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Abstract. There are many examples in science and engineering that may be described
by a set of partial differential equations (PDEs). The modeling process of such phe-
nomenons is in general a complex task. Moreover, there exist some sources of uncertain-
ties around that mathematical representation that sometimes are difficult to be included
in the obtained model. Neural networks appear to be a plausible alternative to get a non
parametric representation of the aforementioned systems. It is well known that neural
networks can approximate a large set of continuous functions defined on a compact set
to an arbitrary accuracy. In this paper a strategy based on differential neural networks
(DNNs) for the non parametric identification in a mathematical model described by hy-
perbolic partial differential equations is proposed. The identification problem is reduced
to finding an exact expression for the weights dynamics using the DNN properties. The
adaptive laws for weights ensure the convergence of the DNN trajectories to the hyper-
bolic PDE states. To investigate the qualitative behavior of the suggested methodology,
here the no-parametric modeling problem for the wave equation is solved successfully.
Some three dimension graphic representations are used to demonstrate the identification
abilities achieved by the DNN designed in this paper.
Keywords: Hyperbolic partial differential equations, High order sliding modes, Super-
twisting, Numerical modelling

1. Introduction. The modern theory of identification regards to solve the problem of
efficient retrieval of signal systems and dynamic properties based on measurements of
available data. Basically, the class of linear and nonlinear systems whose dynamics de-
pends linearly on the unknown parameters [22]. A general feature of these publications
is that exact measurements of state vector space are available. Neural networks with
universal approximation property and learning ability have proved to be a powerful tool
to identify and control complex nonlinear dynamic systems with uncertainty parameters
or structure [21, 25].

Exploiting the artificial neural network (ANN) natural ability to approximate non-
linear functions, the replacement of unknown system uncertainties by special adaptive
models can be proposed. These numerical approximations (ANN) are defined by specific

1501



1502 S. J. LOPEZ, O. C. NIETO AND J. I. C. ORIA

structures (continuous, discrete, etc.), but containing a number of unknown parameters
(weights) that should be adjusted.
Based on the model selection, their free parameters can be modified using differen-

tial or difference equations. Many different schemes using differential forms to design
ANN were proposed since 20 years ago. These constructions were based on the Hopfield
structure. Today, they are recognized as differential neural networks or DNN for short.
The focus of the DNN avoids the well-known problems that are common in conventional
neural networks (global search minimization). Most of continuous ANN schemes use the
controlled Lyapunov theory to transform the problem of numerical approximation into a
robust adaptive nonlinear feedback [27].
When the mathematical model of the process under analysis is incomplete or partially

known, the DNN approach provides an effective tool to address some problems in theory
of control such as the parameter identification, state estimation, control for trajectory
tracking. Special attention is paid to constructing differential neural identifier for dy-
namical systems with uncertainties that have limited information affected by external
perturbations.
In contrast to many identifiers requiring a detailed mathematical description of the

nonlinear systems, the ANN is efficient to deal with a large class of nonlinear systems that
do not have a clearly defined model. The good performance of such identifiers [29] depends
on its specific structure and the adaptive laws to adjust its parameters. In this paper, the
DNN proposal given in [4, 12, 13] will be used. These DNNs have been successfully used in
the identification of these unknown systems due to its massive parallelism, fast adaptation
and learning capability quite success. The abilities showed by DNN have been used to
approximate the right-hand side of uncertain ordinary differential equations. Indeed, the
DNN can approximate such differential equations with high complexity [3].
This approximation skill may be used to solve the numerical identification of partial

differential equations. The solution of the aforementioned problem is based on numer-
ical methods such as the finite differences and finite elements methods. Therefore, the
application of a mixed algorithm using a number of DNN to approximate the solution of
each ODE produced by the numerical methods (finite differences in this paper) can be
justified. Among the considerations that justify the use of numerical methods for solving
certain types of ordinary differential equations in partial derivatives are: 1) the data from
the real problems have always measurement errors, 2) the arithmetic work for the solution
is limited to a finite number of significant figures resulting in rounding errors and 3) the
numerical evaluation of analytical solutions is often a laborious task and computational
inefficient, requiring a large number of iterations in the calculation and treatment of the
data series, while generally numerical methods provide adequate numerical solutions in a
simple and efficient way [2].
Indeed, several papers have showed the ANN’s skills to approximate partial differential

equations using the aforementioned method. In those papers, parabolic, hyperbolic and
some other PDEs were successfully reproduced by a special class of continuous identifier
base on special class of ANN, the so-called DNN identifier.
Even when the proposed technique is based on the well know DNN theory, the methodol-

ogy introduced in the paper represents a novelty nonlinear identifier design for hyperbolic
partial differential equations using a Lyapunov based method. Actually, this method
connects the no-parametric approximation for uncertain second order systems defined in
infinite dimensional space with the DNN scheme. One can easily conclude that the iden-
tifier designed here is useful for the dynamics considered as the object of the problem.
Therefore, this design is actually a class of adaptive DNN based identifier for a class of un-
certain PDE. Indeed, this class of problems has been attacked by a few researching groups
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as can be checked in the references section. This is the main contribution introduced in
the paper.

2. Identification of Hyperbolic Equations. The method used in this paper produces
an approximation of uncertain hyperbolic PDE. As a result of the approach, the partial
differential equation that describes the problem is replaced by a finite number of ordi-
nary differential equations, written in terms of the values of the dependent variable at
limited number of selected points. The value of the selected points are converted into the
unknown, instead of the continuous spatial distribution of the dependent variable. The
system of ODE must be solved and may involve a long number of arithmetic operations
including the numerical integration for each ODE. The method can be solved in regressive
or progressive manner.

Let us consider the uncertain hyperbolic partial differential equation

utt (x, t) = f (u (x, t) , ux (x, t) , uxx (x, t) , v (x, t)) (1)

here u (x, t) is defined in a domain given by x ∈ [0, 1], t ≥ 0, with boundary (Neumann
and Dirichlet) and initial conditions given by:

ux(0, t) = 0

u(0, t) = u0, u(x, 0) = c
(2)

The function v (x, t) ∈ ℜ can be considered as measurable external perturbation or a
designed distributed control action. Indeed, the identifier based on DNN only uses the
measurements at each point (x) for all times (t). In (1), and

ux (x, t) =
∂u (x, t)

∂x
, uxx (x, t) =

∂2u (x, t)

∂x2

ut (x, t) :=
∂u (x, t)

∂t
, utt (x, t) :=

∂2u (x, t)

∂t2

System (1) armed with boundary and initial conditions (2) is driven in a Hilbert space H
equipped with an inner product (·, ·).

