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Abstract. Sequential pattern mining (SPAM) is one of the most interesting research
issues of data mining. In this paper, a new research problem of mining data streams
for sequential patterns is defined. A data stream is an unbound sequence of data ele-
ments arriving at a rapid rate. Based on the characteristics of data streams, the problem
complexity of mining data streams for sequential patterns is more difficult than that
of mining sequential patterns from large static databases. Therefore, mining sequential
patterns from data streams is a challenging research issue of data mining and knowl-
edge discovery. Hence, an efficient single-pass algorithm, called IncSpam (Incremental
Sequential pattern mining of streaming itemset-sequences), is proposed for discovering se-
quential patterns from streaming itemset-sequences over extended sliding window models.
In the framework of IncSpam algorithm, a new sliding window model, called CSW-BV
(Customer Sliding Window with Bit-Vectors), and an extended lexicographic tree-based
data structure, called LexSeq-Tree (Lexicographic Sequence Tree), are developed to re-
duce the time and memory needed to slide the windows over streaming data and maintain
all sequential patterns of current sliding windows. Experimental results show that the
proposed method is an efficient single-pass algorithm for mining sequential patterns from
streaming data.
Keywords: Data streams, Data mining, Data stream mining, Sequential pattern mining

1. Introduction. Mining frequent patterns from data streams is one of the most inter-
esting research issues of data mining and knowledge discovery. A data stream (also called
streaming data) is an unbound sequence of data elements arriving at a rapid rate [10].
Many applications generate data streams in real time including sensor data flows from
sensor network, online transaction flows of retail chains, Web record and click streams of
Web applications, and call record flows of telecommunication [10,24]. Based on the unique
characteristics of data streams, several new performance issues of mining data streams are
described as follows [10,24]. First, data elements of data streams continuously arrive at a
rapid rate and the number of data is huge. This issue means that the first performance
requirement of mining data streams is real time for processing each new incoming element
arrived in data streams. Second, once a data element is removed from the in-memory data
structure of the proposed approaches, it is unable to backtrack over previously-arrived
data elements from streaming data. Hence, the second requirement is only one-pass scan
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over each element of data streams. Third, the memory requirement for storing all stream-
ing data is unlimited because streaming data is an unbounded sequence of data elements.
Hence, the proposed methods use limited memory usage to maintain all essential infor-
mation about an infinite streaming data. Consequently, the three major performance
requirements of mining data streams are single-pass mining, bounded space requirement
and real-time element processing. Since the unique characteristics of data streams, mining
sequential patterns from data streams is more difficult than mining sequential patterns
from a large static dataset.
In this paper, we address the issue of single-pass mining sequential patterns from data

streams. Based on above descriptions of streaming data mining, previous multiple-pass se-
quential pattern mining methods [1,2,6-9,11,12,14,15,17,18,20-23] cannot feasibly be used
for one-pass mining sequential patterns from data streams. Recently, many approaches
were proposed for one-pass mining of sequential patterns from data streams [4,5,16,19].
However, these methods are focused on mining sequential patterns from streaming item-
sequences, not from streaming itemset-sequences. Based on the descriptions of data
streams, the research problem complexity of mining sequential patterns from streaming
itemset-sequences is more difficult than that of mining sequential patterns from stream-
ing item-sequences. Mining sequential patterns from streaming itemset-sequences is a
challenging research problem of data mining and knowledge discovery. Consequently, we
propose in this paper an efficient single-pass algorithm, called IncSpam (Incremental
Sequential pattern mining of streaming itemset-sequences), for discovering sequential
patterns from streaming itemset-sequences over extended sliding window models. In
the framework of IncSpam algorithm, a new sliding window model, called CSW-BV
(Customer Sliding Window with Bit-Vectors), and an extended lexicographic tree-based
data structure, called LexSeq-Tree (Lexicographic Sequence Tree), are developed to re-
duce the time and memory needed to slide the windows over streaming data and maintain
all sequential patterns of current sliding windows.

1.1. Related works. Many multiple-scan approaches are proposed for mining sequential
patterns [1,2,8,11,15,18,20,21] and closed sequential patterns [6,7,14,22] from large static
databases. Agrawal et al. [1] introduced the concept of sequential patterns and proposed
efficient algorithms for this problem. Do and Kim [8] proposed algorithms with sequential
mining techniques for clustering categorical data based on combinations of attribute val-
ues. Jea et al. [11] developed efficient hierarchical mining approaches for mining hybrid
sequential patterns. Pei et al. [18] proposed an efficient algorithm, called PrefixSpan, to
mine sequential patterns by prefix-projected pattern growth. Lin et al. [15] used memory
indexing and database partitioning techniques to decrease the time of mining sequential
patterns. The assumption is that entire sequence database can be loaded into main mem-
ory. An efficient algorithm, called SPAM [2], uses a lexicographic sequence tree to check
all possible frequent sequences. Bitmap representation is used in SPAM for speeding up
mining process of sequential patterns. Sui et al. [20] developed efficient types’ common-
ality and sequential pattern mining based algorithms for extracting hyponymy relations
between Chinese terms. Wang et al. [21] proposed effective sequential pattern mining
algorithms and used the discovered Web sequential patterns to establish useful website
navigation support systems.
Yan et al. [22] provided an efficient algorithm, called CloSpan, to mine closed sequen-

tial patterns in large datasets. Chen et al. [6] proposed efficient algorithms to mine the
multiple-level sequential patterns. A concept hierarchy is used to represent the rela-
tionship between items. For the flexibility of sequence database, incremental mining of
sequential patterns is another important research issue of sequential pattern mining. Lin
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et al. [14] proposed efficient algorithms for mining sequential patterns in a large database
by using implicit merging and efficient counting techniques. Cheng et al. [7] developed
efficient algorithms for mining sequential patterns by incremental updates. Although all
above algorithms are efficient techniques for mining sequential patterns or closed sequen-
tial patterns from large databases, they are not feasible for sequential pattern mining in
such streaming environment.

