
International Journal of Innovative
Computing, Information and Control ICIC International c©2012 ISSN 1349-4198
Volume 8, Number 7(A), July 2012 pp. 4675–4690

AN EFFICIENT ONE-PASS METHOD FOR DISCOVERING BASES OF
RECENTLY FREQUENT EPISODES OVER ONLINE DATA STREAMS

Min Gan and Honghua Dai

School of Information Technology
Deakin University

Burwood, VIC 3125, Australia
{min.gan.au; honghua.dai }@gmail.com

Received November 2010; revised April 2011

Abstract. The knowledge embedded in an online data stream is likely to change over
time due to the dynamic evolution of the stream. Consequently, in frequent episode min-
ing over an online stream, frequent episodes should be adaptively extracted from recently
generated stream segments instead of the whole stream. However, almost all existing
frequent episode mining approaches find episodes frequently occurring over the whole se-
quence. This paper proposes and investigates a new problem: online mining of recently
frequent episodes over data streams. In order to meet strict requirements of stream min-
ing such as one-scan, adaptive result update and instant result return, we choose a novel
frequency metric and define a highly condensed set called the base of recently frequent
episodes. We then introduce a one-pass method for mining bases of recently frequent
episodes. Experimental results show that the proposed method is capable of finding bases
of recently frequent episodes quickly and adaptively. The proposed method outperforms
the previous approaches with the advantages of one-pass, instant result update and re-
turn, more condensed resulting sets and less space usage.
Keywords: Data streams, Recently frequent episodes, Online mining

1. Introduction. The episode introduced by Mannila et al. [1] is an important pattern
for modelling the relative order of occurrence of data elements over a single data se-
quence. For instance, the order ‘A occurs before C’ can be represented as a serial episode
denoted as 〈AC〉. Frequent episode (FE) mining [1] is to discover episodes with supports
(occurrence frequencies) no less than a user-specified threshold min sup. FE mining is
important as FEs are able to model ‘common features’ of a relative order of occurrences
within the sequence. Since FE mining [1] was introduced, a number of mining approaches
[1-7] have been proposed. The discovered FEs have been applied to many areas, such as
telecommunication alarm management [1, 8], intrusion detection [9], discovery of relation
between financial events and stock trends [10] and gene analysis [11].

All existing approaches calculate the frequencies of episodes in a whole non-streaming
sequence [1-3, 6, 7] (or in a whole stream arrived so far [4, 5]) and find globally frequent
episodes (GFEs), i.e., the episodes frequently occurring in the whole sequence (or the
whole stream arrived so far). So, GFEs can be used for static analysis of non-streaming
sequences and off-line data streams. However, online and dynamic analysis is needed
for many online data streams like an online stream of HTTP requests received by a Web
server, since the streams change over time. Over an online data stream, new data elements
are generated and appended continuously and rapidly. Thus, only the recently generated
stream segment may reflect the latest information and recent trends of the stream, and old
data elements before a recent time point may become obsolete. It is clear that GFEs found
from the whole stream cannot reflect the dynamic changes and recent trends. Therefore,

4675

4676 M. GAN AND H. DAI

for an online data stream, FEs should be dynamically extracted from the recent stream
segments instead of the whole stream. Frequent episodes found from the recent stream
segment are called recently frequent episodes (RFEs).
We identify that three major problems may be caused if GFEs are used for online

streams. First, no or only a small number of GFEs may be found from an online stream,
since few episodes may frequently recur in the long lifetime of the stream. Second, dynamic
changes and recent trends of the stream cannot be detected if GFEs are used. Due
to the dynamic evolution of the stream, frequencies of episodes may change over time,
and the frequency of an episode may vary dramatically in different time periods. For
example, given a sample stream in Figure 1 and min sup = 2, consider two recent time
periods T1 and T4 with respect to current timestamps 5 and 8 respectively. Intuitively
〈AC〉 frequently occurs in T1 and never appears in T4; while 〈XY 〉 never appears in T1

and frequently occurs in T4. We see that RFE 〈AC〉 reflects the recent regularities of
relative order of occurrence when current time ct = 5, and RFE 〈XY 〉 reflects the recent
regularities when ct = 8. Nevertheless, if they are treated as GFEs, 〈AC〉 and 〈XY 〉 have
no difference because we only know that both of them are frequent over the stream. Third,
significant FEs may be missed when they are evaluated globally. Assume that, for a stream
of HTTP requests received by a Web server, a set of episodes capture common features of
HTTP requests created by a kind of attack. These episodes may frequently recur only in
the time periods during which the attack activity occurs; whereas over the whole stream,
their frequencies may be extremely low. In this situation, the FEs corresponding to the
attack cannot be detected if they are treated as GFEs. If RFEs are used, these FEs
could be detected once the attack has been conducted for a certain period of time. To
summarise, GFEs cannot capture the dynamic changes and recent trends of the stream;
while RFEs can. Therefore, RFEs should be discovered from online data streams. Can
existing GFE mining approaches [1-7] be used to discover RFEs? Although RFEs can be
found by conducting any GFE mining approach on the recent stream segment whenever a
new data element arrives, real-time response is hard to achieve due to the relatively long
time spent on the scan and mining processes. Consequently, GFE mining approaches are
not applicable for online mining of RFEs over data streams.

A C A X C Y X Y Y …

1 2 3 4 5 6 7 8 9 …

T

T1 {<A C>}

ct ct

T2 {<C>}

T3 {<X>}

T4 {<XY>}

T5 {<Y>, <YY> }

Figure 1. A sample stream

In this paper, we investigate online mining of RFEs over data streams. Given an online
data stream, we monitor the stream online, and discover FEs frequently occurring over
the most recent stream segment of length N (user-specified) instead of the whole stream
whenever a new data element arrives. In contrast to traditional GFE mining, online RFE
discovery raises more challenging requirements, such as one-scan of the stream, adaptive
result update and instant result return. This paper aims to propose an RFE mining
method satisfying these requirements. To achieve one-pass and rapid processing, three

DISCOVERING BASES OF RECENTLY FREQUENT EPISODES 4677

key issues need to be considered and solved. The first is frequency measurement. In the
existing frequency metrics [1, 2, 4-6], we choose T -freq [4] to measure the frequencies of
episodes, since it is not only anti-monotonic but also convenient for incremental compu-
tation. The second issue is condensation of RFE sets. On the one hand, the RFE sets
to be found should be sufficiently condensed to avoid generating too many candidates
and achieve fast processing. On the other hand, the resulting sets should be exact or
approximate within a guaranteed maximum error bound. We define a highly condensed
set, RFE-base, to represent the complete FE set. The third issue is the one-pass mining
framework. We abstract the mining problem as two basic procedures, GFE-B-Update
and RFE-B-Deduction, and construct a one-pass mining framework based on the two
procedures.

The main contributions of this paper are summarised as follows.