Definition 2.1. Let Ω be an open set in Rn and let ν ∈ Cm (Ω). Define the norm of ν (x)
as

∥ν∥m,p :=
∑

0≤|α|≤m

∫
Ω

|Dαν (x)|p dx

1/p

(3)

(1 ≤ p < ∞, Dαν (x) :=
∂α

∂xα
ν (x)). This is the Sobolev norm in which the integration is

performed in Lebesgue sense. The completion of the space of function ν (x) ∈ Cm (Ω) :
∥ν∥m,p < ∞ with respect to ∥·∥m,p is the Sobolev space Hm,p (Ω). For p = 2, the Sobolev
space is a Hilbert space.

3. Finite Differences Method and Mesh-Based Approximation. The finite dif-
ference method consists of a partial approximation of algebraic expressions involving the
dependent variable values in a limited number of selected points. As a result of the ap-
proach, the partial differential equation describing the problem is replaced by a finite
number of algebraic equations, written in terms of the values of the dependent variable
at selected points. When the PDE is time dependent, the algebraic equations turn out to
be ordinary differential equations [20].

The method produces the value of these selected points for the PDE solutions, instead
of the continuous spatial distribution of the dependent variable. The system of algebraic
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or differential equations must be solved and may involve a long number of arithmetic
operations.
Let us consider that u := u(x, t) is the PDE state. In view of u is a function of x with

finite and continuous derivatives, then by Taylor’s theorem, one has

u(x+ h, t) = u(x, t) + hux(x, t) +
1

2
h2uxx(x, t) +

1

6
h3uxxx(x, t) + l1 (x, t)

u(x− h, t) = u(x, t)− hux(x) +
1

2
h2uxx(x, t)−

1

6
h3uxxx(x, t) + l2 (x, t)

(4)

here l1 (x, t) and l2 (x, t) represent terms containing powers of h or/and higher. Adding
these expansions,

u(x+ h, t)− u(x+ h, t) = 2ux(x, t) + h2uxx(x, t) + l (h)4 (5)

The expression l(h4) denotes the new set of terms containing the powers of order 4 or
higher. Assuming these terms are small in relation to the smaller powers of h, it follows
that:

uxx(x, t)t const ≃
1

h2
{u(x+ h, t)− 2u(x, t) + u(x− h, t)} (6)

with error de order h2.
Subtracting the Equation (4) of Equation (5), and neglecting the terms of order h3 may

be obtained:

ux(x, t)t const ≃
1

2h
{u(x+ h, t)− u(x− h, t)} (7)

with error de order h2. Equation (5) approximates the slope of the tangent at the point
These results were obtained using the supposition of t remains unchanged. This ap-
proximation called central difference approximation. This method is not usable for the
approximation based on DNN.
One can also approximate the slope of the tangent at (x, t, u(x, t))t const by the slope of

the line through the points (x, t, u(x, t)) and (x+h, t, u(x+h, t)), obtaining the backward
difference approximation

ux(x, t)t const ≃
1

h
{u(x, t)− u(x− h, t)} (8)

or the slope of the line through the points (x−h, t, u(x−h, t)) and (x, t, u(x, t)), obtaining
the forward difference approximation

ux(x, t)t const ≃
1

h
{u(x− h, t)− u(x, t)} (9)

In this paper, the backward difference will be used. This selection is easily relaxed because,
the measuring availability of u(x, t) is assumed to be valid.
So, it is necessary to construct a set (commonly called grid or mesh) that divides the

sub-domain x ∈ [0, 1] in N equidistant sections (1) defined as xi in such a way that x0 = 0
and xN = 1.
Using this mesh description, one can use the next definitions

ui(t) := ui(x, t); ui,t(x, t) =
du (x, t)

dt

∣∣∣∣
x=xi

; ui,tt(x, t) =
d2u (x, t)

dt2

∣∣∣∣
x=xi

ui,x(x, t) =
∂u (x, t)

∂x

∣∣∣∣
x=xi

; ui,xx(x, t) =
∂2u (x, t)

∂x2

∣∣∣∣
x=xi

Using the mesh description and applying the finite-difference representation, one has

ui,x(x, t) ≈
ui (x, t)− ui−1 (x, t)

∆x
, ui,xx(x, t) ≈

ui,x(x, t)− ui−1,x(x, t)

∆x



NON-PARAMETRIC MODELING OF UNCERTAIN HYPERBOLIC PDES 1505

Figure 1. Discretization of the spacial domain. This scheme is used to
solve the finite difference method to approximate the hyperbolic partial
difference equation used in this paper.

The mesh based approximation of the nonlinear PDE (1) can be represented as follows:

ui,t(t) = u̇i(t) = Θi (ui(t), ui−1(t), ui−2(t), vi (x, t)) + f̃ (ui(t), ui−1(t), ui−2(t), vi (x, t))

where

Θi (ui(t), ui−1(t), ui−2(t)) := fi

(
u(xi, t),

ui (x, t)− ui−1 (x, t)

∆x
,

ui,x(x, t)− ui−1,x(x, t)

∆x
, vi (x, t)

)
Evidently, this is a numeric method to approximate the PDE solution. However, this
approximation can be formulated if f is perfectly known. This is not the case for the case
considered in this paper.

4. DNN Hyperbolic Identification Using a Pseudo Sliding Mode Observer.
The system presented in (1) is a class of generalized second order system defined in the
Hilbert space H. By the finite-diferences representation, each subsystem at the point i
may be represented as

u̇1,i (t) = u2,i (x, t)x=xi

u̇2,i (t) = fi(x, v, t)x=xi

(10)

That may be represented as follows

µ̇i(t) = Fi(x, v, t)x=xi

Fi(x, t) :=

[
u2,i(x, t)x=xi

fi(x, v, t)x=xi

]
(11)

where µi (t) = [u1,i (t) , u2,i (t)]
ᵀ ∈ ℜ2 is the state vector and vi (t) ∈ ℜ1 is the control

action applied into the system at time t.
The solution of the last unperturbed differential equation is understood in the Filippov

sense [11], that is, the second equation in (10) where appears Fi(x, t) is replaced by an
equivalent differential inclusion

d

dt
µi (x, v, t) ∈ F̄i (x, t, v)
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This assumption is given to consider the possible application of discontinuous perturba-
tions or controllers vi(t). Even when those signals wont be discontinuous, the class of
solutions understandable in Filippov sense generalize the continuous case.
In view of the continuity almost everywhere of Fi(x, v, t), the set-valued F̄i (x0, v0) =[

F̄i (·)
]
i=1,n

is the convex closure of Fi(x, v, t) of the set of all limits of Fi (xa, va) as

[xa, va] → [x0, v0] where [x0, v0] is the set of all continuity points of Fi(x, v, t) for any
xa ∈ X ⊂ ℜ2 and va ∈ V adm where V adm is the set of all admissible nonlinear controllers
given by

V adm :=
{
v: ∥vt∥2 ≤ r1 ∥µ(t)∥2Λµ

< ∞
}

This set V adm may include different controllers designs such as the linear feedback, con-
ventional and high order sliding modes, integral controllers, etc. Here r1 ∈ ℜ+ and Λµ is
a positive definite matrix (Λµ = Λᵀ

µ, Λµ > 0) with adequate dimensions (Λµ ∈ ℜ2×2).

