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Abstract. Electric power quality (PQ) problems are very important aspects due to the
increase in the number of loads which are sensitive to power disturbances. One of the
important issues in the PQ problems is to detect and classify disturbance waveforms auto-
matically in an efficient approach, because the possible solutions can be determined after
the disturbance types are detected. This paper proposes a particle swarm optimization
(PSO) based kernel principal component analysis (KPCA) and support vector machine
(SVM) for PQ problem classification. Wavelet based multiresolution analysis (MRA) is
utilized to extract features for various PQ disturbances. Dimension of these features are
then reduced by KPCA so that the noise has less impact on the classification results.
The multi-class SVM is used to classify the PQ problem using the dominant KPCA.
The PSO is applied to optimize the KPCA and SVM parameters in order to improve
the classification performance. The classification process implemented with various PQ
events shows that the proposed technique provides more accuracy than the conventional
technique under both noisy and noiseless environments.
Keywords: Kernel principal component analysis, Support vector machine, Power qual-
ity classification, Multiresolution analysis, Particle swarm optimization

1. Introduction. Due to the increase in the number of loads which are sensitive to
power disturbances, electric power quality (PQ) problems are very important aspects
in recent times [1]. Poor electric PQ results from various power line disturbances such
as voltage sag, swell, harmonics and outage. Detection and classification disturbance
waveforms automatically in an efficient approach is one of the important issues in the PQ
problems, because the possible solutions can be determined after the disturbance types
are detected. However, in practice, the PQ events are often corrupted with noise due to
monitoring devices. These make the detection and classification task more difficult.

Many research works have been carried out in the classification of PQ events using
intelligent techniques such as neural networks [2], Fuzzy classifiers [3] and support vector
machines (SVMs) [4]. Wavelet based multiresolution analysis (MRA) is utilized for the
extraction of features from PQ events which are used as the input to these techniques.
The MRA decomposes and represents the energy of the distorted signals at different
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frequency ranges. The PQ features are constructed from the decomposed signals. The
MRA is able to extract the important information from the distorted signals. However,
using all features extracted via MRA has some drawbacks, because all features may not
correlate to the disturbance types. In addition, some correlate features may be sensitive
to noisy condition. Besides, the feature selection is a well-research problem, which can
improve the classification performance, speed up the training of the model and reduce the
computation effort [5,6]. Thus, to improve the classification performance of PQ problem,
the appropriate feature selection is highly expected.
Principal component analysis (PCA) is a powerful technique used for the selection

of good features in the classification problem [7]. The PCA is able to handle high-
dimensional, noisy and highly correlated data by projecting the data onto a lower-dimensi-
onal subspace that constrains most of the variance of the original data. Besides, the PCA
is readily performed by solving an eigenvalue problem, or by using iterative algorithms
which estimate the principal components. Application of PCA to PQ problems has been
successfully proposed in [8]. However, PQ problem has a nonlinear input/output mapping
function. Linear correlation among the variables is assumed in PCA, which degrades the
performance of PCA in a nonlinear problem.
To solve this drawback, the kernel principal component analysis (KPCA) has been

proposed in [9]. KPCA is the extended version of PCA for tackling the nonlinear problem.
Two major advantage of KPCA are that the linearity assumption is relaxed and the noise
has less impact on the results [10]. Basic idea of KPCA is to first map the input space
into a feature space via nonlinear mapping and then compute the principal components
(PCs) in that feature space.
In addition, in the recognition or classification stage, the dominant features are used

as the input of the classification scheme. The SVM is a novel machine-learning tool and
implemented successfully in the classification and regression with small sample cases. The
SVM has been proved less vulnerable to over-fitting problem and higher generalization
ability since SVM is designed to minimize structural risk [11-13]. In previous works,
researchers have employed the SVM in many applications such as motion control of a two
wheeled mobile robot [14], stator fault diagnosis for induction motors [15], estimation of
automotive engine torque [16], the classification of natural spearmint essence [17], music
annotation [18], automatic text summarization [19] and the detection of human CDNA
expressions for ovarian carcinoma [20]. Besides, the SVM is successfully applied to the
PQ problem such as in [4]. The combination of KPCA and SVM for enhanced statistical
analysis of nonlinear processes is proposed in [21]. Therefore, in this work the SVM is
adopted as a classification tool.
Besides, both KPCA and SVM have adjusting parameters which significantly affect the