1. We propose a new problem, on-line RFE mining over data streams.
2. A highly condensed RFE set called RFE-base is defined.
3. An efficient, one-pass method is proposed for discovering RFE-bases.
4. Through extensive experiments, we demonstrate the effectiveness and efficiency of

the proposed method, and its advantages against the GFE mining approaches.

The rest of this paper is organised as follows. Section 2 reviews related works and
analyses their limitations. Section 3 presents preliminaries, frequency metric T -freq
and problem statement. In Section 4, we introduce theorems and computing strategies
for GFE-B-Update and RFE-B-Deduction. Section 5 proposes the mining framework.
Experimental results are presented in Section 6 and Section 7 concludes the paper.

2. Related Work.

2.1. Literature review. Existing GFE mining approaches can be divided into four cat-
egories.

The first is the original framework proposed by Mannila et al. [1-3]. Mannila et
al. [1] introduced episodes and the FE mining problem. In [1], the support of an episode
is defined as the number of sliding windows with a user-specified fixed width that contain
the episode. The authors proposed an original mining framework [1], which adopts the
candidate-generation-and-test strategy in frequent pattern mining [12]. Later Mannila
et al. improved the original framework by introducing a new frequency metric, minimal-
occurrence, and more efficient search strategies [2, 3].

The second is online stream mining methods [4, 5]. Iwanuma et al. [4] introduced a
novel frequency metric, T -freq for episodes, and developed an algorithm for discovering
maximal frequent episodes. An FE is maximal if it has no frequent supper-episodes
[4]. In [5], Laxman et al. introduced a new frequency metric, non-overlapped-occurrence.
The support is defined as the number of non-overlapped occurrences sharing no common
timestamps. An automaton is built for each episode. Every automaton involves waiting
functions that indicate the next element types to appear. Based on the support and
automatons, an algorithm was proposed for finding GFEs. Both the approaches [4, 5]
need only one scan of the stream.

The third is the closed episode mining approach [7]. Recently, Zhou et al. adopted
minimal-occurrence as the support and proposed an algorithm, Clo-episode [7] for the
discovery of closed FEs, namely the FEs with no supper-episodes of the same support.

The fourth is the complex sequence mining method [6]. Huang et al. proposed a method,
EMMA [6] for mining GFEs from complex sequences, i.e., sequences of itemsets. The
difference between EMMA [6] and the above approaches is that other approaches only
process simple sequences in which each data element is limited to a single item.

4678 M. GAN AND H. DAI

2.2. A comparison between our method and previous approaches. This sec-
tion addresses the unique features of the proposed approach compared with previous
approaches. We also identify the limitations of previous approaches and explore why they
are not suitable for on-line RFE mining.
Table 1 outlines the major differences between previous approaches and our method.

Column 2 represents whether the frequency metric adopted is anti-monotonic.

Table 1. A comparison between previous works and this paper

Paper Freq. (A?) Condensation Dynamics Number of scan
[1] N complete FE set global n

[2, 3] Y complete FE set global n
[4] Y maximal FE set global 1
[5] Y complete FE set global 1
[6] N complete FE set global n
[7] Y closed FE set global n

this paper Y RFE base recent 1

2.2.1. Dynamics of resulting sets. This paper aims at online mining of RFEs, while previ-
ous approaches discover GFEs from a whole sequence. As addressed in Section 1, previous
approaches are only suitable for static analysis of sequences as GFEs are not able to reflect
the recent trends and dynamics of sequence/streams. In contrast, the approach in this
paper has wider applications since it applies to both online mining of RFEs over steams
and mining of GFEs over sequences.

2.2.2. The number of scans. As shown in Table 1, the approaches [1-3, 6, 7] need multiple
scans of the sequence. Although the two approaches in [4, 5] need only one scan of the
sequence in GFE mining, they still need multiple scans of the stream to discover RFEs
as one additional scan of the new recent stream segment is needed whenever a new data
element arrives. Hence, the existing GFE mining approaches [1-7] are not suitable for
online RFE mining. In contrast, the approach in this paper aims at one-pass online
mining of RFEs.

2.2.3. Condensation of resulting sets. Existing GFE mining approaches find three kinds
of FE sets: complete FE sets [1-3, 5, 6], closed FE sets [7] and maximal FE sets [4].
A complete FE set is the set of all FEs. Complete FE sets [1-3, 5, 6] are exact but
not condensed. Closed sets [13] are not sufficiently condensed [15]. Although maximal
frequent pattern sets [4, 14] are highly condensed, they are information incomplete without
the information of non-maximal FEs. RFE bases to be discovered in our approach will
be more condensed than complete sets and closed sets.

2.2.4. Frequency measurement. In frequent pattern mining [12], it is suggested that anti-
monotonicity is a common principle to be obeyed by any frequency metric. A frequency
metric is anti-monotonic if under the frequency metric, for any pattern P and any of its
supper-pattern P ′, the frequency of P is no less than the frequency of P ′ [12]. Under an
anti-monotonic frequency metric, a pattern can be safely pruned if any of its sub-patterns
is infrequent, and an infrequent pattern does not need to be extended (downward pruning
[12]). On the contrary, if a frequency metric is not anti-monotonic, frequent patterns may
be missed when the downward pruning is conducted.
To date, several typical frequency metrics for episodes [1, 2, 4-6] have been introduced.

We have analysed these metrics in [16], and explored their impacts on knowledge discovery

DISCOVERING BASES OF RECENTLY FREQUENT EPISODES 4679

in single sequences in [21]. The metrics used in [1, 6] do not satisfy anti-monotonicity. In
the three anti-monotonic frequency metrics [2, 4, 5], we adopt T -freq [4] since it is not
only anti-monotonic but also convenient for incremental computation. This contributes
to overtime and incremental online mining.

3. Preliminaries, Frequency Measurement and Problem Statement.

3.1. Preliminaries. This section presents ordinary terminologies in FE mining [1].

Definition 3.1 (Data Stream). Let I be a finite set of items, where each item denotes a
distinct type of data element. A data stream S defined over I is an unbounded ordered list
of data elements continuously arriving at a rapid rate, denoted as S = (e1)1(e2)2 . . ., where
each data element is identified by both its type ej ∈ I and its timestamp j ∈ {1, 2, . . .}.
The stream segment arrived so far is denoted as S = (e1)1(e2)2 . . . (ect)ct, where ct is the
current timestamp.

Definition 3.2 (Sliding Window). Given stream S = (e1)1(e2)2 . . . (ect)ct, a sliding win-
dow with width w over S from starting timestamp st, denoted as win(S, st, w), is a stream
segment defined as

win(S, st, w) =

{
(est)st(est+1)st+1 . . . (est+w−1)st+w−1 if st+ w − 1 ≤ ct
(est)st(est+1)st+1 . . . (ect)ct otherwise

(1)

Episodes can de divided into three classes: serial episodes, parallel episodes and com-
posite episodes [1]. In this paper we only consider the basic type, serial episodes.