In recent years, mining sequential patterns from data streams has become one of the
most important research issues of data mining [5,16,19]. Chen et al. [5] proposed an effi-
cient algorithm for mining sequential patterns across multiple data streams. Marascu and
Masseglia [16] proposed an efficient method, called SMDS, to mine sequential patterns
from web usage sequences. In [19], the authors proposed a tree structure which offers a re-
gion technique to store sequential patterns from a data stream. However, these algorithms
are only proposed for mining sequential patterns from streaming item-sequences. Conse-
quently, the problem of mining sequential patterns from streaming itemset-sequences is
discussed in this paper. We proposed an efficient one-pass algorithm, called IncSpam
(Incremental Sequential pattern mining of streaming itemset-sequences), for mining se-
quential patterns over a stream of itemset-sequences. Based on our knowledge, the pro-
posed algorithm IncSpam is the first single-pass method for this interesting research issue
of sequential pattern mining.

1.2. Our contributions. The contributions of this work are summarized as follows.

• A new research problem of data mining for mining sequential patterns from a stream
of itemset-sequences is defined in this paper.

• An efficient single-pass algorithm, called IncSpam (Incremental Sequential pattern
mining of streaming itemset-sequences), is proposed for discovering a set of sequential
patterns from continuous data streams with itemset-sequences.

• Based on the framework of IncSpam algorithm, a new sliding window model, called
CSW-BV (Customer Sliding Window with Bit-Vectors), and an extended lexi-
cographic tree-based data structure, called LexSeq-Tree (Lexicographic Sequence
Tree), are developed to reduce the time and memory needed to slide the windows
over streaming data and maintain all sequential patterns of current sliding windows.

• Experimental results show that the proposed algorithm IncSpam is an efficient online
mining technique for finding a set of sequential patterns over a stream of itemset-
sequences.

• Based on our best knowledge, the proposed method IncSpam is the first single-pass
algorithm for mining sequential patterns from streaming itemset-sequences.

1.3. Roadmap. The remainder of the paper is organized as follows. Section 2 defines the
problem of single-pass mining of sequential patterns from streaming itemset-sequences.
The proposed algorithm IncSpam algorithm is proposed in Section 3 for mining sequential
patterns from streaming itemset-sequences. Experimental results of the proposed IncSpam
algorithm are discussed in Section 4. Finally, we conclude the work in Section 5.

2. Problem Statement. Let ψ = {i1, i2, · · ·, iM} be a set of literals, called items. An
itemset X = (e1, e2, · · ·, ep) is a non-empty set of p items such that X ⊆ ψ and p ≥ 1. A
transaction T = (TID,X) consists of an itemset X and a unique transaction identifier
TID. An itemset-sequence (or sequence in short) s = ⟨T1T2· · ·Tq⟩ is an ordered list of
q transactions, where q ≥ 1. In other words, a sequence s = ⟨Y1Y2· · ·Yq⟩ is an ordered list
of q itemsets from Y1 to Yq. Without loss of generality, we assume that the items in an
element are in lexicographic order. Let C = {c1, c2, · · ·, cN} be a set of all customers.
Each customer has a unique identifier CID and an itemset-sequence. The length of an
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itemset-sequence s, written as s.length, is the total number of items in all the itemsets
of s. A sequence s is a k-sequence if s.length = k. A sequence s = ⟨a1,a2, · · ·, ap⟩ is a
subsequence of a sequence s′ = ⟨b1, b2, · · ·, bq⟩ if there exist integers i1 < i2 < · · · < ip
such that a1 ⊆ bi1, a2 ⊆ bi1, · · ·, and ap ⊆ bip. Note that itemset-sequence is also called
customer sequence in this paper.
A data stream DS = {D1, D2, · · ·, Dn} is a continuous, unbounded sequence of data

elements, where n is the identifier of new incoming data element Dn. A data element
is a set of (CID, TID, itemset) pairs, in which each customer identifier is distinct with
others. A customer sliding window CSWCID of size w contains w most recent data
elements for the customer with identifier CID. The window size w of CSWCID is the
number of data elements in it.
A set of current customer sliding windows of data streams is called the current data-

base, denoted by CDB. The support of customer sequence s, denoted as s.sup, is the
number of customer sequences containing s divided by the total number of customer
sequences in CDB. A sequence s is a frequent sequence, also called a sequential pat-
tern, if s.sup ≥ minsup, where minsup is the user specified minimum support threshold
in the range of [0, 1].

Definition 2.1. (Problem Definition of Single-Scan Mining of Sequential Pat-
terns from Data Streams) Given a minimum support threshold minsup and the size of
customer sliding window w and the data stream DS, the problem of single-scan mining of
sequential patterns from streaming itemset-sequences is to discover the set of all frequent
sequences from current database CDB, which includes most recent w data elements in
each customer sliding window.

Example 2.1. An example data stream DS with seven customer sequences T1, T2, · · ·, T7
is given in Figure 1, where a, b, c and d are items. In this instance, we assume that the
window size of each CSW is 2, that is, the most recent 2 transactions of each customer
are recorded in customer sliding windows with each customer identifier CID as the right
side of Figure 1. From this figure, we can find that the CSW1 is composed of T3 and T6,
although there are three transactions with CID#1, i.e., T1, T3 and T6. Moreover, CSW2

and CSW3 are {(d), (a, b, c)} and {(a, b), (b, c, d)}, respectively.