classification accuracy. Selecting appropriately these parameters can improve the classifi-
cation performance. To achieve the suitable parameters, the particle swarm optimization
(PSO) [22] is used. The PSO is a novel population based metaheuristic, which utilizes the
swarm intelligence generated by the cooperation and competition between the particles in
a swarm [23,24]. The PSO has been applied to the optimal tuning of the SVM parameters
in [25] as well as the improvement of optimization synthesis and the speed of algorithm
convergence.
In this paper, a new approach using KPCA and multi-class SVM (KPCA-SVM) for

improving the classification of PQ disturbance signals is presented. The PQ features are
extracted directly using the MRA and are applied to the KPCA-SVM for classification of
seven types of PQ disturbances. The KPCA is utilized to reduce the feature dimension
by projecting the MRA features into the KPCA spaces and then compute kernel principal
components (KPCs). The multi-class SVM is employed to classify the PQ problem using
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dominant KPCs. The PSO is applied to optimize the KPCA and SVM parameters so as
to improve the classification performance. As a result, the KPCA-SVM classifier provides
better accuracy in the PQ problem classification than the conventional SVM.

The rest of this paper is organized as follows. First, the kernel principal component
analysis is explained in Section 2. Next, SVM for classification is described in Section
3. The proposed PSO based KPCA-SVM for PQ problems is explained in Section 4. In
Section 5, the experimental results are shown. Finally, the conclusion is provided.

2. Kernel Principal Component Analysis. Principal component analysis (PCA) ach-
ieves data compression and the extraction of relevant information by projecting the orig-
inal data sets into the new orthogonal space [7]. Coordinate directions in this new space
are obtained from covariance analysis of the original data and are known as principal
components (PCs). Dimension reduction is accomplished by selecting the appropriate
number of PCs and discarding the uninformative ones. Thus, the data can be represented
in the reduced space without losing information.

An extension of PCA, especially developed to deal with nonlinear data distributions, is
known as kernel principal component analysis (KPCA) [9]. Basic idea of KPCA is shown
in Figure 1. KPCA transforms the nonlinear data into higher dimensional feature space,
and then performs the conventional PCA in this space.
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Figure 1. Basic idea of KPCA: (a) linear PCA and (b) kernel PCA
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To derive KPCA, first the data xk ∈ Rm, k = 1, . . . , N are mapping into a feature space
F where N is the number of samples. Then, the covariance matrix can be computed from

CF =
1

N

N∑
j=1

Φ(xj)Φ(xj)
T (1)

where Φ(xj) is the centered nonlinear mapping of the input variables. Then, the principal
components are computed by solving the eigenvalue problem as

λv = CFv (2)

where eigenvalues λ ≥ 0 and v ∈ F\{0}. Here, CFv can be represented as follows:

CFv =
1

N

N∑
j=1

⟨
Φ(xj),v

⟩
Φ(xj) (3)

where ⟨x,y⟩ is the inner product between x and y. This implies that all solutions v with
λ ̸= 0 must lie in the span of Φ(x1), . . . ,Φ(xN). Hence, λv = CFv is equivalent to

λ⟨Φ(xk),v⟩ = ⟨Φ(xk), C
Fv⟩, k = 1, . . . , N (4)

and there exists coefficients αi (k = 1, . . . , N) such that

v =
N∑
i=1

αiΦ(xi) (5)

Combining (4) and (5), obtains

λ
N∑
i=1

αi

⟨
Φ(xk),Φ(xi)

