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ABSTRACT. Complex diseases such as cancer are involved in inter-relationship among
several genes, with protein-protein interaction networks being extensively studied in at-
tempts to reveal the relationship between genes and diseases. Although these studies have
shown promising results for identifying disease genes, it is not systemically studied that a
protein functions differently depending on its interaction partners in the network since a
protein can have multiple functions. In this study, domains are considered as functional
units of proteins and we investigate how disease-related mutations in domains can be used
to identify other disease genes in a domain-domain interaction network. We subsequently
propose a computational method to predict disease genes based on the following two as-
sumptions. The first assumption is that proteins closely interacting with known disease
proteins in a protein interaction network are likely to be involved in the same disease.
Second, although two proteins are in the same distance from known disease gemes in a
protein interaction network, the protein interacting with known disease genes through a
domain with mutation is more likely to be related to the disease than other proteins that
interact through domains with no mutation. As a result, when the proposed approach is
applied to five diseases, it highly ranks disease-related genes compared to a model using
only a protein interaction data set.

Keywords: Disease gene prediction, Bioinformatics, Domain-domain interactions, Dis-
ease related mutations

1. Introduction. Complex diseases such as cancer and metabolic disorders are involved
in inter-relationship among several genes. To date, revealing the underlying mechanisms
of these diseases remains challenging due to the complexity of their interactions [1]. The
first step in the study of complex diseases is to identify disease-causing genes; mutations
of genes related to diseases are identified by experimental examinations. However, the
complex underlying mechanisms of many diseases are not fully explained by the known
disease related genes. Thus, identifying disease-related genes and their correlations still
requires further study.

For this task, based on the growth of various biological data sources, extensive stud-
ies in developing computational methods for identifying disease genes have been made.
For example, Aerts et al. [2] developed Endeavour, a method for integrating several ge-
nomic data sources that uses order statistics to prioritize disease genes. It first gathers
information extracted from various data sources, such as literature, gene expressions,
protein-domains and protein-protein interactions, to train genes. For each data source,
test genes are then ranked based on their functional similarity to the training genes. Fi-
nally, rankings from the separate data sources are fused into a single ranking using order
statistics. In this way, Endeavour improved the accuracy and coverage of predictions by

1327



1328 B. SONG AND H. LEE

integrating several data sources. In another study, Wu et al. [3] proposed a network-based
regression model (CIPHER) for predicting disease genes. This model uses three types of
data sources, including manually curated protein-protein interactions from the HPRD
database [4] for gene-gene networks, disease-gene associations from the OMIM database
[5] for disease-gene networks, and similarities between diseases calculated via text min-
ing [6] for disease-disease networks. By integrating the protein interaction data sets and
disease similarities, CIPHER showed comparable performance to Endeavour.

Even though many studies have investigated disease genes based on protein-protein
interaction networks, few have systemically incorporated interactions at a domain level.
In one such case, Wang et al. [7] suggested that mutations can disrupt bindings between
domains, and that this disruption can change pathways related to disease, thereby causing
the disease. However, they did not develop a method for predicting disease genes based
on their observations. As such, in this study, we extend the investigations of protein-
protein interactions by using the functional units of their domains in order to develop a
computational method for predicting disease genes, based on the following assumptions:

e First, proteins more closely interacting with the proteins of known disease genes in
the protein-protein interaction networks are likely to be involved in the same disease.

e Second, if a protein P, has a mutation related to a given disease, and it interacts
with a protein P, through a shared domain, then P is more likely to be involved in
the same disease than other proteins that interact with P; through domains with no
mutation.

In Figure 1(a), when the protein P; contains a domain that has disease-related mu-
tations, we assume that proteins P, and Pj, interacting with P; through the domain,
are more closely related to the same disease as P, than P, and P;. Based on these as-
sumptions, we develop a method to measure the similarities between disease proteins and
other proteins by considering both the protein-protein and domain-domain interaction
networks. Using the domain-domain interactions, the proposed method allows us to dis-
tinguish direct and indirect disease-related interactions from among other complicated
protein interactions. Then, when applied to five diseases, we observed in three diseases
that the model incorporating interactions between domains with mutations in the pro-
tein interaction network helped to highly rank disease-related proteins, as compared to a
model using only the protein interaction data set.