Figure 1. An example data stream DS and current CSW with size w = 2



A SINGLE-SCAN ALGORITHM FOR MINING SEQUENTIAL PATTERNS 1803

3. On Mining of Sequential Patterns from Streaming Itemset-Sequences. In
this section, an efficient single-pass algorithm, called IncSpam (Incremental Sequential
pattern mining of Streaming itemset-sequences), is proposed for discovering a set of se-
quential patterns from a stream of itemset-sequences over sliding windows. Based on
the framework of IncSpam, a new sliding window model, called CSW-BV (Customer
Sliding Window with Bit-Vectors), and an extended lexicographic tree-based data struc-
ture, called LexSeq-Tree (Lexicographic Sequence Tree), are developed to reduce the
time and memory needed to slide the windows over streaming itemset-sequences and
maintain all sequential patterns of current customer sliding windows. The proposed algo-
rithm IncSpam is composed of three major phases, window initialization phase, window
sliding phase and sequential pattern generation phase, for mining sequential patterns from
streaming item-sequences over sliding windows. Given a customer sliding window CSW
of size w, the window initialization phase is activated while the number of transactions
generated so far is less than the window size w. After the window CSW is full, the second
phase is activated. Furthermore, sequential pattern generation is performed periodically
in the window sliding phase. Consequently, we shall focus on the definitions of CSW-
BV and LexSeq-Tree and devise efficient algorithms for the building and maintenance of
CSW-BV and LexSeq-Tree in this section.

In the window initialization phase of IncSpam algorithm, an effective customer sliding
window model, called CSW-BV (Customer Sliding Window with Bit-Vectors), is de-
veloped for storing customer sequences of each customer. In the CSW-BV model, each
transaction of customer-sequence is transformed into a bit-vector based sequence repre-
sentation. Constructing and sliding of the CSW-BV model is discussed in Section 3.1.
Furthermore, an extended lexicographic-tree based data structure, called LexSeq-Tree
(Lexicographic Sequence Tree), is constructed for maintaining all sequential patterns from
current database.

In window sliding phase of IncSpam algorithm, two operations are performed. First,
CSW-BV model is updated. It is because of the oldest sequence information is dropped
and new incoming sequence information is inserted into the CSW-BV model. After that,
oldest sequence information is also deleted from and new incoming customer sequences
are inserted into the current LexSeq-Tree.

In the last phase, i.e., sequential pattern generation phase, of IncSpam algorithm, a set
of sequential patterns are generated by traversing the current LexSeq-Tree by using an
efficient method. Furthermore, a weight mechanism is also used in the proposed IncSpam
algorithm to judge the importance of customer sequences and ensure the correctness of
the customer sliding window model.

3.1. Window initialization phase: building of the CSW-BV and LexSeq-Tree.
In the window initialization phase of IncSpam algorithm, an effective customer sliding win-
dow model, called CSW-BV (Customer Sliding Window with Bit-Vectors, as discussed
in Section 3.1.1), is developed for storing customer sequences of each customer. Moreover,
an extended lexicographic-tree based data structure, called LexSeq-Tree (Lexicographic
Sequence Tree, as discussed in Section 3.1.2), is constructed for maintaining all sequential
patterns from current database. However, in the issue of sliding window-based mining
of frequent itemsets from data streams, the lastest w transactions of data streams are
maintained in a window for frequent pattern discovery [3,5,24]. But, the technique is not
feasible for mining sequential patterns from streaming itemset-sequences. Hence, a new
sliding window model, called customer sliding window (CSW), is proposed in this work
for mining sequential patterns from streaming itemset sequences. Based on the defini-
tion of customer sequence, each customer has several transactions generated from data
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streams. For maintaining the transactional information of each customer, IncSpam uses
the customer sliding window model (CSW-model) to maintain the latest w transactions
for each customer from data streams. Consequently, each customer has a list of most
recent w transactions in the CSW-model as example in Figure 1.

3.1.1. Customer sliding window with bit-vectors (CSW-BV). In the framework of Inc-
Spam algorithm, the bit-vector techniques are used in the CSW-model to maintain the
customer transactional information of sliding windows from data streams. The extended
CSW-model is called customer sliding window with bit-vectors (CSW-BV) in this paper.
Bit-vector representation of all items with latest two transactions for each customer of
Example 2.1 is given in Figure 2. In this figure, all bit-vectors of customers are recorded as
a unique data structure for each customer. The unique data structure is called CSW-BV.

Figure 2. Bit-vectors of all items with latest two transactions for each customer

In the CSW-BV model, only the latest N transactions of each customer sequence s are
maintained in the extended sliding window model, where N is a user-defined window size.
Each bit-vector of item x contains N bits to represent the occurrences of x in the latest
N transactions. If an item x is in the i-th sequence of CSW, the i-th bit of item x is set
to be 1; otherwise, it is set to be 0. An example CSW-BV model of Example 2.1 is shown
in Figure 3. In the CSW-BV model, each customer has a customer identifier (CID) and is
associated with a list of bit vectors of all items. For example, customer with CID = 2 has
a list of bit-vectors with four items a, b, c and d, i.e., BIT(2, a) = [0, 1], BIT(2, b) = [2, 1],
BIT(2, c) = [0, 1] and BIT(2, d) = [0, 0], where the first parameter with number 2 is the
CID with customer#2.

Figure 3. CSW-BV of Example 2.1 in the window initialization phase of
IncSpam algorithm

3.1.2. Lexicographic sequence tree (LexSeq-Tree). In the framework of IncSpam algorithm,
a lexicographic tree-based summary data structure, called LexSeq-Tree (Lexicographic
Sequence Tree), is developed for maintaining all customer sequences of current database.
Before introducing the proposed data structure LexSeq-Tree, another effective mechanism,
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called Seqence-index Set (SeqIdx-Set), is used to improve the performance of LexSeq-
Tree construction process. SeqIdx-Set can be used to deal with the problem of huge
number of generated candidate itemset-sequences from data streams. For each itemset-
sequence, SeqIdx-Set records the first positions of this sequence in all customer-sequences
within current database.