5. Finite Differences and DNN Approximation for Uncertain PDE. Using a
neural network to approximate unknown nonlinear functions fi(x, v, t)x=xi

has been con-
sidered as a very important tool to solve many uninformative problems within system
theory. Nevertheless, the presence of error modelling f̃i has been considered to relax
the design conditions. The latter term is associated to the unavailable information to
construct the numerical reproduction of fi(x, v, t)x=xi

.
Therefore, the following equation is valid

fi(x, v, t)x=xi
= f0,i(x, t) + f̃i(x, t) (12)

The last decomposition is based on the approximation capabilities of neural networks.
Here it should be noticed that f (·, ·) ∈ ℜn always could be presented (by the Stone-
Weisstrass and the Kolmogorov theorems [5]) as the composition of nominal f0 (xt, ut | Ω) :
ℜn+m → ℜn and a modeling error f̃t : ℜn → ℜn term (as is usual when a model-free
approximation is applied). The nominal part f0 will be approximated using a nonlinear
description based on neural network theory [14, 26] using general basis to reproduce the
assumed unknown nonlinear function. Many possible sophisticated suggestions can be
made here to design any suitable basis for the numerical approximation.
The main idea behind the application of DNN to approximate the PDE’s solution is

to use a class of finite-difference method but for uncertain nonlinear functions. In the
introduction section, it has been established the contribution of approximation theory to
construct numerical models (usually called no-parametric) based on a general approxima-
tion. The following paragraphs give a general description about how to produce a suitable
approximation for each fi.

5.1. General theory used to approximate uncertain function. To give a smooth
approach to the proposal introduced in this paper, lets consider a continuous function
h0 (·) defined in a Hilbert space. By the ideas presented in [9], h0 (·) can be rewritten in
terms of the H basis (Ψij) as

h0 (z, θ
∗) =

∑
i

∑
j

θ∗ijΨij (z)

θ∗ij =

+∞∫
−∞

h0 (z)Ψij (z) dz, ∀i, j ∈ Z

where {Ψij (z)} are functions constituting a basis in H. Last expression is referred to as a
perfect function series expansion of h0 (z, θ

∗). The proposed neural network corresponds
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to h0. The main idea behind the neural network design is to use a similar construction
but using a special class of basis functions. Nevertheless, one can not assume that θ∗ij are

known. So, one must propose the function aproximation ĥ0 (z, θ) designed to be adjusted
using a time varying structure.

Based on this series expansion, the adjustable NN can take the following mathematical
structure

ĥ0 (z, θ (t)) :=

M2∑
i=M1

N2∑
j=N1

θij (t)Ψij (z) = Θ (t)Π (z)

Θ (t) = [θM1N1 (t) , . . . , θM1N2 (t) , . . . θM2N1 (t) , . . . θM2N2 (t)]
ᵀ

Π(z) = [ΨM1N1 , . . . ,ΨM1N2 , . . .ΨM2N1 , . . .ΨM2N2 ]
ᵀ

(13)

that can be used to approximate a nonlinear function h0 (z, θ
∗) ∈ H with an adequate

selection of integers M1, M2, N1, N2 ∈ Z+. Following the Stone Weiestrass Theorem [5],
if

ϵ (M1,M2, N1, N2, t) = h0 (x, θ
∗)− ĥ0 (x, θ (t))

is the NN approximation error. Then for any arbitrary positive constant ϵ there are some
constants M1,M2, N1, N2 ∈ Z such that for all z ∈ Z ⊂ ℜ.

sup
t

∥ϵ (M1,M2, N1, N2, t)∥2 ≤ ϵ (14)

Remark 5.1. Appropriate selection of functions Ψij (·) is an important task to construct
an adequate approximation of nonlinear functions. Many functions have been reported in
literature [24] that have remarkable results to approximate nonlinear unknown functions.
Which one is the most suitable basis in practical application depends on each particular
design specifications.

Remark 5.2. M1, M2, N1, N2 parameters in neural network design are closely related
to the quality approximation ϵ (M1,M2, N1, N2, t). The NN has been demonstrated to be
effective to reproduce uncertain nonlinear functions satisfying the Lipschitz condition.

5.2. DNN approximation for hyperbolic PDE. Following the ideas presented above,
by simple adding and subtracting the necessary terms, one can represent the hyperbolic
PDE as

utt(x, t) =Aµ(x, t) + V̊1 (x) σ̄(x)µ(x, t) + V̊2 (x) φ̄(x)µx(x, t)

+ V̊3 (x) γ̄(x)µxx(x, t) + V̊4 (x) η̄(x)v (x, t) + f̃(x, t)
(15)

here f̃(x, t) ∈ R represents the modeling error and is defined explicitly by

f̃(x, t) := f (u (x, t) , ux (x, t) , uxx (x, t))− utt(x, t)

The vectors A ∈ R1×2, V̊1 (·) ∈ Rn1 , V̊2 (·) ∈ Rn2 , V̊3 (·) ∈ Rn3 , V̊4 (·) ∈ Rn4 are constants
and the set of functions σ̄(x) ∈ Rn1 , φ̄(x) ∈ Rn2 , γ̄(x) ∈ Rn3 , η̄(x) ∈ Rn4 forming a basis
obey the following sector conditions:

∥σ̄(x)− σ̄(x′)∥ ≤ Lσ̄∥x− x′∥ ∥φ̄(x)− φ̄(x′)∥ ≤ Lφ̄∥x− x′∥
∥γ̄(x)− γ̄(x′)∥ ≤ Lγ̄∥x− x′∥ ∥η̄(x)− η̄(x′)∥ ≤ Lη̄∥x− x′∥