⟩
=

1

N

N∑
i=1

αi

⟨
Φ(xk),

N∑
j=1

Φ(xj)
⟩⟨

Φ(xj),Φ(xi)
⟩

(6)

for all k = 1, . . . , N .
Now, let us define an N ×N matrix K by [K]ij = Kij = ⟨Φ(xi), Φ(xj)⟩. As a result,

λNKα = K2α (7)

where α = [α1, . . . , αN ]
T . To find solutions of (7), the eigenvalue problem (for nonzero

eigenvalues) is solved by

Nλα = Kα. (8)

Then, performing PCA in the feature space F is equal to resolving the eigen-problem
of (8). This yields eigenvectors α1, α2, . . . , αN with eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λN .
Dimensionality can be reduced by retaining only the first p eigenvectors. Parameters
α1, α2, . . . , αp are normalized by requiring that the corresponding vectors in F be normal-
ized, i.e., ⟨

vk,vk

⟩
= 1, for all k = 1, . . . , p (9)

Using vk =
∑N

i=1 α
k
iΦ(xi), (10) leads to

1 = λk⟨αk, αk⟩ (10)

The principal components t of a test vector x are then extracted by projecting Φ(x)
onto eigenvectors vk in F , where k = 1, . . . , p.

tk = ⟨vk,Φ(x)⟩ =
N∑
i=1

αk
i ⟨Φ(xi),Φ(x)⟩ (11)
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To solve the eigen-problem of (8) and to project from the input space to the KPCA
space using (11), one can avoid the need for both performing the nonlinear mappings and
computing both inner products in the feature space through the introduction of a kernel
function, that is, k(x,y) = ⟨Φ(x),Φ(y)⟩.

If one has nonlinear information of process, it could be used to select the kernel function
among kernels in KPCA. Before applying KPCA, mean centering and variance scaling in
high-dimensional space should be performed. Mean centering can be done by substituting
the kernel matrix K with

K̃ = K− 1NK−K1N + 1NK1N (12)

where 1N =
1

N

1 . . . 1
...

. . .
...

1 . . . 1

 ∈ RN×N .

Variance scaling can then be done by

K̃scl =
K̃

trace(K̃)/(N − 1)
(13)

Examples of kernel functions are given in Table 1, where the parameters ρ and γ are
determined by the user.

Table 1. Examples of kernel functions

Kernel type Function
Linear k(x, y) = ⟨x, y⟩
Polynomial k(x, y) = ⟨x, y⟩ρ

Radial basis function (RBF) k(x, y) = exp
(
− ||x−y||2

γ

)

3. Support Vector Machine. Consider a training set of N points {(xi, yi)}Ni=1 with
data xi ∈ Rn and the corresponding class labels yi ∈ {−1,+1}. The basic idea of SVM
is to map the training data from the input space into a higher dimensional feature space
via kernel function and then construct a separating hyperplane with maximum margin in
the feature space [11]. The SVM problem can be formulated as a quadratic programming
optimization problem that will find the weight parameter w and the bias parameter b.
These two parameters will maximize the margin while ensuring that the training samples
are well classified. Thus the SVM computes the optimal separating hyperplane by solving
the following optimization problem:

min ||w||2/2 + C
N∑
i=1

ξi (14)

Subject to yi(w
T · φ(xi) + b) ≤ 1− ξi

ξi ≥ 0, i = 1, . . . , N.

where ξi ≥ 0, i = 1, . . . , N are slack variables, parameter C is used to tune the trade-off
between the amount of errors accepted, and φ(·) is transformation function. Using the
Lagrange multipliers αi ≥ 0, i = 1, . . . , N to solve the quadratic programming problem,
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the dual problem can be derived as:

max
N∑
i=1

αi −

(
N∑
i=1

N∑
j=1

αiαjyiyjk(xi, xj)

)/
2 (15)

Subject to
N∑
i=1

αiyi = 0

0 ≤ αi ≤ C, i = 1, . . . , N.

