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Abstract. In this paper, a novel adaptive fuzzy robust controller with a state observer
approach based on the hybrid particle swarm optimization-simulated annealing (PSO-SA)
technique for a class of multi-input multi-output (MIMO) nonlinear systems with distur-
bances is proposed. Firstly, particle swarm optimization-simulated annealing (PSO-SA)
is used to adjust the fuzzy membership functions, while adaptive laws are used to approx-
imate nonlinear functions and the unknown upper bounds of disturbances, respectively.
Secondly, a state observer is applied for estimating all states which are not available for
measurement in the system. By using the strictly-positive-real (SPR) stability theorem,
the proposed adaptive fuzzy robust controller not only guarantees the stability of a class
of MIMO nonlinear systems, but also maintains good tracking performance. Thirdly, we
propose a novel auxiliary compensation, the item is designed to suppress the influence
of external disturbance and remove fuzzy approximation error, respectively. The intelli-
gence algorithm consists of the adaptive fuzzy robust method, the individual enhancement
scheme and particle swarm optimization-simulated annealing structure which generates
new optimal parameters for the control scheme. Finally, one simulation example is given
to illustrate the effectiveness of the proposed approach.
Keywords: MIMO, Adaptive fuzzy control, Particle swarm optimization, Robust, Sim-
ulated annealing, Strictly-positive-real (SPR) stability theorem

1. Introduction. Adaptive fuzzy controllers provide a methodical and powerful frame-
work for nonlinear control problems. In [1], an adaptive fuzzy control scheme has been
developed for uncertain nonlinear systems. The stability of uncertain nonlinear systems
has been addressed using adaptive fuzzy control approaches [2-14]. However, a significant
constraint is that the system state variables must be measured. For many real systems,
the state vector is rarely fully measured. There is thus a need to implement a state
observer [15-21].

For a class of SISO systems, an adaptive fuzzy controller with a state observer has been
proposed in [22,23]. According to the results, many observer-based adaptive fuzzy design
schemes have been proposed in [24-32], where the fuzzy (neural network) can be used to
approximate any nonlinear function. For example, some observer-based indirect adap-
tive fuzzy control schemes have been studied in [24,30] while direct control schemes were
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addressed in [26,28,30]. However, in actuality, most engineering systems are multiple-
input multiple-output (MIMO) systems [33-36]. MIMO systems can be found in nature,
such as manipulators and chaotic systems, and are often composed of a set of subsystems
[2,6,16,37-39]. Recently, adaptive fuzzy (neural network) control schemes that use univer-
sal approximators with adjustable parameters have been developed for MIMO nonlinear
systems [4-7,40-44]. For example, several adaptive fuzzy control schemes were developed
in [41-43] while an adaptive neural controller was designed in [44] to adjust parameters
on-line.
Particle swarm optimization (PSO), proposed by Kennedy and Eberhart [45], is a new

evolutionary algorithm that may be used to find optimal or near optimal solutions in a
large search space. The PSO algorithms for tuning the membership function parameters
of fuzzy logic controllers have been studied extensively in the literature [46-49]. However,
for the basic PSO algorithm, all particles are usually trapped into the local minimum,
and the optimal value found is thus often a local minimum instead of a global minimum.
To overcome the shortcomings of the basic PSO algorithm, our method combines the
PSO algorithm with the simulated annealing (SA) algorithm. SA is a kind of stochastic
method that is well known for effectively bypassing the local minimum trap.
The control theory for nonlinear multivariable systems has universal applications. The

control of multivariable systems is a difficult problem due to the coupling between the
control inputs and the subsystems. Meanwhile, the states of multivariable systems are un-
measured; therefore, the control problem becomes more challenging. This paper proposes
an observer-based adaptive fuzzy robust control scheme for a class of MIMO nonlinear
systems with external disturbances. A state observer is introduced to estimate the un-
measured states. In the controller design, we assume that the systems are controllable
and propose a novel auxiliary compensation; the control is designed to suppress the in-
fluence of external disturbance and remove the fuzzy approximation error, respectively.
Compared with existing designs, the proposed method has four main contributions: (1) an
adaptive fuzzy robust tracking control method for a class of MIMO systems is designed;
(2) the controller does not require a priori knowledge of the sign of the control coefficient;
(3) the PSO-SA algorithm is used to self-adjust the controller’s coefficient for the optimal
solution; and (4) a novel auxiliary compensation is introduced to eliminate external dis-
turbance and fuzzy approximation error. All parameter adaptive laws and robust control
terms are derived based on Lyapunov’s stability analysis, so that convergence to zero
tracking error and boundedness of all signals are guaranteed.
The rest of this paper is organized as follows: in Section 2, the system description and

the design of the fuzzy logic system are presented; the adaptive fuzzy robust controller
based on the PSO-SA algorithm combined with an observer for a MIMO nonlinear system
is described in Section 3; simulation results are presented to validate the proposed control
scheme in Section 4; and finally, the conclusions are given in Section 5.

