-DS-APA are introduced. We demonstrate the good per-
formance of the presented algorithms for system identification, line and acoustic echo
cancellation applications.

Keywords: Adaptive filter, Affine projection, Set-membership, Selective regressor, Par-
tial update

1. Introduction. Most popular algorithms in adaptive filter signal processing are least
mean squares (LMS) of Widrow and Hoff and normalized least mean squares (NLMS)
algorithms [1]. These algorithms have low computational complexity, simplicity, robust-
ness and slow convergence speed especially for correlated input data. To overcome the
deteriorated convergence speed of LMS and NLMS for correlated input data, Ozeki and
Umeda [2] developed the basic form of an affine projection algorithm (APA) using affine
subspace projections [3,4]. While NLMS updates the weights based only on the current in-
put vector, APA updates the weights based on current and previous input vectors. Affine
projection algorithm (APA) is a useful family of adaptive filters which has numerous
applications in digital signal processing [5-9].

To improve the performance of APAs, different APAs were presented in the literature.
Especially, the computational complexity of the classical APA will be large for some appli-
cations such as line and acoustic echo cancellation. In these algorithms, a large number
of filter coefficients will be needed to achieve good performance. Therefore, the large
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computational complexity is the main problem in these applications. To reduce the com-
putational complexity, the selective regressor APA (SR-APA) was presented in [10]. In
this algorithm, the optimal selection of input regressors was derived by comparing the cost
functions based on minimum disturbance. In [11], a novel APA which dynamically selects
input vectors (DS-APA) in order to improve convergence performance was established.
Also, the selective partial update APA (SPU-APA) was presented in [12] to reduce the
computational complexity. In this algorithm, the filter coefficients are partially updated
at each iteration. It has been shown that the SPU-APA has close performance to ordi-
nary APA. As with many other adaptive filter algorithms, the step-size determines the
tradeoff between steady-state mean square error (MSE) and convergence rate in all these
algorithms.

Having fast convergence, low steady-state MSE and low computational complexity at
the same time is highly desirable in adaptive filter algorithms. The set-membership nor-
malized LMS (SM-NLMS) is one of the algorithms that have these three features [13].
Based on [13], different SM adaptive algorithms have been developed. The SM affine
projection algorithm (SM-APA) [14,15], the SM binormalized data-reusing LMS (SM-
BNDRLMS) algorithms [16] and SM subband adaptive filters (SM-SAF) [17] are impor-
tant examples of this family of adaptive filters. Also in [17,18], the SM-SPU-NLMS and
SM-SPU-SAF were presented based on the combination of the partial updating and set-
membership filtering approaches. In this paper, we extend the SM filtering approach
to the various affine projection adaptive filters to establish the computationally efficient
algorithms with good convergence speed and low steady-state mean square error.

What we propose in this paper can be summarized as follows:

e Extension of the set-membership filtering approach of [14] to the SPU-APA and the
establishment of a novel SM-SPU-AP algorithm. This algorithm has low computa-
tional complexity, low steady-state mean-square deviation (MSD) and fast conver-
gence speed compared with SPU-APA.

e Extension of the set-membership filtering concept to the SR-APA and DS-APA, and
the establishment of a novel SM-SR-APA and SM-DS-APA. These introduced algo-
rithms have better performance than SR-APA and DS-APA. Also, these algorithms
have close performance to SM-APA.

e Combination of the SPU-APA with SR-APA and DS-APA to develop the SM-SPU-
SR-APA and SM-SPU-DS-APA. The reduction of computational complexity of these
proposed algorithms will be large due to SR, SPU and SM features.

e Demonstrating of the proposed algorithms in system identification, line and acoustic
echo cancellation applications.

We have organized our paper as follows. In the following section, we briefly review
the APA. In the next section, the SM affine projection algorithms are established. We
conclude the paper by showing a comprehensive set of simulations in system identification,
line and acoustic echo cancellation scenarios.

Throughout the paper, the following notations are adopted:

| . |: norm of a scalar;

I.II?>: squared Euclidean norm of a vector;

(.\)T: transpose of a vector or a matrix;

Tr(.): trace of a matrix.