Also it can be shown they are bounded in x, i.e.,

∥σ̄(·)∥ ≤ σ+, ∥φ̄(·)∥ ≤ φ+, ∥γ̄(·)∥ ≤ γ+, ∥η̄(·)∥ ≤ η+
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5.3. DNN approximation based on the finite differences. Following the DNN con-
structions and applying the same representation to (15), one gets for each i ∈ [1, N ]:

ui,tt(x, t) = f0,i(x, t) + f̃i(x, t)

here the term f0,i(x, t) is usually referred to as the nominal dynamics or the DNN ap-
proximation. This structure obeys the basic regressor form described in [22]. Therefore,
the f0,i(x, t) has the form

f0,i(x, t) := Aµ(x, t)|x=xi
+ V1 (x) σ̄(x)µ(x, t)|x=xi

+ V2 (x) φ̄(x)µx(x, t)|x=xi

+ V3 (x) γ̄(x)µxx(x, t)|x=xi
+ V4 (x) η̄(x)v(x, t)|x=xi

On the other hand, the term

f̃i(x, t) := f̃(x, t)
∣∣∣
x=xi

is the so-called modeling error representing the distance between the approximation pro-
duced by the DNN and the real PDE trajectories at each point within the space domain
[0, 1]. By a simple mathematical algorithm, one has

f̃i(x, t) = Ri (ui(t), ui−1(t), ui−2(t))− f0,i(x, t)

Hereafter, it will be assumed that the modeling error terms satisfy the followings assump-
tions:
Assumption: The modelling error is absolutely bounded in Ω :∥∥∥f̃i(x, t)∥∥∥2 ≤ f̃1,i ∥µi(t)∥2 (16)

Direct application of finite difference method to (12) leads to

f0,i (x (t) , t) := Aiµi(x, t) +
[
V̊1,i (x) σ̄i(xi) + (∆x)−1 V̊2 (xi) φ̄(xi)

+ (∆x)−2 V̊3 (xi) γ̄(xi)
]
µi(x, t)−

[
(∆x)−1 V̊2 (xi) φ̄(xi)

+2 (∆x)−2 V̊3 (xi) γ̄(xi)
]
µi−1(x, t) +

[
(∆x)−2 V̊3 (xi) γ̄(xi)

]
µi−2(x, t)

+ V̊4 (xi) η̄(xi)v(xi, t)

Indeed by the approximation theory introduced above, one may represent this expression
as

f0,i (x (t) , t) := Ωᵀ
0,i (t)Πi (t)

These new variables are defined as

Ωᵀ
0,i (t) :=

[
Ai W̊i,1 (x) W̊i,2 (x) W̊i,3 (x) W̊i,4 (x)

]
Πᵀ

i (t) :=
[
µ(xi, t) σ(xi)µ(xi, t) φ(xi)µ(xi−1, t) γ(xi)µ(xi−2, t) η(xi)v(xi, t)

]
This is the so-called finite difference DNN approximation of the uncertain hyperbolic
partial differential equation.
Considering the structure given in (10) and using the DNN description, PDE may be

approximated by the following second order DNN identifier

u̇1,i (t) = u2,i (x, t)

u̇2,i (t) = Ωᵀ
0,i (t) Ξi (t) + f̃i(x, t)

(17)

This form will be used to show the convergence of the DNN identifier.
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5.4. Non-parametric identifier. In this case, following the neural network theory, the
nominal section is proposed as

f̄0,i (x (t) , t) :=Ωᵀ
i (t) Π̄i (z)

Θ̄ᵀ
i (t) :=

[
Ai V1 (x, t)|x=xi

V2 (x, t)|x=xi
V3 (x, t)|x=xi

V4 (x, t)|x=xi

]
Π̄ᵀ

i (t) :=

[
µ(x, t)|x=xi

σ̄(x)µ(x, t)|x=xi

φ̄(x)µx(x, t)|x=xi
γ̄(x)µxx(x, t)|x=xi

η̄(x)v(x, t)|x=xi

] (18)

where Vj (x, t) ∈ ℜnj are constant matrices which are the so-called best-fitted weights and
are defined as follows

Vj (x, t)|x=xi
:= Vj (xi, t)

The activation functions Π̄i (z) are constituted by the usual sigmoid functions defined as

Sr(xt) := ar

(
1 + br exp

(
−

n∑
j=1

cjxj,t

))−1

, r = [1, nj]

These functions satisfy the following sector conditions∣∣Sr

(
x1
t

)
− Sr

(
x2
t

)∣∣2 ≤ lSr

∥∥x1
t − x2

t

∥∥2
x1
t , x

2
t ∈ Rl, l ≥ 1 lSr ∈ R+

The upper bound (16) is guaranteed if the uncertain nonlinear system (17) can be ap-
proximated by a possible adaptive algorithm. This property is usually referred to as that
system is identifiable [14].

Direct application of finite difference method to (18) leads to

f̄0,i (x (t) , t) := Aiµi(x, t) +
[
V1,i (x, t) σ̄i(xi) + (∆x)−1 V2 (xi, t) φ̄(xi)

+ (∆x)−2 V3 (xi, t) γ̄(xi)
]
µi(x, t)−

[
(∆x)−1 V2 (xi, t) φ̄(xi)

+2 (∆x)−2 V3 (xi, t) γ̄(xi)
]
µi−1(x, t)

+
[
(∆x)−2 V3 (xi, t) γ̄(xi)

]
µi−2(x, t)

+ V4 (xi, t) η̄(xi)v(xi, t)

Indeed by the approximation theory introduced above, one may represent this expression
as

f̄0,i (x (t) , t) := Ωᵀ
i (t) Π̄i (t)

These new variables are defined as

Ωᵀ
i (t) :=

[
Ai Wi,1 (x, t) Wi,2 (x, t) Wi,3 (x, t) Wi,4 (x, t)

]
Π̄ᵀ

i (t) :=
[
µ̂(xi, t) σ(xi)µ̂(xi, t) φ(xi)µ̂(xi−1, t) γ(xi)µ̂(xi−2, t) η(xi)v(xi, t)

]
Wi,j (x, t) := Wj (x, t)|x=xi

This structure is the DNN identifier for the uncertain partial differential equation based
on the finite difference method.