For nonlinear classification problems, the data are first mapped into a higher dimen-
sional feature space F by the transformation function ϕ : x −→ ϕ(x) ∈ F ⊂ Rp. Hence,
the resulted decision function is given by

f(x) = sign

(∑
αi>0

yiαik(x,xi) + b

)
(16)

where k(x,xi) is a kernel mapping function between sampling x and support vector xi.
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Figure 2. The PSO based KPCA-SVM for power quality problem classification

4. PSO Based KPCA and Multi-class SVM for PQ Problems. PQ problems can
be described as any variations in the electrical power services resulting in mis-operation
or failure of end-use equipment [1]. The proposed PSO based KPCA and multi-class SVM
(called KPCA-SVM) for PQ problem classification is shown in Figure 2. In the model, it
is assumed that the PQ signals are continuously recorded using PQ monitoring systems.
The MRA is used for features extraction from the recorded PQ signals. The KPCA is
utilized in the feature selection stage in order to reduce the feature dimensions. The
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binary-tree SVM is employed to classify the PQ problem using dominant KPCs. Besides,
the PSO is applied to optimize the KPCA-SVM parameters.

The unique features and the main advantages of the proposed PSO based KPCA-SVM
for PQ classification problem are

1) The proposed KPCA-SVM is very accurate because the proper selection of features
vectors by KPCA.

2) The proposed KPCA-SVM is robust because it can maintain the same accuracy even
the different signal-to-noise ratios appear. This will be shown in the simulation result.

3) Without trial and error, all adjusting parameters, i.e., SVM and KPCA parameters
are optimized by a PSO. The optimization objective is to maximize the accuracy of
classification results for all training samples in the training of SVM using a 2-fold cross-
validation technique.

4.1. MRA based feature extraction. In the feature extraction, the appropriate fea-
tures are identified. This step is important for prediction algorithm as it affects the
classification performance significantly. In this work, the standard deviation of MRA
as described in [1] is used for feature extraction. The strategy of construction of MRA
features is given as follows:

1) Use MRA to decompose the distorted signal into different resolution levels. The
number of levels is selected to cover the highest frequency band of interest.

2) Find the standard deviation for each detail version at different resolution levels of
the distorted signal. The standard deviation (Std.) for non-distributed frequency data,
is defined as

Std. =

√√√√ 1

N

N∑
i=1

(xi − x̄)2 (17)

where xi is non-distributed frequency data, x̄ is mean of data, and N is number of data.
3) Construct the standard deviation of MRA curve by plotting the standard deviation

for each resolution level.

4.2. KPCA based feature selection. As shown in Figure 2, the KPCA is utilized in
the feature selection stage to reduce the feature dimensions. The strategies of KPCA for
feature selection are described as follows:

1) Compute the KPCA from the MRA features. Here, the MRA data is projected onto
the KPCA space. The data in this new space is represented as a set of eigenvectors which
are specified the data main directions.

2) Calculate the KPC scores. The KPCA technique allows the definition of significant
values (eigenvalues) that weight the spread of the data sample through the main directions.
These weight values are called the scores of KPC.

3) Select the dominant KPCs as the classification features. The obtained KPCs features
are selected by considering the level of KPC scores. Besides, the number of KPC features
used is selected by the classification accuracy obtained.

4.3. Multi-class SVM for PQ classification. As described, the SVMs are basically
binary classifiers where the class labels can take only two values, i.e., +1 and −1. How-
ever, the classification of PQ problems often involves the simultaneous discrimination of
numerous classes. In order to face this issue, a number of multi-class classification strate-
gies can be adopted such as one-against-all, one-against-one and binary-tree classification.
Among these approaches, the binary tree is promising choices. Because, this method uses
the least number of classifier and repeated training sample as well as the improvement in
speed of training and classification.
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Figure 3. Power quality classification method using binary-tree SVMs

In this paper, the binary-tree classification is adopted as shown in Figure 3. The detail
steps are as follows. First, select the PQ problem having highest frequency as the first
class in n number of PQ problems while the n − 1 number of PQ problems as the other
class to build a binary classification SVM model. Do the same things until the last two
classes are used to set up binary classification SVM model and all the history PQ problems
are classified.