2. Background on Affine Projection Algorithm. Figure 1 shows a typical adaptive
filter setup, where z(n), d(n) and e(n) are the input, the desired and the output error
signals, respectively. Here, h(n) is the M x 1 column vector of filter coefficients at iteration
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n. Now, define the M x K matrix of the input signal as

X(n) = [x(n),x(n—1),...,x(n - (K - 1))], (1)
and the K x 1 vector of desired signal as

d(n) = [d(n),d(n —1),...,d(n - (K = 1))]", (2)
where x(n) = [#(n), z(n — 1),...,2(n — M +1)]" is the input signal regressors and K is

a positive integer (usually, but not necessarily K < M). The APA can be derived from
the solution of the following optimization problem:

Jnin [h(n +1) - h(n)|” (3)

subject to d(n) = X" (n)h(n+1). Using the method of Lagrange multipliers to solve this
optimization problem leads to the following recursion:

h(n +1) = h(n) + pX (n)(X" (n)X(n))""e(n), (4)
where e(n) is the output error vector which is defined as

e(n) = d(n) — X*(n)h(n). (5)

3. Set-Membership Adaptive Filter Algorithms.

3.1. SM-APA. From [14], we know that the SM-APA minimizes Equation (3) subject
tohe ¥, N, N...NTY, g, where!

U,_i={heRM:|d(n—1i)—x"(n—i)h| <y} (6)

In [14], it has been shown that the suitable update equation for SM-APA can be stated
as

h(n +1) = h(n) +X(n)(X"(n)X(n)) " qa(n)e(n) (7)
where q = [1,0,...,0]T is K x 1 column vector and «(n) can be obtained from Equation
(8).

1— L if le(n)| >~
a(n) = le(n)] : (8)
0 otherwise

It is important to note that the SM-NLMS in [13] and SM-BNDR-LMS in [16] can also
be established when K =1 and K = 2 respectively.
l d(n)

x(n) h(n) y(n) &\’(-.(n]

FI1GURE 1. Prototypical adaptive filter setup

!The set U, is referred to as the constraint set, and its boundaries are hyperplanes. Also, v is the
magnitude of the error bound.
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3.2. SM-SPU-APA. To reduce the computational complexity of SM-APA, the approach
of SM filtering is extended to SPU-APA. By partitioning the input signal vector and the
vector of filter coefficients into B blocks each of length L which are defined as?

x(n) = [x] (n),x3 (n), ..., xp(n)]" (9)
h(n) = [b] (), b (n),.... WG ()], (10)

the SPU-APA solves the following optimization problem [12]
i [[p(n 1)~ b ()], (1)

subject to d(n) = X" (n)h(n + 1), where F' = {ji,J2,...,js} denote the indices of the S
blocks out of B blocks that should be updated at every adaptation. Again by using the
Lagrange multiplier approach, the filter vector update equation is given by
hp(n +1) = hp(n) + pXp(n)(Xp(0)Xr(n) "'e(n), (12)
where
Xr(n) = [X],(n), X}, (n),...,X], ()], (13)
is the SL x K matrix and X;(n) = [x;(n),x;(n —1),...,x;(n — K +1)] is the L x K
matrix. The indices of F' are obtained by the following procedure:
e Compute the following values for 1 < < B
Tr (X{ ()X (n)) (14)
e The indices of F' correspond to S largest values of Equation (14).
The SM-SPU-APA also minimizes ||hr(n+1) —hg(n)||? but subject to h € ¥,,N¥,, 1N
...N V¥, _ki1. This aim is obtained by following update equation
hp(n+1) =hp(n) + Xp((n)(X5(0)Xp(n) " qa(n)e(n). (15)

The SM-SPU-APA has close performance to SM-APA. Also the performance of the
introduced algorithm is better than SPU-APA. Furthermore, the complexity of SM-SPU-
APA is lower than SPU-APA, and SM-APA due to SPU approach and applying the
condition in Equation (8).