Definition 3.1. (Sequence-index Set: SeqIdx-Set) For a sequence ρ, the first oc-
curring position in another customer sequence s of ρ is recorded as ρ-poss. If ρ is not
in s, the value of ρ-poss is 0. The collection of these ρ-pos values in the order of cus-
tomer id (CID) is called SeqIdx-Set ρ-idx. For convenience, ρ-poss can be represented as
ρ-idx[s].

For example, in Figure 3, there are four ρ-idxs: ⟨(a)⟩-idx = [0, 2, 1], ⟨(b)⟩-idx = [1, 1, 1],
⟨(c)⟩-idx = [1, 2, 2] and ⟨(d)⟩-idx = [1, 0, 2]. Each integer in the array represents the first
position of ρ in each customer sliding window. Note that ⟨(d)⟩-idx = [1, 0, 2] indicates
that the 1-sequence (d) is contained in the first element of customer#1 and the second
element of customer#3, where each element is an itemset.

After processing CSW-BVs and all SeqIdx-Sets, the proposed IncSpam algorithm con-
structs an effective data structure, called LexSeq-Tree (Lexicographic Sequence Tree, see
Definition 3.3), based on these CSW-BVs and SeqIdx-Sets. Before we define the proposed
data structure LexSeq-Tree, a notation of lexicographic ordering is introduced.

Definition 3.2. (lexicographic ordering: ≤) Given two sequences sa and sb, if sa
is a subsequence of sb, we say that sequences sa and sb have lexicographic ordering and
denoted as sa ≤ sb.

Next, the proposed data structure LexSeq-Tree is defined and an example of partial
LexSeq-Tree is given in Figure 4.

Figure 4. An example of partial LexSeq-Tree

Definition 3.3. (Lexicographic Sequence Tree: LexSeq-Tree) LexSeq-Tree is an
extended lexicographic tree-based summary data structure and defined as follows.

1. The root node of LexSeq-Tree is labeled with a dummy symbol ϕ, as shown in Figure 4.
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2. Two kinds of nodes are stored in the LexSeq-Tree, where each node is an itemset-
sequence. First type of tree node is a sequence-extended sequence (se-seq) and
second type of node is an itemset-extended sequence (ie-seq).

3. A sequence-extended sequence (se-seq) is a sequence where it is extended by adding
one itemset to the end of its parent’s node in the LexSeq-Tree. For example, in Figure
4, two 3-sequences ⟨(a)(a)(a)⟩ and ⟨(a)(a)(b)⟩ are generated by adding one itemset, i.e.,
(a), to the end of the 2-sequence ⟨(a)(a)⟩ of the level 2 of the LexSeq-Tree.

4. An itemset-extended sequence (ie-seq) is a sequence by adding an item to the last
element of its parent node in the LexSeq-Tree. For example, in Figure 4, the 3-sequence
⟨(a), (a, b)⟩ is generated by adding one item (b) to the end of the 2-sequence ⟨(a), (a)⟩
of the level 2 of the LexSeq-Tree.

3.2. Window sliding phase: maintenance of the CSW-BV and ρ-idx. After con-
structing the CSW-BVs and LexSeq-Tree in the window initialization phase, we describe
the maintenance process of CSW-BVs and ρ-idx in the window sliding phase of IncSpam
algorithm in this section. When a new transaction arrives in current database, the cus-
tomer identifier CID is checked to find out that which CSW-BV has to be modified. If
the number of transactions of the customer with CID is greater than the size of CSW, the
window sliding phase of IncSpam is performed. The process of CSW sliding is described
as follows. First, each bit-vector is performed left-shift operation on one bit to eliminate
the dropped transaction information and modified the most-right bit by the information
of the new incoming transaction. Then, if the item is recorded in the incoming transac-
tion, the most right bit of its bit-vector is set to be value one; otherwise, the most right
bit of this bit-vector is set to be value zero.
An example of the window sliding process is given in Figure 5. In Figure 5(a), current

database is composed of three customers, i.e., CID = 1, CID = 2 and CID = 3, and five
transactions, i.e., T1, T2, T3, T4 and T5. In this figure, we can find that the CSW-BV of cus-
tomer#1 (CID = 1) gives the status of CSW-BVC1 = {(a, [1, 0]), (b, [1, 1]), (c, [0, 1]), (d,
[1, 1])}model before the new transaction T6 is inserted into current database. Other CSW-
BV models of customers #2, #3 and #4 are omitted in this figure. In Figure 5(b), the
second CSW-BV gives the result after performing left-shift operation on each bit-vector
one bit. The step is preformed before processing T6. Therefore, CSW-BVC1 is modified
from {(a, [1, 0]), (b, [1, 1]), (c, [0, 1]), (d, [1, 1])} to {(a, [0, 0]), (b, [1, 0]), (c, [1, 0]), (d, [1, 0])}.
Finally, the third CSW-BV of Figure 5(b) gives the final result after setting the most right
bit by processing the incoming transaction T6. Consequently, CSW-BVC1 is modified from
{(a, [0, 0]), (b, [1, 0]), (c, [1, 0]), (d, [1, 0])} to {(a, [0, 0]), (b, [1, 1]), (c, [1, 1]), (d, [1, 1])}.
The ρ-idx of each item, i.e., 1-sequence, is maintained according to these CSW-BVs.