2. Methods.

2.1. Data sources. In this study, we collect protein-protein interactions, protein-domai-
ns, domain-domain interactions, disease genes and disease-related mutation data sets for
humans.

2.1.1. Protein-protein interactions. We use a human protein-protein interaction data set
obtained from the HPRD database (January 2008 version) [4], which is the same data
set used in [3]. This set contains 34,364 manually curated interactions from among 8,919
human proteins.

2.1.2. Protein domains. The Pfam database is a large collection of protein domain families
[8]. We use this database (version 21.0) to map domains to proteins. Among two types of
Pfam families (Pfam-A and Pfam-B), we use the manually curated Pfam-A. Proteins in
Pfam and proteins in HPRD are then mapped using the accession number of the proteins
in a SwissProt database [9].
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2.1.3. Domain-domain interactions. The domain-domain interaction data set was ob-
tained from iPfam (version 21.0) [10]. This database provides domain-domain interac-
tion information between two interacting proteins. The database uses Pfam-A domains
(version 21.0). Among all 7,265 domain-domain interactions with protein information in
iPfam, we use 359 interactions between two different human proteins. Note that proteins
in these interactions are also found in the HPRD human protein-protein interactions.

2.1.4. Human diseases, disease genes and mutations. OMIM is a continuously updated
catalog of human genes and genetic disorders [5]. We collected human diseases, disease
genes and disease-related protein mutations from the OMIM database (June 19, 2009
version). Disease genes were obtained using the following information:

e Genes are in the TEXT field of the disease phenotype in OMIM.

e Genes of the disease phenotype are in a Morbid Map list, an alphabetical list of
diseases described in OMIM and their corresponding cytogenetic locations.

e Genes with mutation information are related to the disease phenotype.

In addition, the allelic variants information of genes in OMIM are used for collecting
the mutation information for disease genes. In the mutation data, a disease name consists
of comma-separated multi-level names, and we use only the first level name of the disease
name. For example, we consider all of the following disease names as breast cancer:
‘breast cancer, somatic’, ‘breast cancer, sporadic’, ‘breast cancer famillial’, ‘breast cancer’
and ‘breast cancer, lobular, somatic.” Finally, we are able to categorize mutation data
into 3,525 diseases, based on the location of the mutation in the protein sequence and
the corresponding sequence domain. Here, protein identifiers in HPRD and OMIM are
mapped using Entrez gene identifiers [11].

2.1.5. Domain-domain interactions with disease-related mutations. We subsequently inte-
grate domain-domain interactions with disease-related mutations in a protein-protein in-
teraction network, referred to as a domain-domain interaction in a disease-related protein
with mutation (DDI-DRPM). In DDI-DRPM, at least one of two proteins has disease-
related mutation; the protein with mutation is referred to as DDI-DRPM-P,,.

We classify DDI-DRPM into a particular disease type if at least one of two interacting
proteins has a domain with disease-related mutations. Note that DDI-DRPM may be
included into more than one disease if proteins have mutations related to more than one
disease. Through this process, we obtain the DDI-DRPM list for 160 diseases. After
filtering out diseases that have less than two DDI-DRPMs or have less than two proteins
with disease-related mutation data, we obtain the DDI-DRPMs of 9 diseases. For these
diseases, we map the diseases into disease phenotypes in OMIM, and then we add proteins
with mutations into the disease gene list. With the manual inspection of the 9 diseases,
we also filter out diseases that are too general or contain less than three disease genes. In
addition, we divide ‘cardiomyopathy’ into the two diseases ‘cardiomyopathy, dilated” and
‘cardiomyopathy, hypertrophic’. Finally, we use the DDI-DRPM of five diseases, as listed
in Table 1.