3.3. SM-SR-APA. In [10], another novel affine projection algorithm with selective re-
gressors (SR) which was called (SR-APA) was presented. The SR-APA, minimizes (3)
subject to

de, (n) = X, (n)h(n), (16)
where Gp = {iy,is,...,ip} denote the P subset (subset with P member) of the set
{0,1,...,K — 1},

XGP(n) = [X(Tl—il),X(Tl—i2),...,X(Tl—ip)], (17)
is the M x P matrix of the input signal and
dg,(n) = [d(n —i1),d(n —iy),...,d(n —ip)]", (18)

is the P x 1 vector of the desired signal. Using the method of Lagrange multipliers to
solve this optimization problem leads to the following update equation

h(n +1) = h(n) + 1Xe, (n)(Xg, (1) Xa, (1) g, (n), (19)
where
eqp(n) = dg,(n) — Xg, (n)h(n). (20)
The indices of G'p are obtained by the following procedure:
“Note that B = M/L and is an integer.
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1. Compute the following values for 0 < < K — 1
e*(n — 1)
lx(n = a)[*
where e(n) = [e(n),e(n — 1),...,e(n — (K — 1))]".
2. The indices of Gp correspond to P largest values of Equation (21).

It has been shown that the performance of SR-APA is better than APA with lower
computational complexity [10]. To improve the performance of SR-APA, we extend the
SM filtering to SR-APA to present more efficient algorithm with low steady-state MSD,
fast convergence speed and lower computational complexity than SR-APA. The SM-SR-
APA minimizes (3) subject to h € ¥, ; NV, , N...N ¥, , . Following the same
approach as SM-APA leads to the following update equation

h(n+1) =h(n) + XGP(n)(XgP (n)Xap(n)) tua(n —i)e(n — iy), (22)

where u = [1,0,...,0]7 is P x 1 column vector.

(21)

3.4. SM-DS-APA. In [11], the affine projection with dynamic selection of input vectors
was presented. In this algorithm, the optimum selection of the input vectors is derived by
the largest decrease of the mean-square deviation. This algorithm shows better perfor-
mance than APA. Furthermore, the complexity of this algorithm is lower than APA. Let
Gpm) = {i1,12,...,1ipm)} denote a subset with P(n) members of the set {0,1,..., K —1},
where P(n) is defined as the number of the selected input vectors at iteration n. Then,
the filter vector update equation of this algorithm which was called DS-APA for P(n) # 0
is given by [11]

h(n+ 1) = h(n) + 5Xgy,, (0) (XE, (10X (1)) ey, (). (23)

For P(n) = 0, the filter coefficients do not change. The indices of G p(,) correspond to
P(n) members of e(n — i) that satisfy the following condition:

e’(n —i) > 207/(2 - p) (24)

By applying the SM approach to DS-APA, we can establish the computationally efficient
algorithm with fast convergence speed and low steady-state error. The SM-DS-APA
minimizes ||h(n + 1) — h(n)||* subject to h € ¥, ;, N ¥, ;, N...NT Therefore,
the update equation can be stated as

h(n+1) =h(n) + XGP(n)(n)(XgP(n)

nflp(n) .

(M) Xap,, (n) T u(n)a(n —ie(n —ir),  (25)
where u(n) = [1,0,...,0]" is P(n) x 1 column vector.

3.5. SM-SPU-SR-APA and SM-SPU-DS-APA. By combining the SPU approach
with SR and DS affine projection, the SM-SPU-SR-APA and SM-SPU-DS-APA can be
established. In SPU-SR-APA, the filter coefficients are partially updated, the input re-
gressors are selected, and the adaptation is performed when the condition in Equation (8)
is true. In SPU-DS-APA, the filter coefficients are partially updated, the input regressors
are dynamically selected, and the adaptation is performed based on Equation (8). The
proposed algorithms have three features of SM adaptive filters. The SM-SPU-SR-APA
minimizes ||hgp(n + 1) — hp(n)|]? subject to h € ¥, ;, NV, ;, N...N Y, ;. Defining
SL x P input signal matrix through

le(n—il) le(n—ip)

XF,G’p (n) _ Xjo (TL— il) Xy (n_ iP) (26)

st(n — 21) A st(n — Zp)
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the update equation for the SM-SPU-SR-APA is given by
hp(n+1) =hr(n) + Xre,(n) (X}T;’Gp(n)XF,GP(n))*lua(n —iy)e(n — i) (27)

The SM-SPU-DS-APA can be established when Gp and u are replaced by Gp(,) and
u(n) respectively.

