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Abstract. The extended Legendre wavelets and its operational matrix of integration are
successfully applied for the analysis of linear optimal control systems incorporating ob-
servers using two approaches (the Kronecker method and the recursive method). The two
methods simplify the system of state equations into the solution of a set of linear algebraic
equations. Furthermore, the proposed algorithms can be easily implemented in a digital
computer and the solutions can be obtained for any length of time. It seems, even with a
relatively low number of terms, the proposed algorithms give very accurate results when
compared with the results of the existing approaches. Further, owing to the simplicity
of the recursive approach, the approach presents considerable computational advantages
when compared with the Kronecker approach and the other existing approaches. Finally
a numerical example is given to support these claims.
Keywords: Extended Legendre wavelets, Operational matrix of integration, Optimal
control, Observers

1. Introduction. In recent years, many researches have applied various methods of op-
timization on different types of systems (see, e.g., [1-4] and the references therein).

It appears that in many practical applications, only some of the states can always be
measured. Since effective control of a process requires sufficient information on the states
of the process, the research for this problem is important both in theoretical and practical
applications. If the plant is observable, the problem can be solved by using an observer
incorporated to estimate the unknown states.

Many orthogonal functions or polynomial series such as Walsh functions [5], block-
pulse functions [6], Shifted Legendre series [7,8], Laguerre series [9], Shifted-Jacobi series
[10], Taylor series [11] and Fourier series [12] were developed to help the analysis of
linear optimal control systems incorporating observers. A distinguishing feature of the
previously mentioned approaches is reducing the differential equations into a set of linear
algebraic equations, which is very convenient for digital computation. The approaches
given in [7,8] would lead to the same results but the recursive approach in [8] is faster
than the non-recursive approach in [7].

On the other hand, wavelets permit the accurate representation of a variety of func-
tions and operators. As a powerful tool, wavelets have been extensively used in signal
processing, numerical analysis and many other areas. Special attention has been given
to application of Haar wavelets [13], Legendre wavelets [14], general Legendre wavelets
[15], Sine-cosine wavelets [16] and Chebyshev wavelets [17]. The main advantage of the
wavelet analysis is its accuracy and ability to transform complex problems into a sys-
tem of algebraic equations and thus making it computationally feasible. In [18], the
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Legendre wavelet operational matrix of integration is defined on the interval [0,1). Using
the translation property of the Legendre wavelets, extended Legendre wavelets defined
on the interval (−r, r) have been achieved in [19] where r is any rational constant. The
extended Legendre wavelet operational matrix of integration (PELW ) is sparse, equal to
every subinterval and is low dimensional [20]. Thus using (PELW ) instead of using the
Legendre wavelet operational matrix of integration is more attractive computationally
and simplifies the solution of system of algebraic equations. Also the extended Legendre
wavelets can efficiently and accurately model both continuous and discontinuous problems
[20].
In this paper, for the first time, the extended Legendre wavelets are used for the anal-

ysis of linear optimal control systems incorporating observers. A simple and powerful
computational algorithm is proposed to obtain the optimal control signal from t = 0 to
any length of time. By illustrating a numerical example, the effectiveness of the proposed
methods (the Kronecker method and the recursive method) are demonstrated and a com-
parison is made between ELW approximations and the exact results. Also it is shown
that the recursive approach has considerable computational advantages when compared
with the other possible methods. Finally the results of [7,8] are modified.

2. Properties of the Extended Legendre Wavelets (ELW). The ELW are con-
structed through a translation operator transformation on the Legendre wavelets. They
are defined on the interval

(
− i

an
, i
an

)
as [20]

ψk
nm(t) =

{
(2k + 1)1/2a

n
2Lk(2a

nt− 2m− 1) for m
an

≤ t < (m+1)
an

0 otherwise
(1)

where (a ∈ N, a ≥ 2), m = −i, . . . , 0, 1, . . . , i − 1, (i ∈ N) and n = 0, 1, . . . denotes
decomposition level. The functions Lk(t) are the k degree Legendre polynomials and
satisfy the following recursive formula:

L0(t) = 1, L1(t) = t,

Lk+1(t) =

(
2k + 1

k + 1

)
tLk(t)−

(
k

k + 1

)
Lk−1(t), k = 1, 2, 3, . . .

where k is the degree of the Legendre polynomials.
For any rational constant r, there exist two positive integers a and i such that r = i

an

or r = − i
an

and the ELW on the interval (−r, r) can be obtained.