4.4. PSO-based KPCA-SVM parameters. PSO is the optimization techniques based
on the observations of the social behavior of animals and the swarm theory [22]. The PSO
has the advantage of being very simple in concept, easy to implement and computationally
efficient algorithm. The PSO uses the concept of population and a measure of performance
similar to the fitness value used with evolutionary algorithms. Population consists of
potential solutions called particles. In each iteration, each particle remembers the best
solution found by itself (personal best value: pbest), and by the whole swarm along the
search trajectory (global best value: gbest).
In this work, the PSO is adopted to tune the KPCA and SVM parameters in order

to improve the classification performance. Besides, during PSO optimization, the 2-fold
cross-validation (CV) technique has been applied to evaluate the performance of the
proposed method. It can detect and prevent over-fitting in a model. In this technique,
all the training samples are divided randomly into two groups. The training and testing
procedures are performed twice, i.e., the training in the first group and the testing in the
second group, and vice versa. The accuracy of the model for optimization is computed
using the classification results of all training samples. Therefore, an optimization problem
based on the 2-fold cross validation is defined as:

Maximize
1

T

T−1∑
n=1

Jn (18)

Subject to ρn,min ≤ ρn ≤ ρn,max,

Cn,min ≤ Cn ≤ Cn,max,

γn,min ≤ γn ≤ γn,max, n = 1, 2, . . . , T − 1

where Jn is the number of correct-classified in the PQ problem class n, ρn,min and ρn,max

are the minimum and maximum of kernel parameter in KPCA of PQ problem class
n, respectively, Cn,min and Cn,max are the minimum and maximum of SVM adjustable
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constants of PQ problem class n, respectively, γn,min and γn,max are the minimum and
maximum of kernel parameter in SVM of PQ problem class n, respectively. In (18),
it can be seen that sets of parameters ρ, C and γ are formulated as a particle in the
PSO optimization. Based on the above mentioned illustrations, the proposed PSO-based
KPCA-SVM parameters technique can be described as follows.

1) Specify the parameters of PSO such as population size of swarm, lower and upper
bound values of problem space (ρn,min, ρn,max, Cn,min, Cn,max, γn,min, γn,max), minimum
and maximum velocity of particles (vmin, vmax), minimum and maximum inertia weights
(wmin, wmax), maximum iteration (itermax), and acceleration coefficients (c1, c2).

2) Randomly initialize 1st particles.
3) Evaluate the fitness function as in (18) of each particle, find the best position found

by particle i, call it as pbest, and find the best position found by swarm, call it as gbest.
4) Update the inertia weight (w) as follows:

w =
wmax − wmin

itermax

× iter (19)

where wmax and wmin are the initial and final weight, respectively, itermax and iter are the
maximum and current iteration number, respectively.

5) Update the velocity (v) and position (u) of each particle,

vk+1
i = (w × vki ) +

(
c1 × rand1 ×

(
pbesti − uk

i

))
+
(
c2 × rand2 ×

(
gbesti − uk

i

))
(20)

uk+1
i = uk

i + vk+1
i (21)

where vki is velocity of agent i at iteration k, w is weighting function, c1 and c2 are the
relative weights of the personal best position and global best position, respectively, rand
is random number between 0 and 1, uk

i is current position of agent i at iteration k, pbesti
is pbest of particle i, gbesti is gbest of the group.

6) Increment the iteration for a step (k = k+1). If the current iteration is the maximum
iteration k = itermax, stop. If not, go to Step 3.

5. Experimental Results. In this work, seven classes of PQ problems are investigated,
i.e., pure sine (normal), harmonic distortions, voltage sag, voltage swell, outage, sag with
harmonics and swell with harmonics, as described in [26]. The training and test data are
generated from the parametric equations with different parameters as shown in Table 2.
The simulated signals are sampled at 256 points/cycle and the normal frequency is 50 Hz.