4. Computational Complexity. To compare the computational complexity of the pro-
posed algorithms, the number of multiplications, divisions and comparisons was calculated
for one iteration. Tables 1 and 2 show the peak computational complexity of different
SM-AP algorithms. For the SM-AP algorithms, the adaptation is related to the condition
in Equation (8). If the condition in Equation (8) always becomes true (which in prac-
tice it does not), then the computational complexity of SM-AP algorithms is similar to
the complexity of AP algorithms. However, the gains of applying the SM-AP algorithms
comes through the reduced number of required updates, which cannot be accounted for a
priori, and an increased performance as compared with different AP algorithms. In such
applications as line and acoustic echo cancellation, the adaptive filter may be required to
have a large number of coefficients in order to model the underlying physical system with
sufficient accuracy. Therefore, by applying the SPU and SR approaches, the reduction in
the computational complexity will be large for these applications. As we can see, the max-
imum number of multiplications in SM-SPU-APA is (K?+2K)SL+ K?*+ K? which is lower
than SM-APA. The complexity is depend on the number of filter coefficients to update
(SL) in SM-SPU-APA. Also, in SM-SR-APA, the maximum number of multiplications is
(P?+2P)M + P3+ P? which is again less than SM-APA. In SM-SR-APA, the complexity
is proportional to parameter P. When the parameter P increases, the complexity of SM-
SR-APA will be closed to SM-APA. The number of multiplication in SM-SPU-SR-APA,
and SM-SPU-DS-APA are (P?+2P)SL+ P3+P? and (P?(n)+2P(n))SL+ P3(n)+ P?(n)
respectively. In these algorithms, the complexity is proportional to number of filter co-
efficients to update and the number of recent regressors which is used at each iteration.
The number of comparisons based on heapsort algorithm [19] have been also presented
in Table 2. In the simulation results section, we present several applications to show the
good performance of SM-AP algorithms to decrease the overall computational complexity.

TABLE 1. The peak computational complexity of the SM-AP algorithms
for each iteration

‘ Algorithm ‘ Multiplications ‘ Divisions ‘
SM-APA (K> +2K)M + K® + K? K
SM-SPU-APA (K? +2K)SL + K? + K* -
SM-SR-APA (P?+2P)M + P>+ P? 2K
SM-DS-APA (P?*(n) +2P(n))M + P3(n) + P*(n) 2K
SM-SPU-SR-APA (P?+2P)SL + P3 + P? 2K
SM-SPU-DS-APA | (P?(n) + 2P (n))SL + P3(n) + P?*(n) 2K

5. Simulation Results. We justified the performance of the proposed algorithms by
several computer simulations in system identification, line and acoustic echo cancellation
scenarios.



A FAMILY OF SM-APA FILTER ALGORITHMS 1319

TABLE 2. The peak computational complexity of the SM-AP algorithms
for each iteration

| Algorithm  [Additional Multiplications| Comparisons
SM-APA - -

SNV-SPU-APA i Blog, S + O(B)
SMSR-APA | (K=P)M+ K +1 Klog, P+ O(K)
SM-DS-APA - Klog, P(n) + O(K)

SM-SPU-SR-APA| (K- P)M + K +1 Blog, S+ O(B) + Klog, P+ O(K)
SM-SPU-DS-APA - Blog, S + O(B) + K log, P(n) + O(K)

5.1. System identification. In this simulation, the unknown system has 32 randomly
selected taps (M = 32). The input signal z(n) is a first order autoregressive (AR) signal
generated by

z(n) = pr(n —1) +w(n) (28)

where w(n) is either a zero mean white Gaussian signal. The value of p is set to 0.9,
generating a highly colored Gaussian signal. The measurement noise v(n) with o2 = 1073
is added to the noise-free desired signal, d(n) = h]x(n), where h; is the true unknown
filter vector. The adaptive filter and the unknown channel are assumed to have the
same number of taps. The mean square deviation (MSD) is taken and averaged over
200 independent trials. We set the parameters K, and v to 4, and /50?2 [14] for all
experiments. Also, the value of the step-size (p) is set to 0.3.