The ELW, defined on the interval
(
− i

an
, i
an

)
, is an orthogonal set [20].

The function f(t) defined on the interval
(
− i

an
, i
an

)
may be approximated as

f(t) ∼=
i−1∑

m=−i

K∑
k=0

cknmψ
k
nm(t) = CTΨ(t) (2)

where n is decomposition level, C and Ψ are 2i(K + 1)× 1 matrices and given by
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and

cknm = 〈f(t), ψk
nm(t)〉 (5)

in Equation (5), (.,.) denotes the inner product.
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For any t belongs to the interval [ m
an
, m+1

an
), let

Ψnm(t) =
(
ψnm

0(t), ψnm
1(t), . . . , ψnm

K(t)
)T
, (6)

then the integration of the vector Ψnm(t) can be approximated by∫ t

m
an

Ψnm(t)dτ ∼= PELWΨnm(t), (7)

where Ψnm(t) is given in Equation (6) and PELW is the operational matrix of integration
of order (K + 1)× (K + 1) and is given by

PELW =
1

2an
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(8)

3. Problem Statements. A linear time-invariant completely observable and completely
controllable system is considered as follows

ẋ(t) = Ax(t) +Bu(t), (9)

y(t) = Cx(t), x(0) = X0, (10)

where x(t) is the n-state vector, u(t) is the m-control vector, y(t) is the p-output vector,
and A, B and C are constant matrices of appropriate dimensions.

When an observer is incorporated to generate an estimate x̂(t) of the plant state vector,
we need to choose the matrix L in the feedback law

u∗(t) = Lx̂(t), (11)

so that the cost function

J =

∫ ∞

0

[
xT (t)Qx(t) + uT (t)Ru(t)

]
dt, Q ≥ 0, R > 0 (12)

is minimized. u∗(t) in Equation (11) is the optimal control signal. In Equation (12), Q is
a real symmetric positive semidefinite matrix of order n× n and the m×m matrix R is
a real symmetric positive definite. L in Equation (11) is given by

L = −R−1BTP, (13)

where P is the positive-definite solution of the following Riccati equation:

ATP + PA− PBR−1BTP +Q = 0. (14)

It has been shown that an (n− p)-dimensional state observer for the system of Equations
(9) and (10) can be constructed as [7]

ż(t) = Dz(t) +Gy(t) +Hu(t), (15)

x̂(t) =My(t) +Nz(t), (16)

where z(t) is the (n − p)-state vector, and D, G, H, M and N are (n − p) × (n − p),
(n−p)×p, (n−p)×m, n×p and n× (n−p) matrices, respectively. The observer given in
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Equations (15) and (16) can produce the estimate x̂(t) when the following relationships
are satisfied:

z(t) = Ux(t) + e(t), (17)

ė(t) = De(t), (18)

where

UA−DU = GC, (19)

H − UB = 0, (20)

MC +NU = In (21)

Substituting Equations (16), (17) and (21) into Equation (11), we obtain

u∗(t) = Lx(t) + LNe(t) (22)

Inserting Equation (22) into Equation (9) gives

ẋ(t) = (A+BL)x(t) + BLNe(t),

, Âx(t) + B̂e(t). (23)

Equation (18) and Equation (23) are used for computing the optimal control signal
u∗(t).