As one can understand, the real PDE identifier will be constituted by N identifiers
working each one at the specific point xi. Evidently, the final approximation will be
obtained by the usual interpolation algorithm used in the reconstruction of the final
solution. Using a similar method to that described in the previous section, one has:

d

dt
ū1,i (t) = ū2,i (x, t)

d

dt
ū2,i (t) = f̄0,i (x (t) , t)

(19)
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6. Adaptive DNN Pseudo-Observer. One should note that measurement conditions
just allow to obtain the value of ū1,i (t). Therefore, the proposed identifier introduced
in (19) cannot be developed. So, in this paper is proposed the application of the so-
called DNN pseudo-observer. This idea comes from the similarity that structure showed
in (19) has with second order nonlinear systems. Among others, mechanical systems are
good examples of such systems. These mechanical systems where the nonlinear dynamics
fi(x, v, t)x=xi

can be explicitly described using the Euler-Lagrange method. Besides, many
electromechanical devices such as the induction motor (IM) or high-power generators obey
a nonlinear dynamics with similar structure.
The state estimation of this kind of systems has attracted a large amount of research

efforts [8], specially when there are not mechanical sensors for the measurement of speed or
position. This is a consequence of the difficulty to measure simultaneously both variables
ū1,i (t) and ū2,i (t) resulting in the natural proposition to construct adaptive observers.
Moreover, the complex nonlinear structure makes the state estimation a real challenge for
designers. These inconveniencies have been solved by many adaptive observer proposals:
back-stepping, conventional sliding mode, adaptive observers, optimal techniques, etc.
Observers are dynamic systems from the information of a plant (known model structure

and input and output variables available from measurements), estimated variables (known
as states) or parameters are not known or directly measurable. There is a wide range
of systems for which no observers can be designed using the standard theory, since it
requires the Lipschitz condition for the existence and uniqueness of solutions implies that
the functions defining the system are continuous at all values states. Among the systems
that are defined by discontinuous or multivalued functions, and therefore do not meet
the Lipschitz condition, including some as common as mechanical stiction or hysteresis,
as well as hybrids, which are now widely studied. For these systems work in the design
of observers has been low, partly due to the mathematical complexity inherent in the
inability to use the traditional theory.
In the literature on nonlinear observers are various uses of discontinuous nonlinear

design. For example, in sliding mode observers by introducing discontinuous injection
terms in order to improve performance. There are also some published works on the design
of observers for systems that explicitly include discontinuous or multivalued nonlinearities.
The approach mentioned in these publications strongly restricts the type of nonlinear
systems with discontinuous or multivalued, since it requires the uniqueness of solutions,
for which, the nonlinearities must be monotonous. This is a very strong requirement,
since the uniqueness of solutions in systems described by differential inclusions is rather
the exception than the rule.
The theory of differential inclusions developed in several decades, to suggest an ap-

propriate and unified systems that include discontinuous or multivalued nonlinearities.
Differential inclusion in the map that defines the dynamics of the system assigns each
element of the domain is not an element of the codomain, but a subset of it, in what is
called a multivalued function. Traditional differential equations are incorporated in this
formulation, considering each image as a set of one element. Since the existence (but not
uniqueness) of solutions of differential inclusions requires the image of each element of the
domain is convex and compact, discontinuous or multivalued functions, often encountered
in practice, must be adjusted to meet such conditions and can be treated by the theory
of differential inclusions [18, 19].
Differential neural observers are studied in the approach of sliding mode (SM) is used

to obtain the algebraic learning procedure for online identification of nonlinear plant
(design model) fully available to states. The essential feature of the SM technique is
the application of discontinuous feedback laws to achieve and maintain the closed-loop
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dynamics of a given variety in the space of states (for switching from the surface), with
some desired properties for paths system [30, 34]. This method offers many advantages
over other identification and control techniques with a good transient behavior, the need
for a reduced amount of information compared to traditional control techniques, not
as a model with capacity for disturbance rejection, insensitive to plant nonlinearity or
parameter variations, a remarkable stability and performance robustness.

In general there are some nice results to design several possible observers for the class of
nonlinear systems given in (17), even using the high-order sliding mode (HOSM) technique
[15]. However, many of them requires the complete knowledge on fi(x, v, t)x=xi

or it
should be admitted that ∥fi(x, v, t)x=xi

∥ is bounded (there exists a constant f+
i ∈ ℜ+

such that ∥fi(x, v, t)x=xi
∥ ≤ f+

i , ∀i ∈ [1, N ]). Some papers have shown the ability of
HOSM to achieve an excellent reproduction of the unknown state ū2,i(t) using just the f+

i

information [6]. On the other hand, the nice properties of the SM method to be invariant
to some sort of uncertainties could be undesirable because if there exists the possibility
to design any control function using these estimated states, the domain where the control
action is valid may reach big values that can not be realizable by the actuators and
moreover, to provoke overheating in the power amplifiers for example (which are devoted
to manage the DC motors, steppers motors and others) [10, 33].

Some attractive features of SOSM compared to the classical first-order sliding modes
are widely recognized: higher accuracy motions, chattering reduction , finite-time con-
vergence for systems with relative degree two [17, 19], etc. In most cases, sliding modes
are obtained by the injection of a non-linear discontinuous term, depending of the output
error. This design may be used to construct robust controlling or observing algorithms.
The discontinuous injection must be designed in such a way that system trajectories are
enforced to remain in a submanifold contained in the estimation error space (the so-called
sliding surface). For both, the control and the observation problem, the resulting motion
is referred to as the sliding mode [32]. This discontinuous term enables the rejection of
external matched disturbances [31].

Sliding modes observers are widely used because can provide finite-time convergence,
robustness with respect to perturbations and uncertainties estimation [1, 7]. A new gen-
eration of observers based on the so-called second-order sliding-modes has been recently
developed [16]. In [17], robust exact differentiators were performed. That observer based
on the so called super twisting algorithm ensures finite time convergence to the real tra-
jectories without filtration or numeric derivation.

In [7], a second order sliding mode observer based on a modification of the super-twisting
algorithm is proposed to observe a large class of mechanical systems. A discrete version of
such observer (via the Euler Scheme) is also presented; its finite time convergence is proved
by means of majoring curves. In the same sense, in [18], it is shown that finite differences
are applicable to the on-line estimation of arbitrary-order derivatives in homogeneous
discontinuous control.

Another important contribution in the field of the stability analysis for SOSM observers
was made by [23]. In that paper, a strong Lyapunov function for a class of algorithms
of SOSM is obtained. Additionally, a modified version of the super-twisting algorithm is
implemented adding a proportional term in its structure. This term helps the estimation
process.