2.2. Computational methods.

2.2.1. Proposed method for prioritizing disease genes by combining domain interactions
and mutations in a protein interaction network. We propose a computational method to
prioritize disease genes based on the two assumptions discussed in the Introduction sec-
tion. Our model prioritizes test proteins based on a protein-protein interaction network
with DDI-DPRM information for a given disease. Here, proteins with mutation informa-
tion (DDI-DRPM-P,,) in DDI-DRPM are used as training proteins. We then calculate
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FIGURE 1. A schematic of our approach. (a) In a protein-protein inter-
action network with domain-domain interaction and mutation information,
P, is used as a training protein and other proteins are test proteins. P,
and Pj interact with P; through the domain with mutation. In contrast,
Py and Ps interact with P; through the domain without mutation. (b)
dp,n, the shortest distance between P, and the other proteins, and dj,
the shortest distance between the DDI-DRPM-partner (P;) = {P, and Py}
and the other proteins, are calculated. Then, cptng,, the number of com-
mon proteins between the Extended .PTN(g) and PTN(h), is presented.
(c) After similarities of sdp,, and sd}p,, using dp,, and dp,;, are calculated,
three respective rankings of test proteins using sdp,j, sdp , and cptng, are
determined. Then, the final ranking is shown in rank(h).

the similarity between the training and test proteins by using three similarity measures;
the first measure is based on the protein-protein interaction network, and the second and
the third are based on DDI-DRPM information.

Similarity between training proteins and test proteins: Three similarity measures be-
tween a training protein g and a test protein A are calculated. For the given training
protein g, let DDI-DRPM-partner(g)= {g,| ¢, interacting with g in DDI-DRPM} be the
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TABLE 1. List of DDI-DRPM for five diseases. For each disease, interact-
ing proteins, in which interacting domains are known and at least one of
proteins has disease related mutation information, are listed.

DDI-DRPM
Disease P, P,.’s partner
Protein 1 | Domain 1 | Protein 2 | Domain 2
VCL PF01044 TLN1 PF09141
TNNT2 | PF00992 | TNNI3 | PF00992
dilated TNNC1 | PF00036 | TNNI3 | PF00992
. TNNC1 | PF00036
Cardiomyopathy, TNNI3 | PF00992 TNNT? | PFO0992
hypertrophic TNNT2 | PF00992 | TNNI3 | PF00992
AR PF00104 | NCOA2 | PF08832
MADI1L1 | PF05557 | MAD2L1 | PF02301
TP53BP1 | PF00533
TP53 PF00870 PF00018
Colorectal cancer TP53BP2 PF00023
FGFR3 | PF00047 FGF1 PF00167
TP53BP1 | PF00533
TP53 PF00870 PF00018
Breast cancer TP53BP2 PF00023

RAD51 | PF08423 | BRCA2 | PF00634

Cardiomyopathy,

Prostate cancer

interaction partners of the training protein g in DDI-DRPM. We represent the protein-
protein interaction network as PP1, and the protein-protein interaction network excluding
the interaction between ¢ and g, as PPI'.

e Shortest path between g and h: Let the shortest distance between ¢ and h in PPI be
dgn. Their similarity is defined as sdg, = exp(—dZ,).

e Shortest path between DDI-DRPM-partner(g) and h: By assuming that g,, the pro-
tein in DDI-DRPM-partner(g), is closely involved in the same disease as ¢, we
use the distance between g, and h as a similarity measure between g and h. As
g interacts in multiple DDI-DRPMs, let the shortest distance between them be
dyy, = min{dy, 5 }i2,, where m is the DDI-DRPM-partner number (g) and dg, j is the
shortest distance between g,, and h in PPI'. Then, the similarity between them is
defined as sd}, = exp(—d3).

Common interaction partners between g and h: Let the extended interaction partners
of g be Extended_PTN(g) = {g}U {all direct interaction partners of g in PPI} U
{g,}U {all direct interaction partners of g, in PPI'}. Then, the extended interaction
partners of ¢ include both the directly interacting proteins of ¢ as well as the directly
interacting proteins of g,. Let the interaction partners of A be PTN(h)={h}U {all
direct interaction partners of h in PPI}, with their similarity defined as cptng, =
{the number of common proteins between Extended PTN(g) and PTN(h)} .