Definition 3.3 (Serial Episode). A serial episode α over I is an ordered list of types of
data elements, denoted as α = 〈a1a2am〉, where aj ∈ I (j = 1, 2, . . . ,m). The length of α,
denoted as α.L, is defined as m.

In the rest of the paper, episodes are referred to as serial episodes. An episode α =
〈a1a2 . . . am〉 is a sub-episode of another episode β = 〈b1b2 . . . bn〉, denoted as α v β, if
there exist 1 ≤ i1 < i2 < . . . < im ≤ n such that aj = bij for all j = 1, 2, . . . ,m, e.g.,
〈AB〉 v 〈ACB〉.
Definition 3.4 (Occurrences of Episodes). Given stream segment S = (e1)1(e2)2 . . . (ect)ct
and α = 〈a1a2 . . . am〉, we say α occurs in S, and o = (ei1)i1(ei2)i2 . . . (eim)im is an oc-
currence of α in S, if there exist 1 ≤ i1 < i2 < . . . < im ≤ ct such that aj = eij for all
j = 1, 2, . . . ,m. For simplicity, timestamp list 〈i1, i2, . . . , im〉 is used to denote occurrence
o. The set of occurrences of α in S is denoted as O(S, α).

For example, for S in Figure 1, O(S, 〈AC〉) = {〈1, 2〉, 〈1, 5〉, 〈3, 5〉}. In addition, we say
win(S, st, w) contains α if α occurs in win(S, st, w).

Definition 3.5 (Stream/Episode Expansion). Given stream S = (e1)1(e2)2 . . . (ect)ct,
when a new data element ae arrives, S is expanded to (e1)1(e2)2 . . . (ect)ct(ae)ct+1, which
is called the expansion of S with ae, denoted as S ◦ ae. Similarly the expansion of episode
α = 〈a1a2 . . . am〉 with item b is defined as α ◦ b = 〈a1a2 . . . amb〉.
3.2. Frequency metric. This section reviews frequency metric T -freq [4] adopted in
this paper.

Definition 3.6 (Head Frequency). Head frequency [4] of episode α = 〈a1a2 . . . am〉 over
S with window width w, denoted as H-freq(S, α, w), is defined as

H-freq(S, α, w) =
ct∑
i=1

δ(win(S, i, w), α) (2)

4680 M. GAN AND H. DAI

where δ(win(S, i, w), α)=1 if ei=a1 and win(S, i, w) contains α, otherwise δ(win(S, i, w),
α) = 0.

For instance, in Figure 1, H-freq(S, 〈XY 〉, 3) = 2 because two windows w(S, 4, 3) and
w(S, 7, 3) contain 〈XY 〉.
Definition 3.7 (Total Frequency). Total frequency [4] of episode α over S with window
width w, denoted as T -freq(S, α, w), is defined as

T -freq(S, α, w) = min
βvα

H-freq(S, β, w) (3)

For example, given S in Figure 1, T -freq(S, 〈XY 〉, 3) = 2 becauseH-freq(S, 〈XY 〉, 3) =
2, H-freq(S, 〈X〉, 3) = 2 and H-freq(S, 〈Y 〉, 3) = 3. T -freq has a basic property below.

Proposition 3.1. Given S, α = 〈a1a2 . . . am〉 and window width w, we have

T -freq(S, α, w) = min
i=1,2,...,m

H-freq(S, suf(α, i), w) (4)

where suf(α, i) = 〈aiai+1 . . . am〉 [4].
In this paper, we adopt T -freq without the window-width constraint w for the conve-

nience of incremental mining. The T -freq without w, denoted as T -freq(S, α), is defined
as mini=1,2,...,mH-freq(S, suf(α, i)). In this paper, we define sup(S, α) as T -freq(S, α).

Definition 3.8 (Frequent Episode, Maximal Frequent Episode). Episode α is frequent
over S with respect to min sup if sup(S, α) ≥ min sup. Episode α is a maximal frequent
episode over S with respect to min sup if there exist no β w α such that β is frequent
over S with respect to min sup.

In (4), all landmarks {i} that minimise H-freq(S, suf(α, i)), denoted as i-minH(S, α),
is defined as{

i|H-freq(S, suf(α, i)) = T -freq(S, α) = min
i=1,2,...,m

H-freq(S, suf(α, i))

}
(5)

For example, in Figure 1, given S = (C)5(Y)6(X)7(Y)8(Y)9 in T5, α = 〈XY 〉, we have
H-freq(S, suf(α, 1))=H-freq(S, 〈XY 〉) = 1 andH-freq(S, suf(α, 2)) = H-freq(S, 〈Y 〉)
= 3. Hence, T -freq(S, α) = min{1, 3} = 1 and i-minH(S, α) = {1}.
The T -freq has an incremental property as follows.

Proposition 3.2 (Incremental Property). Given stream S = (e0)0(e1)1 . . . (ect)ct (S is
empty when ct = 0) and min sup, let α be a maximal FE over S (let α be an empty
episode when S is empty). For ∀ae ∈ I, if ae is infrequent in S ′′ = S ◦ ae, α is still
a maximal FE over S ′′; otherwise, we have (1) α ◦ ae is a maximal FE in S ′′, and (2)
T -freq(S ′′, α ◦ ae) = min(T -freq(S, α), T -freq(S ′′, 〈ae〉)) [4].
For example, given S = (A)1(C)2(A)3(X)4 and min sup = 2, α = 〈A〉 is a maximal

FE over S. When a new element ae = C is appended, S becomes S ′′ = S ◦ ae =
(A)1(C)2(A)3(X)4(C)5. Since 〈C〉 is frequent over S ′′, we have α ◦ ae = 〈AC〉 is a
maximal FE in S ′′, and T -freq(S ′′, 〈AC〉) = min(2, 2) = 2. Please refer to [4] for the
proofs of Propositions 3.1 and 3.2.

3.3. Problem statement. The problem considered in this paper is online mining of
RFE-bases over data steams. To begin with we define the RFE-base which is similar to
the base of frequent items introduced in [15].
Given stream segment S (S.L = N) and min sup, the possible values of support of

all FEs are in [min sup, S.L]. If an error of support within k is tolerant, we can di-
vide [min sup, S.L] into n level sub-intervals [min sup,min sup + k], [min sup + k +

DISCOVERING BASES OF RECENTLY FREQUENT EPISODES 4681

1,min sup + 2k + 1], . . . , [min sup + (n level − 1)(k + 1), S.L], where the size of each
sub-interval is k. We set the lower bound of the i-th sub-interval as min supi, and define
MFi as the maximal frequent episodes with respect to min supi. For any episode α, if
α is between MFj and MFj+1, then sup(α) ∈ [min supj,min supj + k]. The collection
of all MFi (i = 1, 2, . . . , n level) is called an FE-base. Thus, we can use the FE base to
approximately represent the complete FE set within error bound k. FE-base is formally
defined as follows. Define the number of levels, n level, as

n level =

⌈
S.L+ 1−min sup

k + 1

⌉
(6)

Let min supi = min sup + (i − 1)(k + 1) (1 ≤ i ≤ n level). Then the RFE-base over
S with respect to min sup and k is defined as

B = ∪n level
i=1 MFi (7)

For example, given S in Figure 1, min sup = 2 and k = 1, the support interval [2, 9]
is divided into 4 (n level) sub-intervals: [2, 3], [4, 5], [6, 7] and [8, 9].