However, in real electric power systems, the signals have usually noises. In order to test
the sensitivity of the proposed method under different noise conditions, different levels
of noises are added. In the research of PQ issues, the commonly noise considered is the
additive white Gaussian noise (AWGN) [2]. Here, the different levels of noises with signal
to noise ratio (SNR) values of 20, 30, 40 and 50 dB are added. The SNR is defined as

SNR(dB) = 10 log

(
Ps

Pn

)
(22)

where Ps and Pn are the power (variance) of the signal and noise, respectively.
Examples of the PQ signals integrated with noise values of 20 and 40 dB are shown

in Figures 4-9. It can be seen that the noises are affected to the PQ signal significantly.
These can degrade the PQ problem classification accuracy.

For each class of PQ disturbances (C1 to C7 in Table 2), 200 cases were generated for
training and other 500 cases were generated for testing. Thus, the total signals used in
this work are (200 + 500) × 7 = 4900 cases. Note that, the data in both training and
test set are added with noise. More details of data generated for training and testing are
shown in Table 3.
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Table 2. Parametric equation for simulation of disturbed signals

PQ signal
Class

Equation and parameters variationssymbol

Pure sine C1 f(t) = sin(wt)

Harmonics C2
f(t) = (α1 sin(wt) + α3 sin(3wt) + α5 sin(5wt) + α7 sin(7wt))
0.05 ≤ αi ≤ 0.15, i = 1, 3, 5, 7,

∑
α2
i = 1

Sag C3
f(t) = (1− α(u(t− t1)− u(t− t2))) sin(wt)
0.1 ≤ α ≤ 0.9; T ≤ t2 − t1 ≤ 9T ; t1 ≤ t2

Swell C4
f(t) = (1 + α(u(t− t1)− u(t− t2))) sin(wt)
0.1 ≤ α ≤ 0.8; T ≤ t2 − t1 ≤ 9T ; t1 ≤ t2

Outage C5

f(t) = (1− α(u(t− t1)− u(t− t2))) sin(wt)
u(t) = 1, for t ≤ 0, and u(t) = 0, for t < 0
0.9 ≤ α ≤ 1.0; T ≤ t2 − t1 ≤ 9T ; t1 ≤ t2

C6

f(t) = (1− α(u(t− t1)− u(t− t2)))(α1 sin(wt) + α3 sin(3wt)
Sag with +α5 sin(5wt))
harmonics 0.1 ≤ α ≤ 0.9; T ≤ t2 − t1 ≤ 9T ; t1 ≤ t2

0.05 ≤ αi ≤ 0.15, i = 1, 3, 5,
∑

α2
i = 1

C7

f(t) = (1 + α(u(t− t1)− u(t− t2)))(α1 sin(wt) + α3 sin(3wt)
Swell with +α5 sin(5wt))
harmonics 0.1 ≤ α ≤ 0.8; T ≤ t2 − t1 ≤ 9T ; t1 ≤ t2

0.05 ≤ αi ≤ 0.15, i = 1, 3, 5,
∑

α2
i = 1
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Figure 4. PQ signal integrated with noise values of 20 and 40 dB: Harmonics

Table 3. The number of data generated for training and testing (samples)

Training data with noise added Testing data with noise added
Data type 0 20 30 40 50 0 20 30 40 50 Total

dB dB dB dB dB dB dB dB dB dB
One class 40 40 40 40 40 100 100 100 100 100 700

All 7 classes 280 280 280 280 280 700 700 700 700 700 4900
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Figure 5. PQ signal integrated with noise values of 20 and 40 dB: Sag
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Figure 6. PQ signal integrated with noise values of 20 and 40 dB: Swell

In the MRA feature extraction, the Daubechies 4 wavelet with 12 levels of decomposi-
tion is utilized [1]. There are 12 features after the MRA procedure. These MRA features
are used as the input of the KPCA-SVM.

For all KPCA-SVM experiments, the polynomial KPCA and radial basis function
(RBF) type of the binary-tree SVM are adopted for classifying seven PQ disturbances.
Because the SVM with RBF kernel function can provide promising results in the PQ clas-
sification problems [4]. The KPCA and SVM parameters are determined using PSO. The
objective is to choose the model that produces maximum correct classification. Besides,
the number of KPCs used in the classification model, are also investigated.