2. Problem Statement and Preliminaries. In this section, we shall describe the plant
and some basic concepts of fuzzy set theory and fuzzy logic used in this paper.

2.1. System description. Consider a class of MIMO nonlinear systems as represented
by the following differential equations:

ẋ11(t) = x12(t),

...

ẋ1(n1−1) = x1n1(t),
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ẋ1n1(t) = f1(x(t)) +

p∑
j=1

g1j (x(t))uj(t) + ∆d1 (x(t)) ,

ẋp1(t) = xp2(t),

...

ẋp(np−1)(t) = xpnp(t),

(1a)

ẋpnp(t) = fp(x(t)) +

p∑
j=1

gpj (x(t))uj(t) + ∆dp (x(t)) , (1b)

y1(t) = x11(t), (1c)

...

yp(t) = xp1(t). (1d)

(1a)-(1d) can be rewritten as:

ẋ(t) = Ax(t) +B [F (x(t)) +G (x(t))u(t) + ∆d (x(t))] ,
y(t) = Cx(t).

(2)

Define:

F (x) = [f1(x), · · · , fp(x)]T , Gi(x) = [g1i(x), · · · , gpi(x)]T , i = 1, . . . , p.

G(x) = [G1(x), · · · ,Gp(x)] ,

Ai =


0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 0 0


ni×ni

, Bi =


0
0
· · ·
1


ni×1

,

Ci =
[
1 0 · · · 0

]
1×ni

,

A = diag [A1, · · · ,Ap] , B = diag [B1, · · · ,Bp] , C = diag [C1, · · · ,Cp] ,

where x =
[
x11, · · · , x1n1 , · · · , xp1, · · · , xpnp

]T ∈ Rn is the state vector, which is assumed

to be unavailable for measurement, and u = [u1, · · · , up]
T ∈ Rp and y = [y1, · · · , yp]T ∈

Rp are the state vector, the control input and the output of the system, respectively,
while n = n1 + · · · + np. fi (x(t)) and gij (x(t)) are smooth nonlinear functions, and

∆d = [∆d1, · · · ,∆dp]
T is the vector of external disturbance. The following assumptions

are made for the controller design:

Assumption 2.1. [50] The matrix G(x) as previously defined is nonsingular, i.e.,
G−1(x) exists, and is bounded for all x ∈ U , where U ∈ Rn is a compact set.

Control objectives. To design a stabilizing controller for the system described by
Equation (2) allowing the tracking error to converge to zero asymptotically. The stabiliz-
ing controller makes the system output track the given desired signal ypd.

Then, the derivation of the output can be expressed as:

yi(t) = xi1(t), i = 1, · · · , p
...

y
(ni−1)
i (t) = xini

(t),

y
(ni)
i (t) = ẋini

(t)
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= fi (x(t)) +

p∑
j=1

gij (x(t))uj(t) + ∆di (x(t)) , (3)

where i = 1, · · · , p. Let y1d, · · · , ypd denote the desired bounded output signal that
contains finite derivatives up to the nth order. The tracking errors of the system are
defined as follows:

eiℓ(t) = y
(ℓ−1)
i (t)− y

(ℓ−1)
id (t), i = 1, · · · , p, ℓ = 1, · · · , ni,

...

ėi(ni−1)(t) = y
(ni−1)
i (t)− y

(ni−1)
id (t),

ėini
(t) = y

(ni)
i (t)− y

(ni)
id (t)

= fi(x(t)) +

p∑
j=1

gij(x(t))uj(t)− y
(ni)
id (t) + ∆di(x).

(4)

Equation (4) can be shown as:

ėi(t) = Aiei(t) +Bi

[
fi (x(t)) +

p∑
j=1

gij (x(t))uj(t)− y
(ni)
id (t) + ∆di (x)

]
,

i = 1, · · · , p.
(5)

Equation (5) can be rewritten as:

ė(t) = Ae(t) +B
[
F (x(t)) +G (x(t))u(t)− y

(n)
d (t) + ∆D(x)

]
,

eq(t) = Ce(t),
(6)

where ei = [ei1, ei2, · · · , eini
]T , e = [e1, · · · , ep]

T , eq = [e11, e21, · · · , ep1]T , ∆D = [∆d1 ,

· · · ,∆dp]
T and y

(n)
d =

[
y
(n1)
1d , · · · , y(np)

pd

]T
.

For later derivations, the following assumption should be satisfied.

Assumption 2.2.

∥∆D(x)∥ ≤ gd(x), (7)

where gd(x) is the unknown positive smooth continuous function.

If the nonlinear functions fi (x(t)) and gij (x(t)) are exactly known, and G (x(t)) ̸= 0
based on the certainty equivalent approach, the ideal control law can be obtained as:

u(t) = G−1 (x(t))
[
−F (x(t)) + y

(n)
d −Kce(t) + ua(t)

]
, (8)

where Kc = [Kc1, · · · , Kcp] is a control gain vector and ua(t) is the flexible auxiliary
compensation, which is designed for compensating the fuzzy approximation errors and
the external disturbance.