When a window sliding occurs for a CSW-BV of the customer c, the value of each ρ-idx[c]
is decreased by one. After that, if the value of ρ-idx[c] is zero, the bit-vector of ρ is
checked to find out the new first occurring position. If ρ does not exist in this customer-
sequence anymore, the ρ-idx[c] is set to zero. For example, in the CSW-BVC1 of Figure
5(a), ⟨(a)⟩-idx[1] is 1. After sliding the window, ⟨(a)⟩-idx[1] is decreased to 0 in the second
CSW-BVC1. Furthermore, in the third CSW-BVC1 as shown in Figure 5(b), we can find
that ⟨(a)⟩-idx[1] is 0. This is because that the 1-sequence, ⟨(a)⟩, does not appeared in the
customer-sequences of customer#1 in the current CSW.
In the proposed data structure LexSeq-Tree of IncSpam algorithm, each node ρ uses ρ-

idx to compute the support value of sequence ρ. The support computing method consists
of two steps: support computing in S-step and support computing in I-step. That means
the step of generating sequence-extended sequence from LexSeq-Tree construction is called
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Figure 5. Examples of window sliding in CSW-BVC1: (a) CSW-BVC1
before the transaction T6 arrives (b) CSW-BVC1 after the transaction T6
arrives

S-step (discussed in Section 3.2.1). The step of generating itemset-extended sequence
from LexSeq-Tree construction is called I-step (discussed in Section 3.2.2).

3.2.1. Support computing in S-step. In this section, the method used to count the support
in S-step is discussed. Assume that there are one sequence α and an appended 1-itemset
(β). By performing S-step, an S-extended sequence γ is generated by concentrating the
sequence α and 1-itemset (β). Next, the process of generating γ-idx and computing the
support of the S-extended sequence γ by using α-idx and β-idx is described as follows.
First, α-idx[c] and β-idx[c] are checked for each customer c. If the value of α-idx[c] or
the value of β-idx[c] is zero, the value of γ-idx[c] is modified to be zero. The condition
means that the S-extended sequence γ can not exist in the customer-sequence of customer
c. If the value of α-idx[c] and the value of β-idx[c] are both not zero, the sequence γ is
contained in the customer sequence of customer c with high probability. After that, the
corresponding position values have to be checked. Furthermore, two cases of α-idx[c] and
β-idx[c] have to be discussed as follows.

Case (a) if α-idx[c] < β-idx[c]: In this case, the sequence α appears before β and
sequence γ exists in the customer-sequence of customer c. Hence, the value of γ-idx[c] is
set to be the same value of β-idx[c].

Case (b) if α-idx[c] ≥ β-idx[c]: In this case, the CSW-BV of customer c is checked
to verify that whether the sequence γ exists or not. Note that the bit-vector of item x in
the CSW-BV of customer c is denoted as CSW-BVc(x). First, a left-shifting operation is
performed on CSW-BVc(β) by α-idx[c] bits. If the result of bit-vector after left-shifting is
a non-zero bit-vector, γ is contained in the customer-sequence of sequence c. Furthermore,
we assume that the position of the first non-zero bit in this result is h. Therefore, the
first position of the sequence γ, i.e., γ-idx[c], is set to α-idx[c] + h. Otherwise, γ is not
contained in the customer-sequence of sequence c. In this case, the value of γ-idx[c] is set
to zero. Consequently, the support value of γ can be computed by counting the number
of non-zero positions.
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3.2.2. Support computing in I-step. In this section, the method used to count the support
in I-step is discussed. Assume that there are one sequence α and an appended 1-itemset
(β). By performing I-step, an I-extended sequence γ is generated by concentrating the
sequence α and 1-itemset (β). The process of generating γ-idx and computing the support
of I-extended sequence γ by using α-idx and β-idx is described as follows.
As the descriptions in S-step of Section 3.2.1, α-idx[c] and β-idx[c] for each customer c

are checked for generating γ-idx and computing the support of I-extended sequence γ. If
either the value of α-idx[c] or β-idx[c] is zero, the value of γ-idx[c] is set to zero. If the
value of α-idx[c] and the value of β-idx[c] are both not zero, the corresponding position
values have to be checked. Furthermore, two cases of α-idx[c] and β-idx[c] in I-step need
to be discussed as follows.
Case (a) if α-idx[c] = β-idx[c]: In this case, the last itemset of α and the itemset

β are in the same position of customer-sequence of customer c. Based on the definition
of itemset-extended sequence, sequence γ exists and the value of γ-idx[c] is equal to the
value of β-idx[c].
Case (b) if α-idx[c] ̸= β-idx[c]: In this case, the CSW-BV of customer c is checked

as follows. Assume that itemset X is the last itemset of sequence α, a bit-vector of X
is generated by performing bitwise-AND operation on CSW-BVc(x1), CSW-BVc(x2), · · ·,
and CSW-BVc(xk), where xi is an item of X, where ∀i, i = 1, 2, · · ·, k. After that, the
bit-vector of X is left-shifted (α-idx[c] – 1) bits. Furthermore, if the result of bit-vector
after performing bitwise-AND operation is a non-zero bit-vector, γ is contained in the
customer-sequence of sequence c. At this time, we assume that the position of the first
non-zero bit in the result of bit-vector is h. Hence, the value of the first position of γ,
i.e., γ-idx[c], is (α-idx[c] – 1) + h. Otherwise, if the result of bit-vector after performing
bitwise-AND operation is a zero bit-vector, γ is not contained in the customer-sequence
of customer c and the value of γ-idx[c] is zero.