Assume a data stream is monitored over time. The problem considered in this paper
is adaptively discovering the FE-base from the most recent stream segment whenever a
new data element arrives. The problem is formally stated as follows.

Definition 3.9 (Problem Statement). Given a data stream monitored over time, and
parameters: user-specified length of recent stream segment, N , min sup and error bound
k, assume current time ct is j, and FE-base B over the recent N -length stream segment
S = (ej−N+1)j−N+1 (ej−N+2)j−N+2 . . . (ej)j (j ≥ N) has been found. When a new data
element, ej+1, arrives (ct = j + 1), the problem is discovering FE-base B′ over the new
recent N-length stream segment S ′ = (ej−N+2)j−N+2 (ej−N+3)j−N+3 . . . (ej+1)j+1. The
mining process should satisfy two requirements, (1) one-pass: it need not re-scan the
passed stream segment S, and (2) rapid feedback: new FE-base B′ is found rapidly.

To meet the two requirements, we obtain B′ by utilising the found result B instead of
scanning and mining S ′ from scratch. B′ can be obtained from B in two steps: (1) B over
S is updated to B′′ over S ′′ = S ◦ej+1, and (2) B′ is deduced from B′′. Note that S in Step
(1) is (e)1(e)2 . . . (e)j when j ≤ N . The two steps are defined as two basic procedures.

1. GFE-B-Update — Given the recent N -length stream segment S = (ej−N+1)j−N+1

(ej−N+2)j−N+2 . . . (ej)j (let S = (e)1(e)2 . . . (e)j when 1 ≤ j ≤ N), when a new data
element ej+1 is appended, the appended stream segment is S ′′ = S ◦ ej+1. GFE-B-
Update updates B over S to B′′ over S ′′ = S ◦ ej+1.

2. RFE-B-Deduction — When a new data element ej+1 arrives, let the new recent
N -length stream segment S ′ = (ej−N+2)j−N+2 (ej−N+3)j−N+3 . . . (ej+1)j+1. In RFE-
B-Deduction, B′ over S ′ is deduced from B′′ over S ′′.

As shown in Figure 2, upon the above two procedures, the mining process can be
completed in two phases described as follows.

Phase 1: (1 ≤ ct ≤ N)
(0): (ct = 0) B ← ∅; S ← null;
(1): (ct = 1) When e1 arrives, S ′′ ← S ◦ ect = (e1)1; update B to B′′ by GFE-B-
Update; S ← S ′′; B ← B′′;

(2): (ct = 2) When e2 arrives, S ′′ ← S ◦ ect = (e1)1(e2)2; update B to B′′ by
GFE-B-Update; S ← S ′′; B ← B′′;
...

(N): (ct = N) When eN arrives, S ′′ ← S ◦ ect = (e1)1(e2)2 . . . (eN)N ; update B to
B′′ by GFE-B-Update; S ← S ′′; B ← B′′;

4682 M. GAN AND H. DAI

Phase 2: (ct > N)
(N+1): (ct = N + 1) When eN+1 arrives, S ′′ = (e1)1(e2)2 . . . (eN+1)N+1; S ′ =
(e2)2(e3)3 . . . (eN+1)N+1; update B to B′′ by GFE-B-Update; B′ is deduced from
B′′ by RFE-B-Deduction; S ← S ′; B ← B′;
...

(j): (ct = j) When ej arrives, S ′′ = (ej−N)j−N(ej−N+1)j−N+1 . . . (ej)j; new recent
N -length stream S ′ = (ej−N+1)j−N+1(ej−N+2)j−N+2 . . . (ej)j; update B to B′′ by
GFE-B-Update; B′ is deduced from B′′ by RFE-B-Deduction; S ← S ′; B ← B′;
...

(n): (ct = n) When en arrives, the process is terminated by the user.

1 2 … h h+1 … N N+1 … j-N+1 j-N+2 … j j+1 …

 S, B

S”, B”

S’, B’

 S, B

S”,B”

Phase 1 (1≤ct≤N)

T

Phase 2 (ct>N)

1

1 1 1

2

2
1 GFE-B-Update

2 RFE-B-Deduction

Figure 2. The mining process

Therefore, the mining framework can be constructed upon the the two procedures, and
the mining problem can be abstracted as the two procedures.

4. Theorems and Computing Strategies. This section introduces theorems and com-
puting strategies for the two procedures GFE-B-Update and RFE-B-Deduction.

4.1. GFE-B-Update. Since B = ∪n level
i=1 MFi, the essence of GFE-B-Update is to update

MFi to MF ′′
i when a new data element ect+1 arrives, where MFi and MF ′′

i respectively
denote the sets of maximal FEs over S = (e1)1(e2)2 . . . (ect)ct and S ′′ = (e1)1(e2)2 . . .
(ect+1)ct+1 with respect to min supi. From Proposition 3.2, we can deduce the incremental
property of MFi below.

Corollary 4.1 (Incremental Property of MFi). Given N , min sup, error bound k, se-
quence S = (e0)0(e1)1 . . . (ect)ct (let MFi = ∅ when ct = 0) and its corresponding ap-
pended sequence S ′′ = (e1)1(e2)2 . . . (ect+1)ct+1, define n level as Equation (6). For any
i ∈ {1, 2, . . . , n level}, if T -freq(S ′′, 〈ect+1〉) < min supi, MF ′′

i = MFi; otherwise, we
have

MF ′′
i = MFi × {ect+1} = {β|β = α ◦ ect+1 ∧ α ∈MFi} (8)

T -freq(S ′′, α ◦ ect+1) = min(T -freq(S, α), T -freq(S ′′, 〈ect+1〉)) (9)

The incremental property of MFi indicates that when current S is expanded to S ′′

by appending a new data element ect+1, if 〈ect+1〉 is infrequent in S ′′, MFi does not
change in S ′′; otherwise MF ′′

i and T -freq can be obtained as Equations (8) and (9)
respectively. For example, in Figure 1, given N = 5, min sup = 2, error bound k = 0 and
S = (A)1(C)2(A)3(X)4, assume we have obtained MF1 = {A : 2}. When e5 = C arrives,
S ′′ = (A)1(C)2(A)3(X)4(C)5 and T -freq(S ′′, 〈C〉) = 2 ≥ min sup1 = min sup = 2.
Therefore, MF ′′

1 = {〈A〉} × {〈C〉} = {〈AC〉} and T -freq(S ′′, 〈AC〉) = min(2, 2) = 2.
Now consider S = (A)1(C)2(A)3(X)4(C)5 and MF1 = {〈AC〉}. When e6 = Y arrives,

DISCOVERING BASES OF RECENTLY FREQUENT EPISODES 4683

S ′′ = (A)1(C)2(A)3(X)4(C)5(Y)6. We can obtain MF ′′
1 = {〈AC〉} since Y is infrequent

in S ′′.
Based on Corollary 4.1, B can be updated to B′′ without scanning the appended se-

quence S ′′. Furthermore, MF ′′
i has the following property.