2.2. Fuzzy system description. The basic configuration of the fuzzy logic system con-
sists of four main components: fuzzy rule base, fuzzy inference engine, fuzzifier and de-
fuzzifier. The fuzzy rule base consists of a collection of fuzzy IF-THEN rules:

R(l) : If x1 is F l
1 and x2 is F l

2 . . . and xn is F l
n, l = 1, 2, . . . , n,

then ys is G
l
s, s = 1, 2, . . . , p,

(9)

where x = [x1, · · · , xn]
T is the fuzzy system input; y is the fuzzy system output; and F l

n

and Gl
s are fuzzy sets. Through singleton fuzzification, center average defuzzification and
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product inference, the output of the fuzzy logic system can be expressed as:

ys = θTs ξ(x), s = 1, · · · , p, (10)

where θTs =
[
θ1s , · · · , θNs

]
, with each variable θls being the point at which the fuzzy mem-

bership function of Gl
s achieves the maximum value; and ξ(x) = [ξ1(x), · · · , ξn(x)]T with

each variable ξl being the fuzzy basis function defined as:

ξl(x) =
n∏

i=1

µF l
i
(xi)

/
N∑
l=1

(
n∏

i=1

µF l
i
(xi)

)
, (11)

where µF l
i
(xi) is the membership function of the fuzzy set. Allow θT = diag

[
θT1 , · · · , θTp

]
and Φ(x) = diag [ξ(x), · · · , ξ(x)].

MIMO fuzzy systems can be rewritten as:

y = θTΦ(x), (12)

Define the nonlinear functions fi (x(t)) and gij (x(t)) to be approximated by fuzzy logic
systems as:

fi (x |θfi ) = θTfiξ(x), i = 1, 2, . . . , p,

gij
(
x
∣∣θgij ) = θTgijξ(x), i, j = 1, 2, . . . , p,

F̂ (x |θf ) = θT
f ξf (x), (13)

Ĝ (x |θg ) = θT
g ξg(x). (14)

Based on approximation theory, fuzzy inference systems with specific operations are
universal approximators that can be used to model the nonlinear functions of the systems.

3. Main Results. In this section, the adaptive fuzzy controller with the PSO-SA design
method will be described.

3.1. Basic PSO algorithm. PSO is a stochastic optimization algorithm [51-56]. The
main concept of PSO is the mathematical modeling and simulation of the food searching
activities of a flock of birds. The PSO algorithm includes two parts: (1) Cognitive com-
ponent; and (2) Social component. First, the cognitive component models the memory of
the each particle about its previous best position. Second, the social component models
the memory of the each particle about the best position among the particles. From the
above discussion, the mathematical model for the PSO algorithm can be written as:

Vi(k + 1) = Vi(k) + c1 · rand1(·)× (Pbesti −Xi(k))

+ c2 · rand2(·)× (Gbestn −Xi(k)) ,

Xi(k + 1) = Xi(k) + Vi(k + 1), i = 1, · · · , Nswarm,

(15)

where Vi is the velocity of particle i; Xi is the position of particle i; Pbesti and Gbestn are
the best historical position of particle i and the best historical position of the neighbor of
particle i with objective values Fpi and Fpn , respectively. rand1(·) and rand2(·) are random
numbers between 0 and 1, while constants c1 and c2 are the weighting factors. Usually
Gbestn is often replaced by Gbestg, which is the global best position. The method has the
drawback of being easily trapped in local minima. The following intelligence algorithm
was thus proposed to overcome this shortcoming.
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3.2. Simulated annealing. The simulated annealing (SA) algorithm is introduced to
prevent particles from becoming trapped in a local optimum and to increase the diversity
of the particle swarm. It was first put forward by Metropolis and successfully applied to
optimization problems by Kirkpatrick [57].
The most significant character of SA is the probabilistic jumping property; i.e., a bad

solution has a probability of being accepted as the new solution. Moreover, by adjusting
the temperature, the jumping probability can be controlled. In particular, the probability
decreases with decreasing temperature; and when the temperature moves toward zero, the
probability approaches zero. In this scenario, better solutions are accepted. It has been
proven that the SA algorithm is globally convergent with a probability of 1. In this
section, we incorporate the mechanism of SA into PSO to create a hybrid optimization
strategy, named PSO-SA.
As just mentioned, in PSO, Gbestg is an element of the set of all Pbesti, which can

be considered as a set of local optima. Therefore, we modify the selection of Gbestg to
overcome premature convergence. We utilize the jumping mechanism of the SA algorithm
for the selection of Gbestn instead of Gbestg. When Pbesti has better features, it should
have a larger probability of being selected for Gbestg. By employing the mechanism of
the SA algorithm, all other Pbesti can be considered as solutions worse than Gbestg.

Meanwhile, we can set e−(FPbesti
−FGbestg)/t as the fitness function of each Pbesti to change

Gbestg at a temperature t. The largest fitness value belongs to Gbestg and it’s value is
1, with other fitness values within the interval (0, 1] . Hence, the probability of selecting
Pbesti as Gbestg can be described as:

(
e−(FPbesti

−FGbestg )/t
)/Nswarm∑

j=1

e−(FPbesti
−FGbestg )/t. (16)

Then, roulette wheel selection can be used to randomly determine which Pbesti to
select as Gbestg.