3.2.3. Weight of customer-sequence for mining sequential patterns from data streams. In
the framework of IncSpam algorithm, each customer usually maintains a CSW to keep
the latest w transactions. However, some customers may have no transactions in recent
transactional data streams. Hence, these customer-sequences with out-of-date transac-
tions would generate a false-positive problem in our algorithm. It is because the supports
of some sequential patterns generated by the proposed algorithm are overly counted.
Hence, an effective method is developed and used in our IncSpam algorithm for this issue.
Figure 6 gives an example of these transactions in a data stream. In this figure, we

can find that the customer-sequences with these transactions are less important than
that of others. Hence, a weight mechanism is used to judge the importance of customer
sequences. In this weight mechanism, each customer-sequence s has it own weight ws,
where 0 ≤ ws ≤ 1. Each weight ws is decayed when the new incoming transactions of
data streams do not contain the sequence s. Furthermore, the value of weight ws is set
to be one when a new transaction of customer-sequence s comes.
In the proposed method used in our IncSpam algorithm, a decay function ws = 1× dp

is used to compute the weights of customer-sequences, where d is a user-defined decay-
rate and p is a decay-period of the customer-sequence. Note that decay-rate d is used to
decide that how fast a customer-sequence is decayed and decay-period p is the number
of transactions between the new incoming transaction and the latest transaction within
sequence s. Therefore, decay-period p can be rewritten as p = (incoming transaction
TID – the latest transaction TID of sequence s). Moreover, the decay-rate d is defined
as d = b(1/h) (b < 1, h ≥ 1, b−1 ≤ d < 1), where Decay-base b is the number of weight
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Figure 6. No recent transactions generated by an example customer in
data streams

reduction per decay-unit, and the Decay-base-life h is the number of decay-units that
makes the current weight be 1/b.

An example of calculating the weights of customers is given in Figure 7. Assume that
a new incoming transaction is T7 and the user-specific decay rate d is 0.9. Note that the
latest transaction of each customer is pointed by an arrow. Let us take customer #1 as an
illustrating instance. The latest transaction of customer #1 is the transaction T6. Hence,
the weight of customer-sequence of customer #1, i.e., w1, is 0.9

(7−6) = 0.9.

Figure 7. Example of calculating the weights of customers

We do not need to calculate decay-period when a new transaction comes in the proposed
algorithm. The weight of the customer that the new incoming transaction belongs to is
set to one. Other transactions are decayed by the user-specific decay-rate d. An example
after processing a new transaction with TID = 8, i.e., T8, is given Figure 8. In this figure,
the weight of customer #2 is set to 1, i.e., w2 = 1, and the others are decayed by 0.9.
The support of a customer-sequence ρ is not the number of non-zero positions in the
ρ-idx. It is counted by adding the weights of customer-sequences with ρ. Note that the
updating method of weights is efficient in incremental mining of sequential patterns from
streaming itemset-sequences. Updating support value of an existing node in the LexSeq-
Tree can also use the same mechasism. The process of support updating of LexSeq-Tree
is introduced in the next section.

3.3. Our proposed algorithm: IncSpam. In this section, we introduce the proposed
IncSpam algorithm for mining sequential patterns from streaming itemset-sequences.
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Figure 8. Status for weight of customer-sequence after processing a new
incoming transaction T8

Main functions of the proposed algorithm are given in Figure 9. First, the CSW-BV
of each customer is processed and modified (from lines 1 to 4 of Figure 9). All generated
frequent items are maintained in a temporal pool TPool for constructing the proposed
LexSeq-Tree. After modifying all CSW-BVs, function LexSeq-Tree-Maintain is performed.
Based on our approach IncSpam, the proposed data structure LexSeq-Tree is dynamically
maintained by processing each incoming transaction from streaming itemset-sequences
while CSW is sliding. Assume that the new transaction ω comes and ω belongs to the
customer c. The effect of ω upon the LexSeq-Tree T is modified to a changed LexSeq-Tree
T ′. Hence, three cases are discussed as follows.

Algorithm IncSpam: Mining Sequential Patterns from Streaming Itemset-Sequences.
Input Data: DS: data stream, d: decay-rate, w: window size, minsup: a minimum

support threshold;
Output Data: A generated LexSeq-Tree of current database;
1: foreach transaction T of data stream DS do
2: find out which customer c is contained in the incoming transaction T ;
3: update the CSW-BV of customer c by using the information of the

transactions;
4: update the weight of each customer by decaying the decay-rate d;
5: insert all frequent items into a temporal pool TPool ;
6: LexSeq-Tree-Maintain(c, F);
7: endfor

Figure 9. Main functions of the proposed IncSpam algorithm

Case (a): A pattern is a node in both LexSeq-Trees T and T ′. In this case, only its
ρ-idx and support are updated.
Case (b): A pattern which is not a node in T but it is a node of T ′. A new pattern is

generated from the new incoming transaction. Based on the Apriori property of sequential
pattern mining [1], prefix of the new pattern is also a frequent pattern. Hence, we only
need to generate candidates from the leaf nodes of T . Two ways are used in the proposed
algorithm IncSpam to reduce the number of generated candidates. First, we only consider
the items in the incoming transaction to append on the leaf nodes. It is because that
the new patterns must contain these items in the end. Second, the generated candidates
must begin with the items in the customer-sequence of customer c since the incoming
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transaction only belongs to the specified customer c. Figure 10 gives an example after
sliding the CSW-BV for customer #3, where the incoming transaction is T7, i.e., TID = 7.

Case (c): A pattern is a node of T but not a node in T ′. In this case, the pattern
becomes an infrequent pattern because of window CSW sliding. Hence, we directly delete
the node and its sub-trees from the current LexSeq-Tree.

Pseudo codes of function LexSeq-Tree-Maintain are given in Figure 11. In the func-
tion LexSeq-Tree-Maintain, two cases and their corresponding procedures, called LST-
Generate (LexSeq-Tree Generate) and LST-Update (LexSeq-Tree Update), are performed,
respectively. First, function LST-Generate is executed when the new item is a new node
of current LexSeq-Tree. Function LST-Generate uses S-step and I-step to generate all
possible children based on the principles mentioned above for each node. If the child does
not exist in the LexSeq-Tree, the function LST-Generate generates a new node for this
child. Otherwise, it only updates the index set and support of this child node. At this
time, function LST-Update checks each node to update its index set and support value.