Theorem 4.1. For any i ∈ {1, 2, . . . , n level}, ∀α ∈ MF ′′
i , we have (1) MF ′′

i is empty
or contains one and only one episode, and (2) T -freq(S ′′, α) = min supi.

Proof: Please refer to Appendix A for the proof.

4.2. RFE-B-Deduction. RFE-B-Deduction is deducing B′ from B′′. Let sequence S ′′ =
(ect−N)ct−N(ect−N+1)ct−N+1 . . . (ect)ct and S ′ = (ect−N+1)ct−N+1(ect−N+2)ct−N+2 . . . (ect)ct.
S ′ can be generated from S ′′ by deleting the obsolete data element ect−N , denoted as de.
Hence, the key to RFE-B-Deduction is to explore how MF ′′

i is changed when de is deleted.
For any α = 〈a1a2 . . . am〉 ∈ MF ′′

i , we consider how H-freq and T -freq of α over S ′′

change when de is deleted. According to the definition of H-freq, if de 6= a1, H-freq
of α does not change when de is deleted, i.e., H-freq(S ′, α) = H-freq(S ′′, α); otherwise
H-freq(S ′, α) = H-freq(S ′′, α) − 1. According to Equations (4) and (5), for T -freq we
need to check if there exist j ∈ i-minH(S ′′, α) such that de = aj. If such a j exists,
T -freq(S ′, α) = T -freq(S ′′, α) − 1, else T -freq(S ′, α) = T -freq(S ′′, α). Thus, we have
the following lemma.

Lemma 4.1. Given S ′′, S ′, α = 〈a1a2 . . . am〉 ∈MF ′′
i , T -freq(S

′′, α) and de, we have (1)
if de 6= a1, then H-freq(S ′, α) = H-freq(S ′′, α), else H-freq(S ′, α) = H-freq(S ′′, α)−1;
and (2) if ¬∃j ∈ i-minH(S ′′, α) such that de = aj, then T -freq(S ′, α) = T -freq(S ′′, α),
else T -freq(S ′, α) = T -freq(S ′′, α)− 1.

Proof: It can be proven according to the definitions of H-freq and T -freq straight-
away.

Lemma 4.1 indicates that T -freq of α decreases by 1 or does not change when de
is deleted. According to Corollary 4.1, α ∈ MF ′

i if T -freq(S ′, α) = T -freq(S ′′, α);
otherwise α 6∈ MF ′

i . If α 6∈ MF ′
i , a new maximal episode β with respect to min supi

should be generated. This β is from the sub-episodes of α. We can prove that this β is
just the sub-episode that is generated from α by deleting the j-th element (denoted as
β = E-delete(α, j)), where j satisfies aj = de and j ∈ i-minH(S ′′, α). This conclusion is
formally defined as follows.

Theorem 4.2. Given S ′′, S ′, error bound k, MF ′′
i , and de, for any α = 〈a1a2 . . . am〉 ∈

MF ′′
i (m ≥ 2), we have β ∈ MF ′

i if j ∈ i-minH(S ′′, α) and de = aj, where β =
E-delete(α, j) = 〈b1b2 . . . bm−1〉 = 〈a1a2 . . . aj−1aj+1 . . . am〉.

Proof: Please refer to Appendix B for the proof of the theorem.

Definition 4.1 (Computing Strategy for RFE-B-Deduction). Based on Theorem 4.2,
MF ′

i is deduced from MF ′′
i in two major steps.

1. If ¬∃j ∈ i-minH(S ′′, α) such that aj = de, insert α into MF ′
i , else do Step 2.

2. If m ≥ 2 insert β = E-delete(α, j) into MF ′
i .

Then, B′ can be deduced from B′′ by letting B′ = ∪n level
i=1 MF ′

i .

Definition 4.1 indicates that when S ′′ is updated to S ′ by deleting de, if the deleted item
de is in a position j of any episode α ∈MF ′′

i that is in i-minH(S ′′, α), then generate β by
deleting the j-th element in α and insert β into MF ′

i , else let MF ′
i = MF ′′

i . For example,
in Figure 1, given S ′′ = (A)1(C)2(A)3(X)4(C)5(Y)6, MF ′′

1 = 〈AC〉 has been obtained.
Now de = A is deleted and S ′′ becomes S ′ = (C)2(A)3(X)4(C)5(Y)6. For α = 〈AC〉 ∈

4684 M. GAN AND H. DAI

MF ′′
1 , we have i-minH(S ′′, α) = {1, 2}. Since there exists j = 1 ∈ i-minH(S ′′, α) such

that a1 = A = de, we have β = E-delete(〈AC〉, 1) = 〈C〉 and MF ′
1 = {〈C〉}.

5. The Mining Framework. The mining framework can be constructed upon GFE-
B-Update and RFE-B-Deduction. According to the description of the mining process in
Section 3.3, the mining framework is described in Algorithm 1 (Figure 3). In the mining
process, a table, FR, is used to record T -freq of each item.

Algorithm 1: RFE-B-Miner(, , k, N)

Input: stream , k and

Output: base found from

 1: ; ; ;

 2: while // Phase 1

 3: ;

 4: ; ;

 5: ;

 6: output ();

 7: while (not terminate) // Phase 2 (ct>N)

 8: ;

 9: ;

10: ; ;

11: output);

12: ;

Figure 3. Algorithm RFE-B-Miner

In Algorithm 1, Phase 1 is implemented from Line 2 to Line 5. In Line 3, when new
data element ect arrives, B and FR over S = (e1)1(e2)2 . . . (ect−1)ct−1 are respectively
updated to B′′ and FR′′ over S ′′ = (e1)1(e2)2 . . . (ect)ct by calling the GFE-B-Update
procedure. Phase 2 is implemented from Line 7 to Line 12. In Phase 2, when new
data element ect arrives, two procedures are conducted. In Line 8, B and FR over S =
(ect−N)ct−N(ect−N+1)ct−N+1 . . . (ect−1)ct−1 are respectively updated to B′′ and FR′′ over
S ′′ = (ect−N)ct−N(ect−N+1)ct−N+1 . . . (ect)ct by calling the GFE-B-Update procedure. In
Line 9, B′ and FR′ over S ′ = (ect−N+1)ct−N+1(ect−N+2)ct−N+2 . . . (ect)ct are respectively
deduced from B′′ and FR′′ over S ′′ = (ect−N)ct−N(ect−N+1)ct−N+1 . . . (ect)ct. Since the data
stream is unbounded, the algorithm is terminated by the user.
The GFE-B-Update procedure is shown in Figure 4. Its main task is to update B and

FR over S to B′′ and FR′′ over S ′′ respectively. The major operations (Lines 3-6) are
based on Corollary 4.1.
In the RFE-B-Deduction procedure as shown in Figure 5, B′ and FR′ over S ′ are

deduced from B′′ and FR′′ over S ′′ respectively. According to Definition 4.1, MF ′
i is

deduced from MF ′′
i from Line 3 to Line 8.