3.3. Optimization of fuzzy logic control with PSO-SA. The fuzzy logic controller
has 60 parameters to be adjusted. Now, the particles are chosen as:

Pi =
[
iσ11

ic11 · · · iσ15
ic15
]
, i = 1, 2, 3, (17)

where parameters σ and c represent the center and deviation of the Gaussian membership
functions, respectively. The whole procedure of the PSO-SA algorithm can be written as
follows:

Step 1: Let k = 0, and randomly initialize Xi(0) and Vi(0), i = 1, · · · , Nswarm. Then,
evaluate objective function Fi for all particles.

Step 2: Initialize Pbesti with a copy of Xi(0), i = 1, · · · , Nswarm. Meanwhile, initialize
Gbestg with a copy of the best Pbesti, and define the temperature t(0) = t0.

Step 3: Repeat until the stopping criterion is satisfied.
Calculate the fitness:

Fitnessi = exp
[
−(FPbesti − FGbestg)/t(k)

]
, (18)

where FPi,g
=

1

Nswarm

Nswarm∑
j=1

√
e2(j). (19)

Step 4: For every particle i, apply roulette wheel selection from the set of all Pbesti, and
then update Vi and Xi via the following equations:
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Vi(k + 1) = χ× {Vi(k) + c1 · rand1(·)× (Pbesti −Xi(k))

+ c2 · rand2(·)× (Gbestn −Xi(k))},
Xi(k + 1) = Xi(k) + Vi(k + 1),

(20)

where χ is a constriction coefficient that is defined as:

χ =
2∣∣2− C −
√
C2 − 4C

∣∣ , C = c1 + c2. (21)

Step 5: Evaluate the new objective value Fi for all particles, and then update Pbesti and
Gbestg (including position values and objective values).

Step 6: Set the annealing temperature to obtain t(k + 1), and let k = k + 1.
Step 7: The best solution Gbestg is then obtained.

Remark 3.1. The mechanism of the SA algorithm is combined with the PSO algorithm in
this paper. The main purpose of employing the SA algorithm is to balance exploration and
exploitation; the evolving process may be prolonged as a result of overcoming premature
convergence.

Remark 3.2. The initial temperature t0 and the method of annealing play important roles
in the algorithm, so the initial value affects the performance of the PSO-SA algorithm.
The initial temperature can be described as:

t0 = −FGbestg/ ln(0.8), (22)

For the annealing algorithm, an exponential annealing function, i.e., k = k+1 = λ · t(k),
is employed, where 0 < λ < 1 denotes the annealing rate.

The controller design procedure is discussed in the next section.

3.4. Observer-based adaptive fuzzy robust controller design. Utilizing fuzzy logic
systems to approximate fi(x(t)), gij (x(t)) and gd(x):

F̂ (x |θf ) = θT
f ξf (x). (23)

Ĝ (x |θg ) = θT
g ξg(x). (24)

ĝd (x |θgd ) = θT
gd
ξgd(x). (25)

The fuzzy control law in Equation (8) can be rewritten as:

u(t) = Ĝ−1 (x(t) |θg )
[
−F̂ (x(t) |θf ) + y

(n)
d −Kce(t) + ua(t)

]
, (26)

where Kc = [Kc1, · · · , Kcp] is the control gain vector, and

ua = −ŵc −
BT

c P ẽc

∥ẽT
c P1Bc∥

(ĝd (x̂ |θgd ))−
BT

c P ẽc

∥ẽT
c P1Bc∥2

[
êTP2Koẽ1

]
. (27)

The parameter update laws are as follows:

θ̇f = γfξf (x̂)ẽ
T
c P1Bc, (28)

θ̇g = γgξg(x̂)uẽ
T
c P1Bc, (29)

θ̇gd = γgd
∥∥ẽT

c P1Bc

∥∥ ξgd(x̂), (30)

˙̂wc = γcẽ
T
c P1Bc, (31)

where γf > 0, γg > 0, γgd > 0 and γc > 0 are positive adaptive gains to be determined.
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In order to constrain the parameters θf , θg and θgd within the sets Mf , Mg and Mgd,
respectively, the following parameter projection algorithm was used. Therefore, the pro-
posed adaptive laws (28)-(30) can be modified as follows:

θ̇f =


γfξf (x̂)ẽ

T
c P1Bc if (∥θf∥ ≤ Mf )

or
(
∥θf∥ = Mf and ẽT

c P1Bcθ
T
1 ξf (x̂) ≤ 0

)
P
{
γfξf (x̂)ẽ

T
c P1Bc

}
if
(
∥θf∥ = Mf and ẽT

c P1Bcθ
T
1 ξf (x̂) > 0

) (32)

where P
{
γfξf (x̂)ẽ

T
c P1Bc

}
= γfξf (x̂)ẽ

T
c P1Bc − γf

θfθ
T
f

∥θf∥
ξf (x̂)ẽ

T
c P1Bc.