Prioritizing of test proteins for disease: To prioritize test proteins for a given disease,
we calculate the rankings of the test proteins based on their similarity to the training
proteins. Let us assume that there are k test proteins of {h;}¥_,. Then, for each training
protein g, the three ranks of test protein h; are first calculated as follows.

e rsd,(h;): Rank of the test protein h; in {sdgp,}¥_;, the shortest path similarities
between a training protein g and k test proteins of {h;}%_,.
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o rsdj(h;): Rank of the test protein h; in {sd, }¥_,, the shortest path similarities
between DDI-DRPM-partner(g) and k test proteins of {h;}%_,.

e rcptng(h;): Rank of the test protein h; in {cptng,, }¥_,, common interaction partner
similarities between g and k test proteins of {h;}¥_,.

Next, when there are n training proteins of {g;}7_, for a given disease, the overall ranks
of h; are calculated using order statistics.

rank(h;) = OrderStatistics (rsdy, (hs), rsdy, (h), reptng, (he),
ooy r8dy, (hi), rsdy, (h;),reptng, (hi)).

The order statistics are calculated using the formula defined in [2]. An example of the
three similarity measures and the ranks of test proteins is shown in Figure 1. Figure 1(a)
is a protein interaction network with domain interaction information; P; is a training
protein, and P, and Py interact with P; through a domain with mutation. Figure 1(b)
shows three types of similarities between P, and the other proteins. In the figure, dp, 5
is the shortest distance between P; and the protein h in the PPI network. In addition,
dp, , 1s the shortest distance between P and protein h when the interaction between P
and P, and the interaction between P; and P; are removed from PPI network, where P,
and Pj interact with P; through a domain with mutation. And cptnp, p is the number of
extended common interaction partners between P; and h. In Figure 1(c), the ranks from
the three similarity measures are obtained and the overall ranking between P; and the
other proteins are calculated. Note that proteins Ps and FPg, which interact with P, and
Pj, are ranked higher than protein Ps, which directly interacts with P, through a domain
with no mutation.

2.2.2. Method for prioritizing disease genes in a protein interaction network. We then
compare our method with a simple method using only a protein-protein interaction net-
work. For a training protein ¢ and a test protein h, the similarity between them is
calculated using the distance dg, of the shortest path. If there are n training proteins in
the protein-protein interaction network, the overall similarity between n training proteins
and the test protein A is Z?:1 exp(—dgjh), where g; is the j-th training protein. This
similarity is calculated for all test proteins, and their rankings are then determined. This
model is referred to as a protein-protein interaction model (PIM) in the following sections.

3. Results. The proposed method was applied to five diseases; dilated cardiomyopathy,
colorectal cancer, hypertrophic cardiomyopathy, breast cancer and prostate cancer have
25, 29, 25, 13 and 18 known disease related genes, respectively. Among them, 3, 2, 2,
2 and 2 genes were used as training genes in this study because they have DDI-DPRM
information. Using these training genes, 8,919 genes that have interacting partners in
a protein-protein interaction network, were then ranked using the proposed model. The
higher the method ranks the disease-related genes, the better the method is perceived.
We first show the performance of our method by comparing it with other methods, and
then explain the five diseases in further detail. In the comparison, we focus on genes
ranked in the top 300 since they might can be considered as candidate genes. These top
300 were previously used by [3].

3.1. Performance comparison among PIM, CIPHER and proposed model. We
compared PIM, CIPHER  [3], and the proposed method by counting the number of disease
genes ranked in the top 300, as shown in Table 2. PIM predicts several genes in the same
rank because many genes are the same distance from the training genes in the protein-
protein interaction network; hence, when several genes are assigned into the same rank,
the medium rank is assigned into these genes. For example, if 10 genes need to be ranked
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in the same rank between 11 and 20, the rank of these genes is considered to be 15.
Our model places disease genes at higher rankings compared to PIM, for three diseases:
dilated cardiomyopathy, colorectal cancer and breast cancer.