6.1. Pseudo-observer structure. Following the non-parametric state identification me-
thods, the adaptive observation scheme is composed by an adaptive reproduction of the
nominal unknown section f0 (·, · | ·) and a set of corrective terms using the available infor-
mation for the uncertain system, that is the output signal. The proposal given here deals
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with both adaptive sections using the DNN theory to reproduce the vague mathematical
description for the nonlinear system and the high order sliding mode method to avoid
the chattering presence on the observer trajectories. The state estimator description uses
the approaches developed in [6, 29]. Those techniques showed, independently, a great
capability to reconstruct the unknown states for an uncertain nonlinear system affected
by perturbations. However, both have some inconveniencies associated to, firstly, for the
DNN the difficulty associated with the fast convergence between the measurable states,
the corresponding estimates and second for the inability to provide a good approximation
for the structure of the doubtful section of the nonlinear system.
A new structure mixing the abilities from these pair of methods is the basement of the

observer:

d

dt
û1,i (t) := û2,i (t) + β1λ (ũ1,i (t)) sign (ũ1,i (t))

d

dt
û2,i (t) := Ωᵀ

i (t) Π̄i (t) + β2sign (ũ1,i (t))

ũ1,i (t) := u1,i (t)− û1,i (t)

(20)

Here, the weights matrices (Ωi) provide the time varying adaptive behavior to this class
of observers. This observer uses a training method that is executed on-line to adjust the
weights to improve the current representation of (17) by DNN. This mixed alternative
gives a second level of robustness under external perturbations and modelling uncertain-
ties. As it was previously stated, the matrices Ωi are responsible to reproduce the unknown
dynamics.
The solution of (20) should be understood in the Filippov sense. That means the

pseudo-observer generates a set of trajectories depending on the definition applied for the
sign function. In this paper, the sign function is defined by:

sign (z) :=

 +1 if x > 0
[−1,+1] if x = 0
−1 if x < 0

Therefore, the strong stability concept will be used to show that all trajectories in (20)
converge to the set of uncertain ODE presented in (17).

6.2. Learning laws for identifier weights. For each i = 0, · · · , N define the vector-
functions defining the error between the trajectories produced by the model and the
DNN-identifier as well as their derivatives with respect to x for each i.

ũi (t) := ûi (t)− ui (t) , (21)

Let the weights matrices satisfy the following nonlinear matrix differential equations

Ẇi,k (t) := Φi,k

(
ũi (t) , W̃i,k (t)

)
(22)

where

Φk,i(ũ1,i(t), W̃k,i(t)) := −kk,iΣ
ᵀ
3C

ᵀM2ζ(t)Ξ
⊤
k,i(û, t)−

− kk,iΣ
ᵀ
3ΛcΣ3W̃k,i (x, t) Ξk,i(û, t)Ξ

⊤
k,i(û, t)− αW̃k,i (x, t)

Σ3 = NPiM3, M2 := [0 1 0]⊤, M3 := [0 0 1]⊤

Ξ1,i(t) := σ(xi)ûi(t), Ξ2,i(t) := φ(xi)ûi−1(t)

Ξ3,i(t) := γ(xi)ûi−2(t), Ξ4,i(t) := η(xi)v(xi, t)
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with positive constants ki,k > 0
(
k = 1, 4

)
and Pi (i = 0, N) which are positive definite

and symmetric solutions ((Pi)
ᵀ = Pi > 0) of the algebraic Riccati equations defined as

follows

Ric (Pi) := PiMAi + [MAi]
ᵀ Pi + PiRiPi +QP

i = 0 (23)

where

RP
i := MW̊i,1 (x) Λ

−1
1 W̊ ᵀ

i,1M
ᵀ

+MW̊i,2 (x) Λ
−1
2 W̊ ᵀ

i,2M
ᵀ +MW̊i,3 (x) Λ

−1
3 W̊ ᵀ

i,3M
ᵀ

+MW̊i,4 (x) Λ
−1
4 W̊ ᵀ

i,4M
ᵀ +

1

2
NΛ5N

ᵀ

+MΛfM
ᵀ + λmax

{
Λ−1

f

}
f̃1,i

QP
i := ασIn×n + ανIn×n + d2OᵀIn×nO

M :=
[
0 0 1

]ᵀ
The learning laws (22) have been obtained using the Lyapunov methodology as it will be
explained in the main theorem of this paper as well as in the appendix. One must note
that learning laws derived by the methodology suggested in this paper depends only on
t. Once the training method has been completed, one can turn off the learning law while
the identifier structure is fixed with the weights values generated after the training.

Remark 6.1. The Special class of Riccati equation

PA+ AᵀP + PRP +Q = 0

has a unique positive solution P if and only if [29] the following four conditions given below
are fulfilled: 1) Matrix A is stable; 2) Pair

(
A,R1/2

)
is controllable; 3) Pair

(
Q1/2, A

)
is observable, and 4) Matrices (A, Q, R) should be selected in such a way to satisfy the
following inequality

1

4

(
AᵀR−1-R−1A

)
R
(
AᵀR−1-R−1A

)ᵀ
+Q ≤ AᵀR−1A

which restricts the largest eigenvalue of R guarantying the existence of a unique positive
solution.

Theorem 6.1. Consider the non linear model (1), given by the system of PDE’s with
uncertainties (perturbations) in the states and the outputs, under the border conditions
(2). Let also suppose that parameters in the DNN-identifier given by (10) are adjusted by
the learning laws (22). If positive definite matrices QP

i provide the existence of positive
solutions P i (i = 0, · · · , N) to the Riccati Equation (23), and for any positive scalar
d ∈ ℜ+ such that the following LMI has solution for some Hi > 0, Hᵀ

i = Hi ∈ Rn×nPi

 −β1 0 1
0 −d 0

−r1 0 0

+

 −β1 0 1
0 −d 0

−r1 0 0

ᵀ

Pi

 ≤ Hi (24)

then the origin

ûi (t)− ui (t) = 0, W̃i,k (t) = 0

is an equilibrium point that is strongly asymptotically stable. The detailed proof is given
in Appendix.
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6.3. Lyapunov-based strategy to proof the identifier convergence. The Lyapunov
function candidate is

V (t) =
N∑
i=1

∥ζi (t)∥2Pi
+

N∑
i=1

4∑
j=1

[
ki,jtr

{
W̃ T

i,j (t) W̃i,j (t)
}]

The vector ζi (t) is defined as follows

ζi (t) :=

 |ũ1,i (t)|1/2 sign (ũ1,i (t))
ũ1,i (t)
ũ2,i (t)


In [23], it has been show the characteristics of this class of strict Lyapunov functions.

This function is actually differentiable, therefore a non-smooth option of Lyapunov theory
is required. Indeed, one must note that usual generalized gradient can not be used in here.
Besides, the first element on ζi (t) cannot be differentiated using the product rule.

7. Simulation Results. This section shows the results for the identification algorithm
in two different systems. We have selected the utilization of two different uncertain
hyperbolic PDE. These both systems fulfill the necessary conditions required to achieving
the results for the identification using the designed pseudo-sliding mode observer based
on the DNN methodology.