θ̇g =


γgξg(x̂)uẽ

T
c P1Bc if (∥θg∥ ≤ Mg)

or
(
∥θg∥ = Mg and ẽT

c P1Bcθ
T
2 ξg(x̂)u ≤ 0

)
P
{
γgξg(x̂)uẽ

T
c P1Bc

}
if
(
∥θg∥ = Mg and ẽT

c P1Bcθ
T
g ξg(x̂)u > 0

) (33)

where P
{
γgξg(x̂)uẽ

T
c P1Bc

}
= γgξg(x̂)uẽ

T
c P1Bc − γg

θgθ
T
g

∥θg∥
ξg(x̂)uẽ

T
c P1Bc.

θ̇gd =


γgd
∥∥ẽT

c P1Bc

∥∥ ξgd(x̂) if (∥θgd∥ ≤ Mθgd)

or
(
∥θgd∥ = Mθgd

and
∥∥ẽT

c P1Bc

∥∥θT
gd
ξgd(x̂) ≤ 0

)
P
{∥∥ẽT

c P1Bc

∥∥ γgdξgd(x̂)} if
(
∥θgd∥ = Mθgd

and
∥∥ẽT

c P1Bc

∥∥θT
gd
ξgd(x̂)u > 0

)
(34)

where P
{
γgdξgd(x̂)ẽ

T
c P1Bc

}
= γgdξgd(x̂)

∥∥ẽT
c P1Bc

∥∥− γgd
θgdθ

T
gd

∥θgd∥
ξgd(x̂)

∥∥ẽT
c P1Bc

∥∥.
Hence, the control law can be chosen as:

u(t) = Ĝ−1(x̂(t) |θg )
[
−F̂ (x̂(t) |θf ) + y

(n)
d −Kcê(t) + ua(t)

]
. (35)

Using Equations (35) and (6) yields:

ė(t) = Ae(t)−BKcê(t) +B
{
F (x(t)− F̂ (x̂(t) |θf )

+
[
G
(
x(t)− Ĝ (x̂(t) |θg )

)]
u(t) + ua(t) + ∆D(x)

}
,

eq(t) = Ce(t).

(36)

In order to estimate the output tracking error vector, we employ the observer as follows:

˙̂e(t) = (A−BKc) ê(t) +Ko (eq(t)− êq(t)) ,
êq(t) = Cê(t).

(37)

whereKo = [Ko1, · · · , Kop] is the observer gain vector. Define the observation error vector
as:

ẽ(t) = e(t)− ê(t). (38)

By utilizing Equations (36) and (37), then Equation (38) can be written as:

˙̃e = (A−K0C) ẽ+B

{[
F (x(t))− F̂ (x̂(t) |θ f )

]
+
[
G(x(t))− Ĝ(x̂(t) |θg )

]
u(t) + ua(t) + ∆D(x)

}
,

ẽq(t) = Cẽ(t).

(39)
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Defining x, x̂, θf , θg and θgd as belonging to the compact sets Ux, Ux̂, Ωf , Ωg and Ωgd ,
respectively, can be described as:

Ux = {x ∈ Rn : ∥x∥ ≤ Mx < ∞}

Ux̂ = {x̂ ∈ Rn : ∥x̂∥ ≤ Mx̂ < ∞}

Ωf =
{
θf ∈ RN : ∥θf∥ ≤ Mf < ∞

}
Ωg =

{
θg ∈ RN : ∥θg∥ ≤ Mg < ∞

}
Ωgd =

{
θgd ∈ RN : ∥θgd∥ ≤ Mgd < ∞

}
, (40)

where Mx, Mx̂, Mf , Mg and Mgd are the parameters, and N is the number of fuzzy logic
system rules. Define the optimal parameter vectors θ∗

f , θ
∗
g and θ∗

gd
as:

θ∗
f = arg min

θf∈Ωf

{
sup

x∈Ux,x̂∈Ux̂

∣∣∣F (x)− F̂ (x̂ |θf )
∣∣∣} , (41)

θ∗
g = arg min

θg∈Ωg

{
sup

x∈Ux,x̂∈Ux̂

∣∣∣G(x)− Ĝ(x̂ |θ g)
∣∣∣}, (42)

θ∗
gd

= arg min
θgd∈Ωgd

{
sup

x∈Ux,x̂∈Ux̂

∣∣∣gd(x)− ĝd (x̂ |θgd )
∣∣∣}, (43)

where θ̃f = θ∗
f − θf , θ̃g = θ∗

g − θg and θ̃gd = θ∗
gd
− θgd are parameter estimation errors.