CIPHER integrates the protein-protein interaction network with disease phenotype
similarity to prioritize disease genes. Since our method uses different data sources than
CIPHER, and the number of domain-domain interaction data in the protein interaction
network is not sufficient, it is hard to directly compare the performances of the two meth-
ods. However, we used CIPHER for the comparison because CIPHER is one of best
methods that use a protein-protein interaction network and shows comparable perfor-
mance to Endeavour [2], which integrates several biological data sets. When the same
training genes were used for both methods, our method had better performance than
CIPHER for two diseases, similar performance for one disease, and worse performance for
two diseases. This result indicates that our assumption of incorporating domain interac-
tion and mutation data sets for predicting disease genes is promising.

In the following, highly ranked genes for five diseases are examined in further detail.
Also, ranks of known disease genes from both the PIM model and our model are presented
in order to show the effect of incorporating disease mutation information in the domain-
domain interaction network.

TABLE 2. For five diseases, the number of disease genes ranked in the top
300 are shown for the proposed model, PIM and CIPHER

Disease Proposed model | PIM | CIPHER
Dilated cardiomyopathy 8 6 14
Colorectal cancer 4 1 1
Hypertrophic cardiomyopathy 4 4 10
Breast cancer 13 10 10
Prostate cancer 2 3 2

3.2. Dilated cardiomyopathy. Cardiomyopathy is a heart muscle disease, and is classi-
fied into four types: dilated, hypertrophic, arrhythmogenic right ventricular and restrictive
cardiomyopathy. In particular, the left ventricle of a patient with dilated cardiomyopathy
becomes stretched, at which time the heart muscle becomes weak and thin, and is unable
to pump blood efficiently [12].

Among 25 known dilated cardiomyopathy genes, three genes (VCL, TNNT2 and TNN
C1) are used here as training genes because they have DDI-DPRM information. Predicted
rankings of the remaining 22 disease genes calculated from PIM and the proposed model
are shown in Table 3. Among 8,916 test genes, 8 out of 22 genes are ranked within the
top 300 using our model (p-value < 0.0001, Fisher’s exact test, one sided). Let us now
examine these genes in detail. A part of the protein-protein interaction network, including
3 training genes and 8 genes ranked in the top 300, are illustrated in Figure 2 with domain-
domain interactions. Note that TTN and DMD in our model are highly ranked compared
to the PIM method; TTN and DMD share a common interaction partner (ACTA1) with
TLN1, which is a DDI-DRPM-partner of the training gene VCL. It should also be noted
that even though ACTAL is not included as a dilated cardiomyopathy causing gene in
the OMIM, multiple lines of evidence show that ACTA1 mutations result in congenital
myopathies [13]. Also, ACTN2 shares a common interaction partner (PKD2) with TNNI3,
a DDI-DRPM-partner of the training genes TNNT2 and TNNC1, which assigns ACTN2
to the top 300. ACTC and MYBPC3 are ranked in the top 300 using the proposed
method, as both proteins share a common interaction partner (TNNI3K) with TNNI3,
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FIGURE 2. Protein-protein interaction network for dilated cardiomyopathy.
Three training genes (VCL, TNNT2 and TNNC1), disease genes ranked in
the top 300, and test genes closely connected with the training genes are
shown in the PPI network. Training genes and their DDI-DPRM partners
(TNNI3 and TLN1) are presented for domains, and their interactions are
shown at a domain level. Training genes’ domains have disease-related
mutations. Among the disease genes, names of genes highly ranked using
our method (as compared to PIM) are represented in red.

which is a DDI-DRPM-partner of the training genes TNNT2 and TNNC1. TNNI3 itself
is a known dilated cardiomyopathy gene and it has recently been reported that TNNI3K,
a TNNI3 interacting kinase, plays an important role in the progression of cardiomyopathy
in the murine model [14]. This result indicates that our model successfully can incorporate
indirect interactions with the training genes through TNNI3K.

On the other hand, 6 genes are ranked within top 300 using PIM. Three disease genes
(TTN, DMD and ACTN2) are ranked within the top 288 because they are two units
apart from one training gene in the PPI network. In addition, ACTC and MYBPC3 are
ranked in the top 887 because they have the shortest distance to three training genes in
the PPI network. Since many genes are two or three units apart from training genes in
PPI networks, disease genes are not highly ranked using only PPI information.