Figure 10. Reducing the generated candidates after sliding the CSW-BV
of customer#3

Function LexSeq-Tree-Maintain (c, F ): c: customer, F: a set of frequent items ;
1: foreach tree node n that’s representing item i ⊆ F do
2: if item i does not exist in the customer-sequences of customer c then
3: perform LST-Generate(c, n);
4: else /* item i exists in the customer-sequence of customer c */
5: perform LST-Update(c, n);
6: endif
7: endfor

Figure 11. Pseudo code of function LexSeq-Tree-Maintain

Algorithms LST-Generate and LST-Update are given in Figures 12 and 13, respectively.
Whenever a new incoming transaction arrives, only one customer-sequence is modified.
Each node of the current LexSeq-Tree only needs to update one position value of its index
set. The summation of the weight of the customer-sequences with no modification only
needs to be decayed by the used-defined decayed rate. Hence, we do not have to sum
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Function LST-Generate (c, n)
1: foreach existing child node n′ of n do
2: perform Support-Update (c, n′);
3: if n′.sup < minsup then
4: drop node n′ and its sub-tree;
5: endif
6: endfor
7: generate candidates of node n by using S-step and I-step;
8: foreach generated candidate x of n do
9: count the support of x;
10: if x.sup ≥ minsup then
11: x is a child node of n;
12: endif
13: endfor
14: foreach child n′ of n do
15: perform LST-Generate (c, n′);
16: endfor

Figure 12. Pseudo code of function ST-Generate

Function LST-Update (c, n)
1: foreach existing child node n′ of n do
2: perform Support-Update (c, n′);
3: if n′.sup < minsup then
4: eliminate node n′ and its sub-tree;
5: endif
6: endfor
7: foreach child n′ of n do
8: perform LST-Update (c, n′);
9: endfor

Figure 13. Pseudo code of function ST-Update

Function Support-Update (c, n)
1: if customer-sequence c is a new sequence then
2: decay the support of n;
3: if the sequence of n ⊆ c then n.sup = n.sup + 1;
4: endif
5: else
6: if ρ-idx[c] == 0 then /* assume the sequence in n is ρ */
7: decay the support of n by a user-defined decayed rate;
8: if the sequence of n ⊆ c then n.sup = n.sup + 1;
9: endif
10: else
11: n.sup = n.sup – previous weight of c;
12: if the sequence of n ⊆ c then n.sup = n.sup + 1;
13: endif
14: endif
15: endif

Figure 14. Pseudo code of function Support-Update
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Figure 15. Example of update support in case (a)

up all the weights one by one. The pseudo code of function Support-Update is given in
Figure 14. Furthermore, three cases of updating support are discussed as follows.

Case (a): The incoming transaction belongs to a new customer. In this case, the
original support is decayed by a decay-rate for a sequence ρ. Hence, we check whether ρ
exists in the new customer- sequence or not. If ρ does exist, we add the decayed support
by one, i.e., ρ.sup + 1. Otherwise, the decayed support is not updated. An example of
case (a) is given in Figure 15.

Figure 16. Example of update support in case (b)

Case (b): The incoming transaction belongs to an existing customer. In this case, the
previous position value of this customer in the ρ-idx has to be checked for a sequence ρ.
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Assume that the modified customer-sequence is s. If the value of previous ρ-idx[s] is zero,
the original support is decayed by a user-specific decay-rate. Furthermore, the value is
increased by one or zero by the existence of ρ in sequence s. If the value of the previous
ρ-idx[s] is not a value zero, the original support value subtracts the previous weight of
sequence s. After that, the value is decayed by a decay-rate. Finally, we add the support
value by one or zero by the same consideration as discussed in the case (a). An example
for the case (b) is shown in Figure 16.

4. Performance Evaluation. In this section, several experiments of the proposed single-
pass algorithm IncSpam are discussed. These experiments are executed on a desktop with
a 2.16GHz CPU and 2GB memory. The proposed algorithm IncSpam is implemented in
C++ STL and compiled with gcc-4.0.3 on Linux 9.0. Moreover, the original synthetic
data used in these experiments is generated by the IBM synthetic data generator [1]. We
modified the synthetic data generator to simulate the environment of streaming itemset-
sequences. Parameters of synthetic data used in these experiments are listed in Table
1. The performance measurements include memory usage and average time of window
sliding. Experiment of memory usage is evaluated by a system tool to observe the real
memory variation. Note that all the experiments are performed with a default decay-rate
d = 0.999.

Table 1. Parameters of the synthetic data

Experimental Parameters Value
Average Number of transactions per customer (C) 30
Average Number of items per transaction (T ) 2 ∼ 3
Number of Different Items (N) 1000
Default decay-rate (d) 0.999