Therefore, the minimum approximation errors can be denoted as:

w = F (x(t))− F̂ (x̂ |θ ∗
f ) +

(
G(x(t))− Ĝ(x̂

∣∣θ∗
g )
)
u+ gd(x(t))− ĝd(x̂

∣∣θ∗
gd
). (44)

Substituting Equation (44) into (39) yields:

˙̃e = (A−K0C) ẽ+B
{[

F (x(t))− F̂ (x̂(t) |θ f ) + F̂ (x̂(t)
∣∣θ∗

f )− F̂ (x̂(t)
∣∣θ∗

f )

+
[
G(x(t))− Ĝ (x̂(t) |θg ) + Ĝ(x̂(t)

∣∣θ∗
f )− Ĝ(x̂(t)

∣∣θ∗
f )
]
u(t)

+ ua(t) + ∆D(x)
]}

,

= (A−K0C) ẽ+B
{[

θ̃T
f ξf (x̂) + θ̃T

g ξg(x̂)u(t) + F (x(t))− F̂ (x̂(t) | θ∗
f )

+
[
G(x(t))− Ĝ(x̂(t)

∣∣θ∗
f )
]
u(t) + ua(t) + ∆D(x)

]}
,

(45)

ẽq(t) = Cẽ(t). (46)

Then, the output error dynamics of (46) can be described as:

ẽq(t) = H(s)
[
θ̃T
f ξf (x̂) + θ̃T

g ξg(x̂)u(t) +w + ua(t) + ∆D(x)
]
. (47)

The linear transfer function H(s) is realized using standard techniques. By using the
SPR Lyapunov design method, and the following equation can be obtained:

ẽq(t) =H(s)L(s)
[
L(s)−1θ̃T

f ξf (x̂) +L(s)−1θ̃T
g ξg(x̂)u(t)

+L(s)−1 (w + ua(t) + ∆D(x))
]
,

(48)

where L(s) = [L1(s), · · · , Lp(s)] and Li(s) = smi + bi1s
mi−1 + · · · + bimi

, (mi = ni − 1),
i = 1, 2, · · · , p. After some further manipulations, Equation (48) can be rewritten as
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follows:

˙̃ec = (A−K0C) ẽc +Bc

[
θ̃T
f ξcf (x̂) + θ̃T

g ξcg(x̂)u(t) +wc + uca(t) + ∆Dc(x)
]
,

ẽq(t) = Cẽc(t),
(49)

where Bc = diag [Bc1, · · · ,Bcp], Bci = diag [1, bi1, · · · , bimi
], ξcf (x̂) = L(s)−1ξf (x̂), wc =

L(s)−1w, ∆Dc(x) = L(s)−1∆D(x) and ξcg(x̂) = L(s)−1ξg(x̂). The following lemma will
be used to verify our main results.

Lemma 3.1. [58] Assuming that X and Y are vectors or matrices with corresponding
dimensions, the following equation holds:

XTX + Y TY ≥ 2XTY. (50)

Theorem 3.1. Consider the MIMO nonlinear system (2) with Assumptions 2.1 and 2.2.
The adaptive fuzzy robust controller is defined by Equations (26) and (27) with adapta-
tion laws given by Equations (28)-(31). For the given positive definite matrices Q1 and
Q2, if there exist symmetric positive definite matrixes P1 and P2 such that the following
Lyapunov equations are satisfied:

(A−KoC)T P1 + P1 (A−KoC) ≤ −Q1, (51a)

(A−BKc)
T P2 + P2 (A−BKc) ≤ −Q2, (51b)

then the system (2) is asymptotically stable.

Proof: Consider the Lyapunov function as:

V =
1

2
ẽT
c P1ẽc +

1

2
êTP2ê+

1

2γf
tr
(
θ̃T
f θ̃f

)
+

1

2γg
tr
(
θ̃T
g θ̃g

)
+

1

2γc

(
w̃T

c w̃c

)
+

1

2γgd
tr
(
θ̃T
gd
θ̃gd

)
.

(52)

Differentiating Equation (52) with respect to time, yields:

V̇ =
1

2
˙̃e
T

c P1ẽc +
1

2
ẽT
c P1

˙̃ec +
1

2
˙̂e
T
P2ê+

1

2
êTP2

˙̂e− 1

γf
tr
(
θ̃T
f
˙̂
θf

)
− 1

γg
tr
(
θ̃T
g
˙̂
θg

)
− 1

γgd
tr
(
θ̃T
gd

˙̂
θgd

)
− 1

γc

(
w̃T

c
˙̂wc

)
.

(53)

Then, Equation (53) can be described as:

V̇ =
1

2
ẽT
c

[
(A−KoC)T P1 + P1 (A−KoC)

]
ẽc +

1

2
êT
[
(A−BKc)

T P2

+ P2 (A−BKc)
]
ê+ ẽT

c P1Bc

[
θ̃T
f ξf (x̂) + θ̃T

g ξg(x̂)u+wc + ua

+∆D(x)
]
+ êTP2Koẽ1 −

1

γf
tr
(
θ̃T
f θ̇f

)
− 1

γg
tr
(
θ̃T
g θ̇g

)
− 1

γc

(
w̃T ˙̂w

)
− 1

γgd
tr
(
θ̃T
gd
θ̇gd

)
.