An example is used to illustrate how RFE-bases are discovered by RFE-B-Miner.

Example 5.1. Given a stream as shown in Figure 1, min sup = 2, k = 0, N = 5,
RFE-B-Miner is used to discover RFE-bases from the stream adaptively. It terminates
when ct = 10.

The mining process is described as follows.

Phase 1: (1 ≤ ct ≤ 5)

DISCOVERING BASES OF RECENTLY FREQUENT EPISODES 4685

Procedure 1: GFE-B-Update

Input: and new arriving data element

Output: and

1: Update to when arrives;

2: for i = 1 to do

3: if in , then

4: ;

5: else

6: ;

7: ;

8: return ();

Figure 4. Procedure GFE-B-Update

Procedure 2: RFE-B-Deduction

Input: , , and the obsolete data element to be deleted,

Output: and

 1: Update to when de is deleted;

 2: for i = 1 to do

 3: Get from ;

 4: if such that then

 5: Insert into ;

 6: else if

 7: ;

 8: Insert into ;

 9: ;

10: return (,);

Figure 5. Procedure RFE-B-Deduction

(1): (ct = 1) S ′′ = (A)1 when e1 = A arrives. FR← {A : 1}. No frequent episodes
appear. So, B ← ∅; S ← S ′′.

(2): (ct = 2) S ′′ = (A)1(C)2 when e2 = C arrives. FR ← {A : 1, C : 1}. No
frequent episodes appear. So, B ← ∅; S ← S ′′.

(3): (ct = 3) S ′′ = (A)1(C)2(A)3 when e3 = A arrives. FR ← {A : 2, C : 1}.
MF ′′

1 ← {〈A〉 : 2}; MF1 ←MF ′′
1 ; B′′ ← {〈A〉 : 2}; B ← B′′; S ← S ′′.

(4): (ct = 4) S ′′ = (A)1(C)2(A)3(X)4 when e4 = X arrives. FR ← {A : 2, C :
1, X : 1}. X is infrequent in S ′′. So, MF and B do not change; S ← S ′′.

(5): (ct = 5) S ′′ = (A)1(C)2(A)3(X)4(C)5 when e5 = C arrives. FR← {A : 2, C :
2, X : 1}, MF ′′

1 ← MF1 × {C} = {〈AC〉 : 2}; B′′ ← {〈AC〉 : 2}; B ← B′′;
S ← S ′′.

Phase 2: (ct > 5)
(6): (ct = 6)

(a): (GFE-B-Update) S ′′ = (A)1(C)2(A)3(X)4(C)5(Y)6 when ae = e6 = Y
arrives. FR = {A : 2, C : 2, X : 1, Y : 1}. Since Y is infrequent in S ′′,
according to Corollary 4.1, MF ′′

1 = MF1 = {〈AC〉 : 2} and B = {〈AC〉 : 2}.

4686 M. GAN AND H. DAI

(b): (RFE-B-Deduction) When de = e1 = A is deleted, for 〈AC〉 ∈MF ′′
1 , ∃j =

1 ∈ i-minH(S ′′, α) such that a1 = A. So, insert β = E-delete(〈AC〉, 1) =
〈C〉 into MF ′

1. Thus, B′ = MF ′
1 = {〈C〉 : 2}. B ← B′.

(7): (ct = 7) Similarly, B = {〈X : 2〉} can be found.
(8): (ct = 8) Similarly, B = {〈XY : 2〉} can be found.
(9): (ct = 9) Similarly, B = {〈Y Y : 2, Y : 3〉} can be found.
(10): Terminate.

In above, the FE-base is adaptively discovered based on GFE-B-Update and RFE-B-
Deduction when the steam evolves. The obtained results at each step demonstrate the
effectiveness of our approach.

6. Experimental Results. The proposed algorithm was performed on synthetic data.
Comparisons of condensation, time efficiency and space usage were conducted between
our method and three previous methods, MINEPI [2], EMMA [6] and Clo episode [7].
The algorithms were implemented in Java. All experiments were performed on a computer
with 2.4Ghz CPU and 1GB memory, running on windows XP.
A sequence database was created by a synthetic sequence generator [18], and then

the sequences in this database were connected to form a long sequence. The generation
process involves three major parameters: S (k) (the number of data elements contained
in S), I (the number of distinct items) and N (the length of recent sequence). We use the
parameters and their values to represent a generated sequence, e.g., S10I5N5000.

6.1. Condensation. We performed our approach and three previous approaches on two
groups of sequences: S10I20N5000 (R min sup 1 varies from 4% to 10%) and S10I5-
100N5000 (|I| varies from 5 to 100). The condensation of the FE sets found by different
methods are measured by the number of episodes contained in each discovered set. Fig-
ure 6(a) shows an condensation comparison among the sets found from S10I20N5000 by
different methods. Figure 6(b) shows an condensation comparison among the sets found
from S10I5 100N5000. Note that the vertical axis of Figures 6(a) and 6(b) use logarith-
mic scales. From Figure 6(a), we can see the size of discovered sets by three previous
approaches decreases substantially when R min sup increases. Figure 6(b) demonstrates
that, for the three previous methods, the larger |I| is, the less the average frequency of
each episode is, and thus fewer frequent episodes are found. In contrast, the size of RFE-
bases decreases slightly when relative min sup and |I| increase. This is because its size
is bounded by n level, which is not heavily affected by relative min sup and |I|.
The results in Figure 6 demonstrate that the found RFE-bases are about 10 times

smaller than the closed sets and around 100 times smaller than complete sets. Moreover,
the size of the resulting sets has better scalability against min sup and |I| than complete
sets and closed sets. The high condensation makes results more concise and convenient
for users to select and use. In conclusion, the results have higher condensation and better
scalability.

6.2. Time efficiency. The time efficiency of different methods is evaluated and com-
pared in two mining problems: GFE mining and RFE mining. GFE-mining corresponds
to Phase 1 of RFE-B-Miner. Since the previous methods cannot discover RFEs incre-
mentally, they have to scan and mine the recent N -length sequence from scratch to find
current RFEs whenever a new data element arrives. Parameters R min sup and N are
adjusted in the evaluation of time efficiency.

1Relative support and relative min sup (R min sup) were adopted in the experiment. Relative
support of episode α over S, denoted as R sup(S, α), is defined as sup(S, α)/N , where sup(S, α) =
T -freq(S, α).