1. Below, the numerical simulations show the qualitative illustration for a benchmark
system. Let us consider the simplified problem of a vibrating string. We represent
the position of a point, at a instant t, by a continuous real function u : [0;L]× [0; 1),
where [0;L] represents the string in the reference frame. Let’s consider the following
distributed parameter system representing the vibrating string model

utt (x, t) = 0.01uxx (x, t) + 0.01 sin(x, t)

ux(0, t) = 0, ux(1, t) = 0

This model assumes that you have access to discrete measures of the state sin(x, t)
along its entire domain. This model will be used just to generate the data required
to test the identifier based on DNN. The previous boundary conditions correspond
to the situation where the end of the string at x = 1 is pinned at the end x = 0 is
free. The zero-slope boundary condition at x = 0 has the physical meaning of no
force being applied at that end. The parameters used within the identifier for the
simulations were selected as follows:

A =

[
0 1

−88.51 −95.62

]
, P =

[
0.004 0
0 0.0028

]
S =

[
5−7 0
0 5−7

]
, T =

[
2−7 0
0 2−7

]

W1,i(0) = W2,i(0) = W3,i(0) =

31.7839.2
23.8


DNN identifier generates the trajectories which are very close to the real trajectories
of the system (see Figure 2). The identifier state produced by the DNN identifier is
shown in Figure 3. The trajectories depicted in that figure were generated by the
pseudo-observer proposed in this paper. One can see the closeness between both
Figures 2 and 3 that is a consequence of the proposed variable structure identifier.
The error between trajectories produced by the model and the proposed identifier is
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Figure 2. Trajectories of the hyperbolic partial differential equation ob-
tained by the finite difference method. These trajectories were generated
using the parameters defined in the first numerical problem without per-
turbations.

Figure 3. Trajectories of the DNN identifier obtained by the finite dif-
ference method. These trajectories were generated using the parameters
defined in the identifier considering the problem.

close to zero almost for all x and all t that shows the efficiency of the identification
process provided by the suggested DNN algorithm. This similarity demonstrates the
possibility to approximate with high accuracy the solution of an uncertain hyperbolic
partial differential equation. Here one can see the convergence to a small zone near
to zero which is defined by the uncertainties considered in the hyperbolic partial
differential equation.

2. The second system is a little bit more complex than the previous one.
This was used to demonstrate that is possible with the pseudo-observer stability and
to identify any other system through DNN.

utt (x, t) = Duxx (x, t) + V ux (x, t) + Γu (x, t) + A sin(x, t)

It assumes that you have access to discrete measures of the state sin(x, t), uxx, ux

along its entire domain and so does u. This model will be used just to generate the
data to test the identifier based on DNN. It is assumed that initial conditions have
being fixed just like in the previous example. The parameters used in the simulation
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Figure 4. Trajectories of the hyperbolic partial differential equation ob-
tained by the finite difference method. These trajectories were generated
using the parameters defined in the second numerical problem with pertur-
bations.

Figure 5. Trajectories of the DNN identifier obtained by the finite dif-
ference method. These trajectories were generated using the parameters
defined in the identifier considering the problem with perturbations.

are:

D = .0051, A = 0.0012

V = 0.021, Γ = 0.02

The following numerical results were achieved using the previous parameters. These
trajectories are used just as data generator. No information regarding the model is
used in the identifier definition. Considering the effect as the external perturbation
A sin(x, t) and the natural oscillating trajectory associated to this system, the numer-
ical simulation leads to the following portrait (Figure 4). The trajectory produced
by the identifier is showed in Figure 5. One can see the similarities between both
trajectories: the model and the identifier. Even when they are really similar, the
grayscale defining the trajectories demonstrates small variations which are natural
consequences of the adaptive scheme used by the identifier to produce its trajectory.

8. Conclusions. This paper has shown that there are some methods, such as the DNN,
to approximate an uncertain system. This methodology is useful when only a few param-
eters are available for study. The parameters known such as the boundary conditions,
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are used to approximate the value of the neighbor point. This process is repeated several
times until the center of the space of study is reached. This way the nature of the system
is known even though the model is not known. It has been proved that DNN are useful
to know the behavior of an uncertain system and even abnormalities could be discovered
through this method. Due to the fact that not all the mathematical models of diseases
and pathologies are known, an application of this methodology to model new systems is a
useful way of research areas of medicine not explored yet. The suggested approach solves
the problem of non parametric identification of uncertain nonlinear described by hyper-
bolic partial differential equations. Asymptotic convergence for the identification error has
been demonstrated applying a Lyapunov-like analysis using a special class of Lyapunov
functional. Besides, the same analysis leads to the generation of the corresponding con-
ditions for the upper bound of the weights involved in the identifier structure. Identifier
structure is based on a pseudoobserver constructed within the linear observers framework.
Numerical example showing the beam dynamics demonstrates the workability of this new
methodology based on continuous neural networks.
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Appendix. Let us consider the identification error [u1,i (t)− û1,i (t) , u2,i (t)− û2,i (t)] that
obeys the following dynamics

d

dt
ũ1,i (t) = ũ2,i (t)− β1λ (ũ1,i (t)) sign (ũ1,i (t))

d

dt
û2,i (t) = f0,i (x (t) , t)− f̄0,i (x (t) , t) + f̃i(x, t)− β2sign(u1,i (t)− û1,i (t))

The convergence of the identification error will be based on a special Lyapunov function
[23, 29]. This function is defined as:

V (t) =
N∑
i=1

Vi (t)

Vi (t) :=
N∑
i=1

∥ζi (t)∥2Pi
+

4∑
j=1

[
ki,jtr

{
W̃ T

i,j (t) W̃i,j (t)
}]
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The vector ζi (t) is defined as follows

ζi (t) :=

 |ũ1,i (t)|1/2 sign (ũ1,i (t))
ũ1,i (t)
ũ2,i (t)


Following the ideas given in [23], one can easily show that

ζ̇i (t) :=


1

2
|ũ1,i (t)|−1/2 d

dt
ũ1,i (t)

d

dt
ũ1,i (t)

d

dt
ũ2,i (t)


Therefore, the time derivative of each specific Lyapunov-like function has the following
structure

V̇i (t) = 2ζᵀi (t)Piζ̇i (t) +
4∑

j=1

[
ki,jtr

{
Ẇ T

i,j (t) W̃i,j (t)
}]

By direct substitution in the first term of the right hand side, one has

2ζᵀi (t)Piζ̇i (t) := ζᵀi (t)Pi

 1

2
|ũ1,i (t)|−1/2 [ũ2,i (t)− β1λ (ũ1,i (t)) sign (ũ1,i (t))]

ũ2,i (t)− β1λ (ũ1,i (t)) sign (ũ1,i (t))
Gi(t)− β2sign(ũ1,i (t))


where

Gi(t) := Aiµ̃(xi, t) + W̊i,1 (x) σ(xi)µ̃(xi, t) + W̃i,1 (x, t)σ(xi)µ̂i(xi, t)