4.1. Varying different minimum supports for experiments of memory usage
and execution time of IncSpam algorithm. In the first experiment of our IncSpam
algorithm, an absolute user-defined minimum support threshold minsup is used for eval-
uating experiments of memory usage and average execution time. If the number of cus-
tomers that support a sequence ρ is greater than or equal to minsup, ρ is a sequential
pattern based on our problem definition, where minimum support threshold minsup is
changed from 3 to 10. In these experiments, the total number of customer is 1,000, and
the window size w of each customer is 10 as default experimental parameters.
First experiment is used to evaluate the memory usage of IncSpam algorithm under

different minimum support thresholds. Figure 17 shows the memory usage of IncSpam
algorithm while varying minimum support constraints from 0.3% to 1%. From this figure,
we can find that the memory requirement of our algorithm is about 200MB. This is
reasonable for mining sequential patterns from streaming itemset-sequences. Although
the memory usage is a little higher when the minimum support constraint minsup is
small, the next experiment as shown in Figure 18 will prove that IncSpam algorithm is
a memory efficient method used in a streaming data environment. Figure 18 shows the
experimental results for evaluating the relationship between maximum number of tree
nodes from 1K to 10K and the memory requirement. From Figure 18, we can see that
the relationship between maximum number of tree nodes and memory usage is a linear
relationship. The linear growth means that the memory usage of IncSpam grows up only
when the number of sequential patterns increases. Furthermore, our proposed algorithm
does not use additional data structures when minimum support threshold becomes small.
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Consequently, these experiments show that IncSpam algorithm is efficient in memory
usage constraint for mining sequential patterns from streaming itemset-sequences. Third
experiment of IncSapm algorithm is used to evaluate the average window sliding time
of IncSpam under different minimum support thresholds. Figure 19 gives the average
window sliding time of IncSpam algorithm from minimum support thresholds form 0.3%
to 1%. The result shows that average sliding time of our IncSpam algorithm is below
1 second. This is because IncSpam algorithm uses CSW-BV and the characteristics of
incremental mining techniques to speed up the processing time of each new incoming
transaction. Consequently, the experiment of average sliding window as given in Figure
19 also shows the efficiency of our proposed algorithm.

Figure 17. Memory usage of IncSpam under different minimum support
thresholds from 0.3% to 1%

Figure 18. Performance relationship of IncSpam algorithm between the
maximum number of tree nodes (from 1K to 10K) and the memory usage
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Figure 19. Average time of window sliding with different minimum sup-
port thresholds (from 0.3% to 1%)

4.2. Varying different sliding window sizes for experiments of memory usage
and execution time of IncSpam algorithm. In this section, the performance of the
IncSpam algorithm is evaluated by the experiments of memory requirement and execu-
tion time under different sizes of sliding windows from 10 transactions per customer to 25
transactions per customer. The size of sliding window w is used to control the number of
transactions maintained by each customer. In these experiments, window size w ranges
from 10 transactions to 25 transactions and the user-defined minimum support threshold
minsup is fixed to 10, i.e., ten customers. The experimental result of memory requirement
of IncSpam algorithm under different window size from 10 transactions per customer to
25 transactions per customer is given in Figure 20. Another experiment of execution time
of IncSpam under different window size is also evaluated in this section and the result is
shown in Figure 21. From both figures, we can find that when the number of transactions
maintained by each customer increases, the corresponding memory usage and average
sliding time also grows up. Hence, the performance of IncSpam under different sliding
window is also for mining sequential patterns from streaming itemset-sequences. Based
on IBM synthetic dataset and several real-world applications, sliding window maintaining
about 15 transactions for each customer is a reasonable choice. Consequently, our pro-
posed IncSpam algorithm can be applied in real-world applications and is very efficient
in memory usage requirement and real-time transaction processing.

4.3. Varying different number of customers for experiments of memory usage
and execution time of IncSpam algorithm. In this section, the performance of the
IncSpam algorithm is evaluated by the experiments of memory requirement and execution
time under different number of customers from 1K to 5K. Based on the framework of
IncSpam algorithm, a new customer can be inserted into the data structure LexSeq-
Tree dynamically. In those experiments of Section 4.2, we fix the number of customers
for observing performance conveniently. The memory usage and average sliding time of
IncSpam algorithm for different number of customers are tested in these experiments.
In these experiments, the user defined minimum support threshold minsup is also 10
customers, i.e., minsup =10.
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Figure 20. Memory usage of IncSpam algorithm with different size of
sliding window (from 10 transactions per customer to 25 transactions per
customer)

Figure 21. Average time of window sliding with different window size
(from 10 transactions per customer to 25 transactions per customer)

Figure 22 shows the results of memory usage experiment of the IncSpam algorithm with
different number of customers from 1K to 5K. From this figure, we can find that the per-
formance relationship between memory requirement and the number of customers is also
linear growth. Therefore, we can say that the proposed IncSpam algorithm can efficiently
handle a great amount of customers with reasonable memory requirement. In the last
experiment of this section, execution time performance of IncSpam is evaluated in Figure
23. In Figure 23, we can observe that the average sliding time of IncSpam is also in linear
growth relationship under different number of customers from 1K to 5K. Consequently,
we can find that our algorithm is an efficient method for mining sequential patterns from
streaming itemset-sequences based on these experiments discussed in Section 4.
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Figure 22. Memory usage of IncSpam algorithm with different number of
customers from 1K to 5K

Figure 23. Average sliding time of IncSpam with different number of cus-
tomers from 1K to 5K

5. Conclusions and Future Works. In this paper, a new research issue of data mining,
i.e., mining sequential patterns from streaming itemset-sequences, is defined. We propose
an efficient single-scan mining algorithm, called IncSpam, for discovering sequential pat-
terns from streaming itemset-sequences. Based on our best knowledge, our algorithm
IncSpam is the first one-pass approach for mining sequential patterns from streaming
itemset-sequences, not just streaming item-sequences or static datasets. In the frame-
work of IncSpam, an effective bit-sequence representation of stream sliding window model
CSW-BV and an extended lexicographic tree-based data structure LexSeq-Tree are devel-
oped to reduce the memory requirement of the online maintenance of sequential patterns
generated from data streams. Experimental results show that our algorithm IncSpam
is an efficient method for mining sequential patterns from steaming itemset-sequences
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over customer sliding windows. Future works of this study include mining top-K sequen-
tial patterns, closed sequential patterns and maximal sequential patterns from streaming
itemset-sequences.
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