30

20 Input: Gaussian

AR(1), p =09

MSD in dB

0 100 200 300 400 500 600 700 800 900
Iteration Number

Ficure 2. Comparison of SR-APA, DS-APA, SM-SR-APA, SM-DS-APA
and SM-APA with K = 4, P = 2 and P = 3 (input: Gaussian AR(1),
p=0.9)

Figures 2 and 3 show the MSD curves of various SM-AP algorithms. Figure 2 compares
the performance of SR-APA [5], DS-APA [6], SM-SR-APA, SM-DS-APA and SM-APA
[9]. In SR-APA and SM-SR-APA| the parameter P was set to 2 and 3. The simulation
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30 \ ‘ ‘

a) SPUSRAPA, K =4,P=3,5=3
1

)
20 ) SPU-APA, K =4, S = 3 [12]
)

SPU-DS-APA, K =4,5 =3

10

c)

d) SM-SPU-SR-APA, K =4,P=3,5=3 |]
e) SM-SPU-APA, K =4,5 =3

f) SM-SPU-DS-APA, K =4,5 =3

) SM-APA, K =4 [14)

(
(
(
(
(
(
(

_10 -

_20 -

MSD in dB

_30 -
Input:Gaussian

40 AR(1), p=0.9]
-s0f (e
_60 L
_70 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900

Iteration Number

F1GUure 3. Comparison of SPU-APA, SPU-SR-APA, SPU-DS-APA, SM-
SPU-SR-APA, SM-SPU-DS-APA and SM-APA with K =4, P =3, B = 4
and S = 3 (input: Gaussian AR(1), p = 0.9)

TABLE 3. The avearage number of updates in SM-AP algorithms for dif-
ferent applications

‘ Algorithm ‘ M = 32 ‘ M =128 ‘ M = 256 ‘
SM-APA/APA 307/900 | 2420/14000 | 3724/12000
SM-SPU-APA /SPU-APA 352/900 | 2482/14000 | 4132/12000
SM-SR-APA /SR-APA 272/900 | 3790/14000 | 4180/12000
SM-DS-APA/DS-APA 298/900 | 2375/14000 | 3574/12000
SM-SPU-SR-APA /SPU-SR-APA | 463/900 | 3841/14000 | 4831/12000
SM-SPU-DS-APA /SPU-DS-APA | 324/900 | 2531/14000 | 4065/12000

results show that the SM-SR-APA has good convergence speed, low steady-state MSD and
low computational complexity. By increasing the parameter P, the convergence speed of
SM-SR-APA increases. Also, the steady-state MSD of SM-SR-APA is lower than SR-APA
with P = 2 and 3. Table 3 presents the average number of updates for SM-SR-APA. This
table shows that the average number of updates for SM-SR-APA is 272 instead of 900 for
SR-APA. It means, we only need to update the filter coefficients for 272 iterations, and in
other iterations, the condition in Equation (8) is not true and the filter coefficients do not
change. For large values of P, the performance of SM-SR-APA will be closed to SM-APA.
This performance is obtained by lower complexity because of using SR method.

This figure also compares the performance of SM-DS-APA with DS-APA. Simulation
results show that the SM-DS-APA has faster convergence speed, and lower steady-state
MSD than DS-APA. Also, the average number of updates for SM-DS-APA is 298 instead
of 900 in DS-APA. This algorithm shows close performance to SM-APA. Furthermore,
the complexity of SM-SR-APA is lower than SM-APA due to DS approach.