3.3. Colorectal cancer. Among 29 known colorectal cancer genes, the two genes TP53
and FGFR3 are used for training. The prediction results of the other 27 disease genes
are shown in Table 4. Using our proposed method, 4 out of 27 genes are ranked in the
top 300 among the 8917 test genes (p-value = 0.0120, Fisher’s exact test, one sided).
Using PIM, only 1 gene is ranked in the top 300. Although the number of colorectal
cancer genes in top 300 is relatively small, Figure 3 illustrates that our proposed method
can successfully distinguish disease-related genes from among other genes having the
same topological distance from training disease genes in a protein-protein interaction
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TABLE 3. Comparison of PIM and the proposed model for dilated car-
diomyopathy genes. Three genes (VCL, TNNT2 and TNNC1) are used for
training and 22 other dilated cardiomyopathy genes are ranked using PIM
and the proposed model. Among 8,916 test genes, 8 out of 22 genes are
ranked within the top 300 using our model, whereas 6 genes are ranked
within the top 300 using PIM. The bold and italic fonts indicate the genes
higher ranked in the proposed model than in PIM among the top 300 genes.

Genes Rank Genes Rank
Proposed PIM Proposed PIM
model model
TNNI3 2 1 TTN 62 288
TPM1 81 7 DMD 97 288

ACTN2 255 288
MYBPC3 280 887

LMNA 145 169
ACTC 280 887

CSRP3 484 502 PSEN1 484 502

DES 715 670 SCNHA 929 1983
TMPO 2099 1983 PLN 2685 3535
TCAP 2685 3535 LDB3 3146 3535

TAZ 3438 1983 PSEN2 3533 3535
DSG2 4293 4501 SGCD o847 6546
ABCC9 5847 6546 MYH7 7641 7515

TABLE 4. Comparison of PIM and the proposed model for colorectal cancer
genes. Two genes (TP53 and FGFR3) are used for training and 27 other
known colorectal cancer genes are included as the test genes. Using our
proposed method, 4 out of 27 genes are ranked in top 300 among 8,917
test genes, while only 1 gene is ranked using PIM. The bold and italic fonts
indicate the genes higher ranked in the proposed model than in PIM among
the top 300 genes.

Rank Rank
Genes Proposed PIM Genes Proposed PIM
model model

EP300 6 21 AKTI1 91 362
CTNNBI1 99 1290 | CCND1 137 362
CHEK2 383 1290 | SMAD7 451 1290
MSH?2 489 1290 | BRAF 551 1290
MSH6 551 1290 | MLH1 705 1290
KRAS 957 1290 | TGFBR2 1042 1290
APC 1042 1290 BUBI1 1173 1290
DCC 1381 1290 | MUTYH 2005 2524
AXIN2 2005 2524 | BUBIB 2349 1290
PIK3CA 2579 3645 DLC1 3395 3645
PMS1 4450 5597 | PMS2 4450 5597
MLH3 4450 5597 MCC 4450 5597
MYHI11 5924 5597 | PLA2G2A 6995 7471

MTCO1 8494 8705 - - -

1335
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FIGURE 3. Protein-protein interaction network for colorectal cancer. Two
training genes (TP53 and FGFR3), disease genes ranked in the top 300, and
test genes closely connected to training genes are shown in the PPI network.
Training genes and their DDI-DPRM partners (TP53BP1, TP53BP2 and
FGF1) are presented with domains and their interactions are shown at
a domain level. Training genes’ domains have disease-related mutations.
Among the disease genes, names of genes highly ranked using our method
(as compared to PIM) are represented in red.

network, which allows us to predict candidate genes located a long distance from known
disease genes. Here, EP300 is ranked in the top 6 because it directly interacts with the
training gene TP53 and also interacts with TP53BP1, which is a DDI-DRPM-partner of
the training gene TP53. In addition, CCND1 and AKT1 are distinguished among 271
genes with distance of two from the training gene TP53 and the training gene FGFR3; they
share a common interaction partner (BRCA1) with TP54BP1, which is a DDI-DRPM-
partner of the training gene TP53. And even though the relationship between the BRCA1
mutation and colorectal cancer is not specified in OMIM, several studies have indicated
that BRCA1 plays a role in the development of colorectal cancer [15]. CTNNBI is also
highly ranked in our model, as it has common interaction partners with TP52BP2 and
FGF1, both of which are DDI-DRPM-partners of the training genes TP53 and FGFR3.