4. ELW Analysis of Linear Optimal Control Systems Incorporating Observers.
In this section we propose an effective computational algorithm in order to compute the
numerical solutions of u∗(t) over an arbitrary interval [0, T ], using the ELW and the matrix
of integration defined in Section 2.
First, an arbitrary time interval 1

a
(a ≥ 2, a ∈ N) is chosen for the independent vari-

able t. The state vector x(t) and error vector e(t) over the subinterval
[
m
a
, m+1

a

]
can be

approximated in terms of ELW with n = 1 as follows:

x(t) ≈ X(m)Ψ(τ), (24)

e(t) ≈ E(m)Ψ(τ), (25)

where 0 ≤ τ ≤ 1
a
, and

t =
m

a
+ τ, m = 0, 1, 2, . . . , (T × a)− 1 (26)

X(m) =
[
x1m

0 x1m
1 . . . x1m

K
]
, (27)

E(m) =
[
e1m

0 e1m
1 . . . e1m

K
]
, (28)

and m denotes those variables calculated within the time interval m
a
≤ t ≤ m+1

a
.

Ψ(τ) in Equations (24) and (25) is defined as

Ψ(τ) =
(
ψ10

0(τ), ψ10
1(τ), . . . , ψ10

K(τ)
)T
. (29)

Integrating ẋ(t) and ė(t) once with respect to t, over the interval m
a

≤ t ≤ m+1
a

, we
have ∫ t

m
a

ẋ(t)dt = x(t)− xm
a
, (30)∫ t

m
a

ė(t)dt = e(t)− em
a
. (31)
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Integrating Equations (18) and (23) over the interval m
a

≤ t ≤ m+1
a

and using the
approximated values of x(t), e(t), xm

a
and em

a
and using the matrix of integration PELW ,

yield (
E(m) − Em

a

)
= DE(m)PELW , (32)(

X(m) −Xm
a

)
= ÂX(m)PELW + B̂E(m)PELW , (33)

where

Xm
a
=

[ xm
a

a1/2
, 0, 0, . . . , 0

]
, (34)

Em
a
=

[ em
a

a1/2
, 0, 0, . . . , 0

]
. (35)

4.1. The Kronecker product method. Equations (32) and (33) define a set of alge-
braic equations. Applying the operation of Kronecker product (⊗) [21] to Equations (32)
and (33), we obtain

vec
(
E(m)

)
=

(
Iq

T ⊗ I(n−p)×(n−p) − PELW
T ⊗D

)−1
vec

(
Em

a

)
, (36)

vec
(
X(m)

)
=

(
Iq

T ⊗ In×n − PELW
T ⊗ Â

)−1

vec
(
Ẑ
)
, (37)

where

Ẑ , Xm
a
+ B̂E(m)PELW . (38)

In Equations (36) and (37), q = (K + 1) × (K + 1) and the operation of vec, stacks
the columns of an appropriate matrix into a single column vector [21]. We can solve
Equations (36) and (37) for X(m) and E(m). Finally, the optimal control signal u∗(t) can
be obtained within any time interval m

a
≤ t ≤ m+1

a
as follows

u∗(t) =
(
LX(m) + LNE(m)

)
Ψ(τ), (39)

where Ψ(τ) given by Equation (29).
Solving Equations (36) and (37) involves inversion of a matrix of size (K + 1) × n or

(K + 1) × (n − p) which becomes large as the value of K increases. On the other hand,
more accurate results can be obtained with increasing the value of K. As can be seen from
Equation (8), PELW is sparse, equal to every subinterval and is similar to the integration
operational matrix of shifted Legendre polynomials in [8]. So, a recursive algorithm will
be developed (in order to overcome this difficulty) in the same manner of [8] in the next
section.

4.2. The recursive ELW method. Substituting matrix PELW into Equation (32) and
rearranging the terms, gives

Z00 Z01 0 · · · 0 0
Z10 Z11 Z12 · · · 0 0
0 Z21 Z22 · · · 0 0
...

...
...

...
...

0 0 0 · · · Z(K−1)(K−1) Z(K−1)K

0 0 0 · · · ZK(K−1) ZKK





S0
m

S1
m

S2
m
...

SK−1
m

SK
m

 =



V 0
m

V 1
m

V 2
m
...