DISCOVERING BASES OF RECENTLY FREQUENT EPISODES 4687

 (a) Condensation vs. min_sup (b) Condensation vs. |I|

1

10

100

1000

10000

100000

4 6 8 10

#
 o

f
d

is
co

v
e

re
d

 e
p

is
o

d
e

s

relative min_sup (%)

MINEEPI

EMMA

Clo_episode

RFE-B-Miner

1

10

100

1000

10000

100000

5 20 50 100

#
 o

f
d

is
co

v
e

re
d

 e
p

is
o

d
e

s

|I|

MINEEPI

EMMA

Clo_episode

RFE-B-Miner

Figure 6. Condensation comparison

Figures 7(a) and 7(b) show the comparison of runtime on S10I20N5000 (R min sup
varies from 2% to 10%) and S10I20N100-10k (N varies from 100 to 10k) respectively.
For our method, the runtime of Phase 1 refers to the time spent on GFE mining over
the sequence from timestamp 1 to N , and the runtime of Phase 2 refers to the average
time expense on one update when a new data element arrives. The results in Figure 7
demonstrate that: (1) our method is much faster than the other three approaches in both
GFE mining and RFE mining; (2) RFE-B-Miner needs only 5-10 seconds on Phase 1, and
can find the new RFE-base instantly whenever a new data element arrives; and (3) the
three previous approaches need around 30 to 800 seconds for the average R min sup (e.g.,
6%) and N (e.g., 5000), since they have to scan and mine the recent N -length sequence
from scratch. In addition, Figure 7(a) shows that, for all methods, less time is needed
when R min sup increases. Figure 7(b) demonstrates that the time cost on Phase 2 is
not affected by N (since RFE-Bases are computed adaptively in Phase 2); whereas the
time cost of the other methods increases substantially when N increases.

The above comparison of time efficiency demonstrates that our approach is able to
complete the mining within a few seconds and thus meets the real-time response require-
ment of stream mining. However, the previous approaches are much less efficient and not
suitable for online mining of RFEs.

2 4 6 8 10
0

10

100

500

1000

Relative min_sup (%)

R
un

tim
 (

s)

(b) runtime vs. relative min_sup

100 1000 5000 8000 10000
0

10

100

500

1000

N

R
un

tim
 (

s)

(b) runtime vs. N

MINEPI

EMMA

Clo_episode

Phase1

Phase2

MINEPI

EMMA

Clo_episode

Phase1

Phase2

Figure 7. Runtime comparison

4688 M. GAN AND H. DAI

6.3. Space usage. Figures 8(a) and 8(b) show the comparison of space usage on S10I20N
5000 (R min sup varies from 4% to 10%) and S10I20N100-10k (N varies from 1k to 10k)
respectively. The results show that RFE-B-Miner is more space efficient consuming a few
mega bytes of memory. The reason why it consumes limited memory in the mining process
is because the recent sequence is not kept, and only table FR, the current RFE-base, and
two data elements (the added and the deleted) are recorded. As shown in Figure 8(b),
the memory usage of RFE-B-Miner is not affected by N . Consequently, it can process
long sequences and unbounded streams. However, the other approaches need to keep the
whole sequence for mining. Hence, they consume more memory and their space usage
depends on N directly. In addition, in the experiments, we found that k has little impact
on space and time efficiency. So, we can specify k = 0 to obtain both condensed and
exact resulting sets.
In summary, the results demonstrate that our approach is effective in online mining of

RFEs with the advantages of condensed results and high efficiency of time and space. In
contrast, previous approaches are not suitable for mining RFEs over unbounded streams.

(a) Memory usage vs. R_min_sup (b) Memory usage vs. N

0

5

10

15

20

4 6 8 10

M
e

m
o

ry
 u

sa
g

e
 (

M
B

)

relative min_sup (%)

MINEPI

EMMA

Clo_episode

RFE-B-Miner

0

5

10

15

20

1 5 8 10

M
e

m
o

ry
 u

sa
g

e
 (

M
B

)

N (*1000)

MINEPI

EMMA

Clo_episode

RFE-B-Miner

Figure 8. Comparison of memory usage

7. Conclusions and Future Work. In this paper, we investigated online mining of re-
cently frequent episodes over data streams. Based on frequency metric T -freq [4] and FE-
bases, we abstracted the mining problem as two basic procedures called GFE-B-Update
and RFE-B-Deduction. An efficient one-pass method, RFE-B-Miner, was proposed for
online mining of RFE-bases adaptively.
Experimental results have shown that the proposed method is capable of finding RFE-

bases adaptively and rapidly with only one scan of the stream. Compared with the
previous approaches, RFE-B-Miner has distinct advantages in the discovery of RFEs,
such as one-pass (without tracing back passed data elements), rapid result update and
return, more condensed resulting sets and less space usage.
The proposed method can be used for online mining of RFEs from various data streams

such as HTTP-request streams [19]. Although the method is discussed on streams in this
paper, it is also applicable to non-streaming sequences like DNA sequences [20]. Further-
more, integrating the proposed methods with fuzzy theory and proper statistical models,
one could detect interesting dynamic changes in different real data streams/sequences,
such as gene structure changes, HTTP-request changes and changes of real-time stream-
ing stock quotes. These changes can be respectively applied to gene analysis, Web-access
monitor and intrusion detection, and stock market analysis.
However, our approach has some deficiencies. The first is the lack of explicit restriction

of window width. In our framework, the window-width restriction is underlying in the

DISCOVERING BASES OF RECENTLY FREQUENT EPISODES 4689

nature distribution of episodes in the sequence. This may yield too long episodes. This is
could be improved by imposing window-width restriction and adjusting GFE-B-Update
and RFE-B-Deduction. The second limitation is that the proposed approach only applies
to simple sequences and cannot process complex sequences [6, 21]. We aim to improve
these deficiencies in the future work.

REFERENCES

[1] H. Mannila, H. Toivonen and A. Verkamo, Discovering frequent episodes in sequences, Proc. of the 1st
ACM SIGKDD Int. Conf. on Knowledge Discovery & Data Mining, Montreal, Canada, pp.210-215,
1995.

[2] H. Mannila and H. Toivonen, Discovering generalized episodes using minimal occurrences, Proc. of
the 2nd ACM SIGKDD Int. Conf. on Knowledge Discovery & Data Mining, Portland, OR, USA,
pp.146-151, 1996.

[3] H. Mannila, H. Toivonen and A. I. Verkamo, Discovery of frequent episodes in event sequences, Data
Mining and Knowledge Discovery, vol.1, no.3, pp.259-289, 1997.

[4] K. Iwanuma, R. Ishihara, Y. Takano and H. Nabeshima, Extracting frequent subsequences from a
single long data sequence: A novel anti-monotonic metric and a simple on-line algorithm, Proc. of
the 5th IEEE Int. Conf. on Data Mining, pp.186-193, 2005.

[5] S. Laxman, P. Sastry and K. Unnikrishnan, A fast algorithm for finding frequent episodes in event
streams, Proc. of the 13th ACM SIGKDD Int. Conf. on Knowledge Discovery & Data Mining, San
Jose, CA, USA, pp.410-419, 2007.