(54)

V̇ ≤ 1

2
ẽT
c

[
(A−KoC)T P1 + P1 (A−KoC)

]
ẽc +

1

2
êT
[
(A−BKc)

T P2

+ P2 (A−BKc)
]
ê+ ẽT

c P1Bcua + ẽT
c P1Bcθ̃

T
f ξf (x̂)

+ ẽT
c P1Bcθ̃

T
g ξg(x̂)u+ ẽT

c P1Bc(w̃c + ŵc) +
∥∥ẽT

c P1Bc

∥∥ · ∥∆Dc∥

(55)
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+ êTP2Koẽ1 −
1

γf
tr
(
θ̃T
f θ̇f

)
− 1

γg
tr
(
θ̃T
g θ̇g

)
− 1

γc

(
w̃T

c
˙̂wc

)
− 1

γgd
tr
(
θ̃T
gd
θ̇gd

)
.

According to Lemma 3.1 and Assumption 2.2, Equation (55) can be obtained as:

V̇ ≤ 1

2
ẽT
c

[
(A−KoC)T P1 + P1 (A−KoC)

]
ẽc +

1

2
êT
[
(A−BKc)

T P2

+ P2 (A−BKc)
]
ê+ ẽT

c P1Bcua + ẽT
c P1Bcθ̃

T
f ξf (x̂) + ẽT

c P1Bcθ̃
T
g ξg(x̂)u

+ ẽT
c P1Bc(w̃c + ŵc) +

∥∥ẽT
c P1Bc

∥∥ · ĝd(x̂ |θgd ) +
∥∥ẽT

c P1Bc

∥∥ · θ̃T
gd
ξgd(x̂)

+ êTP2Koẽ1 −
1

γf
tr
(
θ̃T
f θ̇f

)
− 1

γg
tr
(
θ̃T
g θ̇g

)
− 1

γc

(
w̃T

c
˙̂wc

)
− 1

γgd
tr
(
θ̃T
gd
θ̇gd

)
.

(56)

After some straightforward manipulations, the following equation can be obtained:

V̇ ≤ 1

2
ẽT
c

[
(A−KoC)T P1 + P1 (A−KoC)

]
ẽc

+
1

2
êT
[
(A−BKc)

TP2 + P2 (A−BKc)
]
ê.

(57)

Thus, V̇ < 0, if Equations (51a) and (51b) are satisfied. This completes the proof of the
theorem.

4. Example. In the following, we apply one example to verify the effectiveness of the
proposed approach. The proposed controller is designed for the tracking problem of two
well-known chaotic systems. In this example, the control objective is to force the system
output to track the given desired trajectory ypd = sin t.

Consider the following interconnected Duffing system given by [59]:

ẋ11 = x12,
ẋ12 = −0.1x12 − x3

11 + 12 cos(t) + x21 + x22 + u1 +∆d1,
ẋ21 = x22,
ẋ22 = −0.1x22 − x3

21 + 12 cos(t) + x11 + x12 + u2 +∆d2.

(58)

According to the design procedure, the design proceeds as follows:

Step 1: Specify parameters for PSO-SA: c1 = 1, c2 = 1, χ = 0.8 and swarm size Nswarm =
100, maximum evolution generation Gen = 200 (stopping condition).

Step 2: Denote a positive definite Q1 = diag [1, 1, 1, 1], Q2 = diag [1, 1, 1, 1], γf = γg =

0.1, γgd = 0.11, rc = 0.01 and ∆d =

[
0.5 sin(t)
0.5 sin(t)

]
. Then solving the Lyapunov

Equations (51a) and (51b), we can get P1 and P2.
Step 3: Specify the design parameters

Kc =

[
145 45 0 0
0 0 140 35

]
, Ko =

[
45 100 0 0
0 0 70 85

]T
.

Step 4: The membership functions of the fuzzy sets are described as:

µF 1
i
(xi) = 1/1 + exp (5× (xi + 2)) , µF 2

i
(xi) = exp

[
−(xi + 1)2

]
,

µF 3
i
(xi) = exp

[
−x2

i

]
, µF 4

i
(xi) = exp

[
−(xi − 1)2

]
,

µF 5
i
(xi) = 1/1 + exp (5× (xi − 2)) .
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Step 5: Obtain the control law and apply it to the plant. Then, compute the adaptive
law to adjust the parameter.