V K−1
m

V K
m

 (40)
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where

Zij =



Iq, if i = j = 1, 2, . . . , K

D
2a
γ(i+ 1), if i = 0, 1, 2, . . . , K − 1 and j = i+ 1

−D
2a
γ(i), if i = 1, 2, . . . , K and j = i− 1

Iq − D
2a
, if i = j = 0

0, otherwise

(41)

V i
m =


e(m

a
)

a1/2
, if i = 0

0, otherwise
(42)

and
Si
m = e1m

i, for all i (43)

Similarly, substituting matrix PELW into Equation (33) and rearranging the terms, leads
to Equation (40) where

Zij =



In, if i = j = 1, 2, . . . , K

Â
2a
γ(i+ 1), if i = 0, 1, 2, . . . , K − 1 and j = i+ 1

− Â
2a
γ(i), if i = 1, 2, . . . , K and j = i− 1

In − Â
2a
, if i = j = 0

0, otherwise

(44)

V i
m =


x(m

a
)

a1/2
+ B̂

2a

[
e01m −

√
3
3
e11m

]
, if i = 0

B̂
2a

[
γ(i)ei−1

1m − γ(i+ 1)ei+1
1m

]
, if i = 1, 2, . . . , K − 1

B̂
2a
γ(K)eK−1

1m , if i = K

(45)

Si
m = x1m

i, for all i (46)

In the above equations we have the following formula for γ:

γ(i) =

√
2i+ 1×

√
2i− 1

(2i+ 1)(2i− 1)
(47)

S1m
i can be obtained by using the following recursive equations:

Mij =

{
Zii

−1 if i = K,

(Zii + Zi,i+1Ri+1,i)
−1 if i = K − 1, K − 2, . . . , 2, 1, 0.

(48)

dim =

{
MiiV

i
m if i = K,

Mii(V
i
m − Zi,i+1d

i+1
m ), if i = K − 1, K − 2, . . . , 2, 1, 0.

(49)

Ri,i−1 = −MiiZi,i−1, i = K,K − 1, . . . , 2 (50)

S1m
i = Ri,i−1S1m

i−1 + dim, for i = 1, 2, . . . , K − 1. (51)

S1m
0 = d0m. (52)

In Equation (48), the size of the matrix to be inverted can be kept to n or n − p
instead of (K + 1) × n or (K + 1) × (n − p) as in the case of using Kronecker product
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method. Therefore, in the case of recursive method, the size of the matrix becomes much
smaller and we will have considerable computational advantages when compared with the
Kronecker method.

Table 1. The shifted Legendre, ELW approximation and exact values of u∗(t)

t
Shifted Legendre
(m = 6) [7,8]

ELW. (a = 2, K = 3) ELW. (a = 2, K = 5) Exact solution

0.0 −1.292516640278664 −1.299904510932026 −1.299999866277128 −1.300000000000000
0.5 −0.405565387685947 −0.403114835887336 −0.403210190164076 −0.403210323886947
1.0 0.094265048432012 0.092486850114900 0.092392049038985 0.092391925874173
1.5 0.343861011331337 0.342700507906432 0.342625091370763 0.342625007255783
2.0 0.440089433996108 0.441560518009806 0.441502152249011 0.441502101774488
2.5 0.447566419692893 0.449309018011448 0.449262392340787 0.449262364071693
3.0 0.406425822525273 0.405911166379653 0.405872596999942 0.405872581476822
3.5 0.340087827988379 0.338015782678808 0.337983480920393 0.337983471945097
4.0 0.263027533523418 0.262957303971464 0.262930631469972 0.262930625494146
4.5 0.188543529072207 0.191373832323613 0.191352594098633 0.191352589331543
5.0 0.136526477631701 0.129108823872968 0.129092832692696 0.129092828379141

5. Conclusion. The extended Legendre wavelets and its operational matrix of integra-
tion are applied for the analysis of linear optimal control systems incorporating observers
using two different approaches. In both cases, by using these approximations and the
operational matrix of integration, the differential equations are reduced into a set of lin-
ear algebraic equations, which are very convenient for digital computation. The proposed
algorithms compute the numerical solutions of the optimal control signal u∗(t) over an
arbitrary interval [0, T ]. A numerical example is given to show that by using ELW, even
with a relatively low number of terms, we have excellent results. Furthermore, a recursive
approach in the same manner of [8] is developed to speed up the proposed algorithm.
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