3.4. Breast cancer, hypertrophic cardiomyopathy and prostate cancer. In breast
cancer, among 25 known disease genes, RAD51 and TP53 are used as training genes. Us-
ing the proposed method, 13 out of these other 23 genes are ranked in the top 300 among
8,917 test genes (p-value < 0.0001, Fisher’s exact test, one sided).

In hypertrophic cardiomyopathy, among 13 known disease genes, the two genes TNNI3
and TNNT2 are used for training. Using the proposed method, 4 out of the other 11
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genes are ranked in the top 300 among 8,917 genes (p-value = 0.0003, Fisher’s exact test,
one sided). This disease also illustrates that our model can distinguish disease genes from
among other genes at the same topological distance from the training disease genes in a
protein-protein interaction network.

In prostate cancer, among 18 known disease genes, the two genes AR and MADIL1 are
used for training. Using our proposed method, 2 out of the remaining 16 genes are ranked
in the top 300 among 8,917 test genes (p-value = 0.0993, Fisher’s exact test, one sided).
However, though the results of this test do not show any statistically significant prediction,
we expect that this result might be improved if sufficient domain-domain interaction data
with mutation information is made available in the future.

4. Discussion and Conclusion. The model proposed in this study demonstrates that
domain interactions and disease-related mutations are helpful for prioritizing disease genes
in protein-protein interaction networks. Here, the analysis of interaction networks in
five diseases shows that test genes that interact with DDI-DPRM partners of training
genes are more likely to be involved in the given disease. And although some genes do
not contain disease-related mutations in their own sequences, their functions might be
affected through their interaction with proteins containing domains with mutations. This
observation suggests that pathways related to the disease can be revealed using domain-
domain interactions.

The advantage of this study is that it successfully incorporated domain-domain in-
teractions and mutation information at a domain level, resulting in the improvement in
predicting disease genes compared to other methods that only use protein-protein inter-
actions. However, this study is limited by a small number of overlaps between the disease
mutation information and domain-domain interactions. Indeed, even though we collected
all available disease-related mutation data sets and experimental domain interaction data
sets, the proposed method was applied only to five diseases. Nevertheless, this study shows
promising results in these diseases, so we expect that the proposed approach might help
to identify disease genes with high accuracy for many other diseases as more experimental
data sets become available. For instance, the shortage of domain-domain interaction data
sets might be resolved by using computationally predicted domain-domain interactions;
there have also been extensive efforts to develop methods for predicting domain-domain
interactions by integrating biological data sets [16].

Recently, Wang et al. [7] proposed a computational method for predicting domain-
domain interactions in two interacting proteins. When the reliability of these predicted
data sets increases, it is expected that these computationally predicted domain interac-
tions can be applied to our proposed method. Currently, one of reasons that the proposed
method can only be applied to only five diseases is that it requires proteins have domains
with disease mutations and domain-domain interactions. In our future work, we will im-
prove our method in order to use for cases in which the disease mutation information and
domain-domain interactions do not commonly occur in the same protein.

In addition to revealing disease related genes, the classification of patients from ‘normal’
people is also an important problem. Many studies have been performed in attempts to
find a small set of genes that can be used to correctly identify patients [17, 18, 19].
The main issue in these studies is the selection informative genes; the approach used in
our study to incorporate mutation information and domain-domain interaction might be
helpful to find a small number of disease related genes and thereby improve classification
accuracy. Thus, as a future work, it is expected that our approach of incorporating
disease mutation information and domain-domain interactions can be extended to the
disease classification problem.
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