Figure 3 shows the MSD curves of SPU-APA [7], SPU-SR-APA, SPU-DS-APA, SM-
SPU-SR-APA, SM-SPU-DS-APA and SM-APA. The parameter P was set to 3, and the



A FAMILY OF SM-APA FILTER ALGORITHMS 1321

values of B and S were set to 4 and 3 respectively. As we can see, the SM-SPU-APA
has better performance than SPU-APA. The SM-SPU-APA has faster convergence speed,
and lower steady-state MSD compared with SPU-APA. The average number of updates
in SM-SPU-APA is 352 instead of 900 in SPU-APA. Furthermore, the filter coefficients
are partially updated. As we see, the performance of SM-SPU-APA is close to SM-APA.

=

in update
=
O (620 4]
E

400 (b) 500 700 800 900

;-l-nllmmnnmlmu T

400 (c) 500 600 700 800 900

2—|u|mnnmu1muum I

400 500 600 700 800 900

in update. i

in update.

in update
o
[N N e
m E

Filter coeff. Filter coeff. Filter coeff. Filter coeff. Filter coeff.

in update
o
ok

0 100 200 300 400 500 600 700 800 900
Iteration Number

FIGURE 4. Filter coefficients in update for different SM affine projection
algorithms in system identification application: (a) SM-SPU-SR-APA with
K =4,S =3 and P = 2; (b) SM-SPU-APA with K = 4 and S = 3;
(c) SM-SPU-DS-APA with S = 3; (d) SM-SR-APA with P = 2 and (e)
SM-APA with K =4

In this figure, the comparison of the performance for SPU-SR-APA and SM-SPU-DS-
APA has been also presented. Again better performance for SM-SPU-SR-APA is observed.
This fact can be seen in SM-SPU-DS-APA. In these algorithms, by combining the SPU
with DS and SR approaches, the computational complexity is reduced. Furthermore, by
applying the SM approach, the average number of updates is reduced. Figure 4 shows
that when the filter coefficients are updated during the adaptation for different SM affine
projection algorithms. Binary numbers have been used in this figure where 1 means that
the filter coefficients are updated and 0 means that the adaptation is not performed. As
we can see, in some iteration, the filter coefficients are not updated.

In Figure 5, we demonstrated the tracking performance of the presented algorithms.
The parameters K, P and S were set to 4, 3 and 3 respectively. At iteration 1000, the
unknown system changed randomly. As we can see, the presented SM adaptive algorithms
have good tracking performance ability. The results show that the SM-SR-APA and SM-
DS-APA have close performance to SM-APA.

5.2. Line echo cancellation. In communications over phone lines, a signal traveling
from a far-end point to a near-end point is usually reflected in the form of an echo at the
near-end due to mismatches in circuity. The purpose of a line echo canceller (LEC) is to
eliminate the echo from received signal. In this experiment, the input signal is a speech
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(a) SM-SPU-SR-APA
6or ——— (b) SM-SPU-DS-APA
¢) SM-SPU-APA
d) SM-SR-APA

40

e) SM-DS-APA
f) SM-APA

(
(
—
(
(

MSD in dB

Input: Gaussian
AR(1), p=109

0 500 1000 1500 2000
Iteration Number

Ficgure 5. Comparison of tracking performance in SM-APA, SM-SPU-
APA, SM-SR-APA, SM-DS-APA, SM-SPU-SR-APA and SM-SPU-DS-APA
for K =4, P =3 and S = 3 (input: Gaussian AR(1), p =0.9)

01} Impulse response of the line echo path A

Amplitude

0 10 20 30 40 50 60 70 80 90
Tap Index

Impulse response of the car echo path |

Amplitude

0 50 100 150 200 250
Tap Index

FIGURE 6. Impulse responses of the line and car echo paths

signal. Also, Figure 6(a) shows the impulse response sequence of a typical echo path®. In
this simulation, the length of adaptive filter is 128. The parameters B, S and P were set
to 4, 3 and 2 respectively. Figure 7(a) shows the Far-end signal samples. This signal is a
synthetic signal that emulates the properties of speech [20]. Figure 7(b) shows the Echo
signal. Figures 8(a)-8(e) show the error signals that are obtained by SM-SPU-SR-APA|