+ W̊i,2 (x)φ(xi)µ̃(xi−1, t) + W̃i,2 (x, t)φ(xi)û(xi−1, t)

+ W̊i,3 (x) γ(xi)µ̃(xi−2, t) + W̃i,3 (x, t) γ(xi)û(xi−2, t)

+ W̊i,4 (x) η(xi)v(xi, t) + W̃i,4 (x, t) η(xi)v(xi, t) + f̃i(x, t)

One can see that

ζᵀi (t)Pi

 1

2
|ũ1,i (t)|−1/2 [ũ2,i (t)− β1,iλ (ũ1,i (t)) sign (ũ1,i (t))]

ũ2,i (t)− β1,iλ (ũ1,i (t)) sign (ũ1,i (t))
Gi(t)− β2,isign(ũ1,i (t))


=

1

2
|ũ1,i (t)|−1/2 ζᵀi (t)Pi

 −β1,i 0 1
0 0 0
0 0 0

 λ (ũ1,i (t)) sign (ũ1,i (t))
ũ1,i (t)
ũ2,i (t)


+ ζᵀi (t)Pi

 0
ũ2,i (t)− β1,i (t)λ (ũ1,i (t)) sign (ũ1,i (t))

Gi(t)− β2,i (t) sign(ũ1,i (t))


(25)

Here, the following identity has been used

ζi(t) := N (ζi (t) + Cᵀũ1,i (t))

N =(I + CᵀC)−1 , C =

[
1 0 0
0 1 0

]
The last term in the previous equations can be rearranged as

ζᵀi (t)Pi

 0
0

Gi(t)− β2sign(ũ1,i (t))

 := ζᵀi (t)PiM [Gi(t)− β2sign(ũ1,i (t))]
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To analyze this last term, lets use the matrix inequality [28]

XᵀY + Y ᵀX ≤ XᵀΛX + Y ᵀΛY

where

X,Y ∈ ℜn×m

Λ ∈ ℜn×n, Λᵀ = Λ > 0

By direct application of this inequality, one has

ζᵀi (t)PiM [Gi(t)− β2sign(ũ1,i (t))]

≤ ζᵀi (t)PiMAiµ̃(xi, t) + µ̃ᵀ(xi, t)A
ᵀ
iM

ᵀPiζi (t)

+ ζᵀi (t)PiMW̊i,1 (x) Λ
−1
1 W̊ ᵀ

i,1M
ᵀPiζi (t) + µ̃ᵀ(xi, t)σ

ᵀ(xi)Λ1σ(xi)µ̃(xi, t)

+ ζᵀi (t)PiMW̊i,2 (x) Λ
−1
2 W̊ ᵀ

i,2M
ᵀPiζi (t) + µ̃ᵀ(xi−1, t)φ

ᵀ(xi)Λ2φ(xi)µ̃(xi−1, t)

+ ζᵀi (t)PiMW̊i,3 (x) Λ
−1
3 W̊ ᵀ

i,3M
ᵀPiζi (t) + µ̃ᵀ(xi−2, t)γ

ᵀ(xi)Λ3γ(xi)µ̃(xi−2, t)

+ ζᵀi (t)PiMW̊i,4 (x) Λ
−1
4 W̊ ᵀ

i,4M
ᵀPiζi (t) + vᵀ(xi, t)η

ᵀ(xi)Λ4η(xi)v(xi, t)

+ ζᵀi (t)PiMΛfM
ᵀPiζi (t) + f̃ᵀ

i (x, t)Λ
−1
f f̃i(x, t)ζ

ᵀ
i (t)PiM

[
f̃i(x, t)− β2sign(ũ1,i (t))

]
+ ζᵀi (t)PiMW̃i,1 (x, t)σ(xi)µ̂i(xi, t) + ζᵀi (t)PiMW̃i,2 (x, t)φ(xi)û(xi−1, t)

+ ζᵀi (t)PiMW̃i,3 (x, t) γ(xi)û(xi−2, t) + ζᵀi (t)PiMW̃i,4 (x, t) η(xi)v(xi, t)

Using this information, one gets by the simple inclusion of term
1

2
d |ũ1,i (t)|−1/2 ζᵀi (t)Pi

Nũ1,i(t)

2ζᵀi (t)Piζ̇i (t) ≤
1

2
|ũ1,i (t)|−1/2 ζᵀi (t)

Pi

 −β1 0 1
0 −d 0
−r 0 0

+

 −β1 0 1
0 −d 0
−r 0 0

ᵀ

Pi

 ζi (t)

+ ζᵀi (t)
[
P iMAi+ [MAi]

ᵀ P i+P iRiP i +Qi
P

]
ζi (t)

+ ζᵀi (t)PiMW̃i,1 (x, t)σ(xi)µ̂i(xi, t) + ζᵀi (t)PiMW̃i,2 (x, t)φ(xi)û(xi−1, t)

+ ζᵀi (t)PiMW̃i,3 (x, t) γ(xi)û(xi−2, t) + ζᵀi (t)PiMW̃i,4 (x, t) η(xi)v(xi, t)

By the assumption on the existence of positive definite solutions of (23), this inequality
is changed by

V̇i (t) ≤− 1

2
|ũ1,i (t)|−1/2 ζᵀi (t)Hiζi (t) + ζᵀi (t)PiMW̃i,1 (x, t)σ(xi)µ̂i(xi, t)

+ ζᵀi (t)PiMW̃i,2 (x, t)φ(xi)û(xi−1, t) + ζᵀi (t)PiMW̃i,3 (x, t) γ(xi)û(xi−2, t)

+ ζᵀi (t)PiMW̃i,4 (x, t) η(xi)v(xi, t) +
4∑

j=1

N∑
i=1

[
ki,jtr

{
Ẇ T

i,j (t) W̃i,j (t)
}]

where Hi satisfy the inequality given in (24). Finally, if using the adjustment laws given
in (22) one has

V̇i (t) ≤− 1

2
αmin

{
P

−1/2
i HiP

−1/2
i

}
|ũ1,i (t)|−1/2 ζᵀi (t)Piζi (t)

≤− 1

2
αmin

{
P

−1/2
i HiP

−1/2
i

}
λ−1
max {Pi}

√
Vi (t)

This last inequality can demonstrated following the procedure given in [23] and tak-

ing into account that |ũ1,i (t)|1/2 ≤ ∥ζi (t)∥ ≤ λmax {Pi}
√
Vt. Since the solution of the
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differential equation

v̇0(t) = −α
√
v0 (t), v0(0) > 0

is given by

v0 (t) =
(√

v0(0)−
α

2
t
)2

it follows from the comparison principle that Vi (t) ≤ v (t) whenever Vi (0) ≤ v (0). The
proof is completed.