[6] K. Huang and C. Chang, Efficient mining of frequent episodes from complex sequences, Information
Systems, vol.33, no.1, pp.96-114, 2008.

[7] W. Zhou, H. Liu and H. Cheng, Mining closed episodes from event sequences efficiently, Proc. of
the 14th Pacific-Asia Conf. on Knowledge Discovery & Data Mining, Hyderabad, India, pp.310-318,
2010.

[8] F. Bodon and Z. Hornak, Filtering false alarms: An approach based on episode mining, Periodica
Polytechnica, Electrical Engineering, vol.49, no.1-2, pp.3-23, 2005.

[9] J. Luo and S. M. Bridges, Mining fuzzy association rules and fuzzy frequent episodes for intrusion
detection, International Journal of Intelligent Systems, vol.15, pp.687-703, 2000.

[10] A. Ng and A. W. Fu, Mining frequent episodes for relating financial events and stock trends, Proc. of
the 7th Pacific-Asia Conf. on Knowledge Discovery and Data Mining, Seoul, Korea, pp.27-39, 2003.

[11] R. Bathoorn, M. Welten, M. Richardson, A. Siebes and F. J. Verbeek, Frequent episode mining
to support pattern analysis in developmental biology, Proc. of the 5th IAPR Int. Conf. on Pattern
Recognition in Bioinformatics, Nijmegen, Netherland, pp.253-263, 2010.

[12] R. Agrawal, T. Imielinski and A. Swami, Mining association rules between sets of items in large
databases, Proc. of ACM-SIGMOD the 20th Int. Conf. on Management of Data, Washington, USA,
pp.207-216, 1993.

[13] N. Pasquier, R. Bastide, R. Taouil and L. Lakhal, Discovering frequent closed itemsets for association
rules, Proc. of the 7th Int. Conf. on Database Theory, Jerusalem, Israel, pp.398-416, 1999.

[14] R. J. Bayardo, Efficiently mining long patterns from databases, Proc. of ACM SIGMOD the 25th
Int. Conf. on Management of Data, Seattle, Washington, USA, pp.85-93, 1998.

[15] J. Pei, G. Dong, W. Zou and J. Han, On computing condensed frequent pattern bases, Proc. of the
2nd IEEE Int. Conf. on Data Mining, Maebashi, Japan, pp.398-416, 2002.

[16] M. Gan and H. Dai, A study on the accuracy of frequency measures and its impact on knowledge
discovery in single sequences, Proc. of Workshops at IEEE the 10th Int. Conf. on Data Mining,
Sydney, Australia, pp.859-866, 2010.

[17] M. Gan and H. Dai, Obtaining accurate frequencies of sequential patterns over a single sequence,
ICIC Express Letters, vol.5, no.4(B), pp.1461-1466, 2011.

[18] R. Agrawal and R. Srikant, Fast algorithms for mining association rules, Proc. of the 20th Interna-
tional Conference on Very Large Data Bases, pp.487-499, 1994.

[19] G. T. Raju, P. S. Satyanarayana and L. M. Patnaik, Knowledge discovery from web usage data:
Extraction and applications of sequential and clustering patterns – A survey, International Journal
of Innovative Computing, Information and Control, vol.4, no.2, pp.381-389, 2008.

[20] Q. Zhang, R. Zhang and B. Wang, DNA sequence sets design by particle swarm optimization
algorithm, International Journal of Innovative Computing, Information and Control, vol.5, no.8,
pp.2249-2255, 2009.

4690 M. GAN AND H. DAI

[21] M. Gan and H. Dai, Mining condensed sets of frequent episodes with more accurate frequencies from
complex sequences, International Journal of Innovative Computing, Information and Control, vol.8,
no.1(A), pp.453-470, 2012.

Appendix A. Proof of Theorem 4.1.

Proof: Proof of (1). Since initially MFi = ∅ and Equation (8), we can deduce that
MF ′′

i is empty or contains one and only one episode.
Proof of (2). The basic idea is to prove that any 1-length episode α in MF ′′

i satisfies
T -freq(S ′′, α) = min supi, and then to prove any m-length (m ≥ 2) episode β in MF ′′

i

satisfies T -freq(S ′′, β) = min supi.
Given any 1-length episode α = 〈a1〉 ∈ MF ′′

i , assume T -freq(S ′′, α) > min supi.
For α, we construct a supper-episode β = 〈a1a1〉. According to Equation (2), we have
H-freq(S ′′, β) = H-freq(S ′′, α)−1. Thus, T -freq(S ′′, β) = T -freq(S ′′, α)−1 (according
to Equation (3)). So, we have T -freq(S ′′, β) > min supi − 1, i.e., T -freq(S ′′, β) ≥
min supi. That is to say a super-episode β of α is frequent with respect to min supi.
This contradicts the assumption of α ∈ MF ′′

i . Therefore, for any 1-length episode α,
T -freq(S ′′, α) = min supi.
Now we prove the theorem holds for any 2-length episode β inMF ′′

i , i.e., T -freq(S
′′, β) =

min supi. According to Corollary 4.1, β is generated by expanding 1-length episode α with
ec+1, i.e., β = α◦ec+1, and T -freq(S ′′, β) = T -freq(S◦ej+1, β) = min(T -freq(S, α), T -freq
(S ′′, 〈ej+1〉)). Since T -freq(S, α) = min supi (as proven above) and T -freq(S ′′, 〈ej+1〉) ≥
min supi (a condition in Corollary 4.1), min(T -freq(S, α), T -freq(S ′′, 〈ej+1〉)) = T -freq
(S, α) = min supi. Therefore, T -freq(S ′′, β) = min supi. Similarly, we can prove that
for any m-length (m > 2) episode γ ∈MF ′′

i , T -freq(S
′′, γ) = min supi.

Appendix B. Proof of Theorem 4.2.

Proof: The basic idea is to prove (1) T -freq(S ′′, β) ≥ min supi and (2) if any item is
inserted into β, it becomes infrequent with respect to min supi.
Proof of (1). Since β = E-delete(α, j), according to Lemma 4.1, we have T -freq(S ′, β) =

T -freq(S ′′, β). According to anti-monotonicity, we have T -freq(S ′′, β) ≥ T -freq(S ′′, α).
In addition, we have T -freq(S ′′, α) = min supi according to (2) in Theorem 4.1. There-
fore, T -freq(S ′, β) ≥ T -freq(S ′′, α) = min supi.
Proof of (2). We prove that T -freq(S ′, γ) < min supi if γ (γ 6= α) is generated

by inserting an item into β. According to anti-monotonicity, we have T -freq(S ′, γ) ≤
T -freq(S ′, β) = min supi. If T -freq(S

′, γ) ≥ min supi, then T -freq(S ′′, γ) ≥ T -freq(S ′,
γ) ≥ min supi. Since α is a maximal FE with respect to min supi, γ should be a sub-
episode of α. But γ 6v α because γ.L = α.L = m and γ 6= α. This deduces a contradiction.
Therefore, T -freq(S ′, γ) < min supi.