3The impulse response of the line echo path and the input speech signal is from [20], page 347.
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SM-SPU-APA, SM-SPU-DS-APA, SM-SR-APA and SM-APA respectively. As we can
see, the performance of SM-SR-APA in Figure 8(d) is close to the SM-APA in Figure
8(e). Table 3 presents the average number of updates in different SM-AP algorithms.
Furthermore, the overall computational complexity of SM-AP algorithms is reduced due
to SPU and SR approaches. Figure 9 shows that when the filter coefficients are updated
during the adaptation for different SM affine projection algorithms in line echo cancellation
application. According to this figure, the adaptation is not performed in some iteration
which leads to reduction in overall computational complexity.

Amplitude

2000 4000 6000 8000 10000 12000 14000
(b)

0.5 i

Amplitude
o

2000 4000 6000 8000 10000 12000 14000
Sample Number

FIGURE 7. (a) Far-end signal and (b) echo signal

5.3. Acoustic echo cancellation. In acoustic echo cancellation, the exact impulse re-
sponse of the echo path in Figure 6(b) with 256 taps has been used?. The input signal is
colored Gaussian. The parameters B, S and P were set to 4, 3 and 3 respectively. Figure
10 shows the MSD curves of SM-AP algorithms when the impulse response of the car
echo path should be identified. As we can see the SM-AP algorithms have good and close
performance to SM-APA. Also, the reduction in computational complexity is large in this
application. The average number of updates has been presented in Table 3. Figure 11
shows that when the filter coefficients are updated during the adaptation for different SM
affine projection algorithms in acoustic echo cancellation application. Again this figure
shows that in some iteration, the filter coefficients do not change which will be efficient
feature in this application.

6. Conclusions. In this paper, we presented various SM affine projection adaptive fil-
ter algorithms. The SM-SPU-APA, SM-SR-APA, SM-DS-APA, SM-SPU-SR-APA and
SM-SPU-DS-APA were established. These algorithms had good convergence speed, low
steady-state MSE and low computational complexity. The good performance of the pre-
sented algorithms were demonstrated in system identification, line and acoustic echo can-
cellation scenarios.

4The impulse response of the car echo path is from [12].
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FIGURE 8. (a) Error obtained by SM-SPU-SR-APA with K =4, S =3
and P = 2; (b) error obtained by SM-SPU-APA with K = 4 and S = 3;
(¢) error obtained by SM-SPU-DS-APA with S = 3; (d) error obtained by
SM-SR-APA with P =2 and (e) error obtained by SM-APA with K =4

(a)
0 2000 4000 6000 (1,) 8000 10000 12000 14000
2000 4000 6000 8000 10000 12000 14000
) 1.

iu-umm ||| 1

2000 4000 6000 ) 8000 10000 12000 14000

=

in update
o
(@R N N

o =
QUG

in update
o
6]

15 \ \ ‘ ‘ ‘
1
°F I W
O L I
2000 4000 6000 (e) 8000 10000 12000 14000
1.

ET T

2000 4000 6000 8000 10000 12000 14000
Sample Number

in update.

Filter coeff. Filter coeff. Filter coeff. Filter coeff. Filter coeff.
in update

in update.

FIGURE 9. Filter coefficients in update for different SM affine projection
algorithms in line echo cancellation application: (a) SM-SPU-SR-APA with
K =4,8 =3and P = 2; (b) SM-SPU-APA with K =4 and S = 3; (¢) SM-
SPU-DS-APA with S = 3; (d) SM-SR-APA with P = 2 and (e) SM-APA
with K =4
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FIGURE 11. Filter coefficients in update for different SM affine projection
algorithms in acoustic echo cancellation application: (a) SM-SPU-SR-APA
with K =4, S =3 and P = 2; (b) SM-SPU-APA with K =4 and S = 3;
(c) SM-SPU-DS-APA with S = 3; (d) SM-SR-APA with P = 2 and (e)
SM-APA with K =4
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