The initial conditions are x(0) = [2, 2, 2, 2]T , ê(0) = [0.1, 0.1, 0.1, 0.1]T , θf (0) = 0,
θg(0) = 0.2 and θgd(0) = 0. Figures 1-3 show the initial membership functions for the
control inputs u, e and ė, where e and ė are mapped to the linguistic variable error and
its differentiation by the fuzzification operator. In this, the two subsystems have the
same initial membership functions. The fuzzy logic system inputs are composed of the
five linguistic terms NB (Negative Big), NM (Negative Medium), Z (Zero), PM (Positive
Medium) and PB (Positive Big). In order to compare our stabilization performance of the
proposed controller with that of a conventional observer-based fuzzy adaptive robust con-
troller (OFARC), we consider the example used in [59]. Figures 4-6 show the membership
functions of u, e and ė after adjustment with the PSO-SA algorithm for u1, while Figures
7-9 show membership functions of u, e and ė after adjustment with PSO-SA algorithm
for u2. Figures 10-13 show the response of the nonlinear system under the control law
of OFARC and the proposed method with the initial conditions are x(0) = [2, 2, 2, 2]T ,
ê(0) = [0.1, 0.1, 0.1, 0.1]T , θf (0) = 0, θg(0) = 0.2 and θgd(0) = 0. The selection of these
parameters affects the convergence rate of the adaptive parameters, settling time and over-
shoot. It is clear that the proposed controller can stabilize the nonlinear system and show
better ability of the tracking reference signals than the OFARC. From the experiment,
it is shown that the convergence times of OFARC and proposed scheme are 5.5 ∼ 6.0
seconds and 2.5 ∼ 3.0 seconds, respectively. However, the fast convergence time of pro-
posed scheme renders its performance increased about 50% over that of OFARC. The
proposed control scheme can be applied to MIMO chaotic system and can achieve excel-
lent performance for all state variables. In addition, the tracking control problems of the
uncertain MIMO system have three different initial conditions [3, 3, 3, 3], [−3,−3,−3,−3]
and [5,−5, 5,−5] are considered. The simulation results are depicted in Figures 14-17,
and the results show the stabilization performance of the proposed controller. One can
find that the proposed scheme can achieve much better tracking performance for all state
variables and is robust to external disturbance and internal uncertainty.
In order to evaluate the output control performance, we will also refer to the Integral

Square Error (ISE) [60] and the Integral Absolute Error (IAE) [61] to compare with the
performance of OFARC and proposed scheme, respectively.

J = ISE =

∞∫
0

e2(t)dt. (59)

J = IAE =

∞∫
0

|e(t)| dt. (60)

Finally, the performance indices (tracking time, adjustment parameter of membership
functions, exploit, IAE and ISE) of the simulation results are tabulated in Table 1.

Table 1. Performance comparison of various existing methods

Method Time (sec) Membership functions Exploit ISE IAE
OFARC 5.5 ∼ 6.0 Fixed Affected by noise 2.6 6.5

Proposed method 2.5 ∼ 3.0 Flexible Eliminate noise 1.1 2.8
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Figure 1. Membership
functions of input variables
for u1 and u2

Figure 2. Membership
functions of e for u1 and u2

Figure 3. Membership
functions of ė for u1 and u2

Figure 4. Membership
functions after adjustment
of input variables for u1

Figure 5. Membership
functions after adjustment
of input e variables for u1

Figure 6. Membership
functions after adjustment
of input ė variables for u1
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Figure 7. Membership
functions after adjustment
of input variables for u2

Figure 8. Membership
functions after adjustment
of e for u2

Figure 9. Membership
functions after adjustment
of ė for u2

Figure 10. Trajectories of x11

Figure 11. Trajectories
of x12

Figure 12. Trajectories
of x21
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Figure 13. Trajectories
of x22

Figure 14. Trajectories
of x11 (various initial condi-
tions)

Figure 15. Trajectories of
x12 (various initial condi-
tions)

Figure 16. Trajectories of
x21 (various initial condi-
tions)

Figure 17. Trajectories of x22 (various initial conditions)
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5. Conclusions and Future Work.

5.1. Conclusions. In this paper, an observer-based adaptive fuzzy robust controller de-
sign was proposed for a class of MIMO nonlinear systems. Compared with existing de-
signs, the four main advantages of the proposed approach are: (1) an adaptive fuzzy robust
tracking control method for a class of MIMO systems is designed; (2) the controller does
not require a priori knowledge of the sign of the control coefficient; (3) a PSO–SA algo-
rithm is used to self-adjust the controller’s coefficient for the optimal solution; and (4) a
novel auxiliary compensation is introduced to eliminate external disturbance and fuzzy
approximation error. The PSO-SA based adaptive fuzzy controller can generate fuzzy
rules by transforming the universe of discourse and reducing the dependence on expert
knowledge. Furthermore, the stabilization condition of the closed-loop is proposed using
the Lyapunov theorem. Simulation results show that the proposed PSO-SA based adap-
tive fuzzy robust control scheme provides better tracking performance than an existing
conventional method.

5.2. Future work. Since the novel auxiliary compensation in this paper can eliminate
external disturbance and internal uncertainty, the proposed approach can be extended to
uncertain MIMO nonlinear systems with time delays. However, there are some deficiencies
when solving this kind of problem in traditional PSO-SA ways. In order to deal with the
issues, we will improve the PSO-SA algorithm for these existing frameworks. In addition,
the proposed method can be extended the application of the PSO-SA based adaptive
fuzzy controller performance in real-world problems. Furthermore, based on the proposed
PSO-SA, the algorithm can be improved to deal with more complex external disturbance
and internal uncertainty of nonlinear system.
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