In the PSO-based KPCA-SVM parameters, the ranges of search parameters for PSO
are set as follows: ρ ∈ [0.01 3.5], C ∈ [1.0 106] and γ ∈ [1.0 20], respectively. The
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Figure 7. PQ signal integrated with noise values of 20 and 40 dB: Outage
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Figure 8. PQ signal integrated with noise values of 20 and 40 dB: Sag with harmonics

PSO parameters are set as follows: maximum particle velocity = 4, population size = 24,
wmax = 0.9, wmin = 0.4, c1 = 2, c2 = 2 and itermax = 600.
Figure 10 shows percent explained of the KPCA eigenvalues. The score of the eigenvalue

represent the information of the original data which is placed in the associated KPCA
component. It can be seen that, the first component of KPCA has very high score
(90.33%). This implies that the information of the original data is approximately placed
in the first KPCs.
Percent explain of the eigenvalues in Figure 10 also indicates that the variables in PQ

data are correlated (i.e., the largest four eigenvalues of the PQ data are significantly larger
than those of the remaining eigenvalues).
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Figure 9. PQ signal integrated with noise values of 20 and 40 dB: Swell
with harmonics
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Figure 10. Percent explain of the eigenvalue of the KPCA components

Table 4. Classification accuracy using different number of KPCs retrained

Number of KPCs retrained Classification accuracy
2 75.00
3 87.74
4 96.09
5 92.49
6 90.51
7 91.94
8 93.34
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The classification results with difference number of KPCs retrained are shown in Table
4. It can be seen that using the first 4 KPCs produces the best accuracy which is consistent
to the cumulative value in Figure 10. The first 4 KPCs not only cause the cumulative
close to the remainder number of KPCs retained but also provide good classification
performance. Besides, the convergence curve of the optimized KPCA-SVM method using
the first 4 KPCs is shown in Figure 11.
Table 5 shows the KPCA-SVM parameters optimized by PSO. The 4 KPCs retained

model is selected for further analysis based on the aforementioned tests.

Figure 11. Convergence curve of PSO in KPCA-SVM using 4 KPCs retained

Table 5. KPCA-SVM parameters optimized by PSO in the 4 KPCs re-
tained model

Model
KPCA SVM parameters

parameter (ρ) C γ
SVM1 0.72 7949 5.61
SVM2 0.17 5704 9.09
SVM3 0.21 8867 7.04
SVM4 0.50 9992 3.10
SVM5 0.38 7102 2.60
SVM6 0.14 9993 4.68

Table 6 shows the confusion matrix of the correct classification of the proposed KPCA-
SVM without noise. Note that, the test signals are not included in the training stage.
Table 7 shows the percentage of correct classification results of KPCA-SVM under different
SNR values.
In order to evaluate the effectiveness of the proposed method, comparison studies with

other different schemes, i.e., the conventional SVM (SVM) and the results of classification
scheme in previous works, are performed. The strategy of constructing the SVM is the
same as the KPCA-SVM. Thus, all 12 MRA features are used as the input of the SVM
directly.
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Table 6. Confusion matrix of the correct classification in case without
noise based on KPCA-SVM

Actual Estimated class
Accclass C1 C2 C3 C4 C5 C6 C7

C1 100 0 0 0 0 0 0 100
C2 0 100 0 0 0 0 0 100
C3 4 0 83 0 12 1 0 83
C4 0 0 0 100 0 0 0 100
C5 0 0 5 0 93 2 0 93
C6 0 0 0 0 2 98 0 98
C7 0 0 0 0 0 0 100 100

Average 96.29

Table 7. Percentage of correct classification under different SNR values
based on KPCA-SVM

PQ
20 dB 30 dB 40 dB 50 dB

Without
problem noise

C1 100 100 100 100 100
C2 98 100 100 100 100
C3 82 85 83 83 83
C4 100 100 100 100 100
C5 91 89 93 93 93
C6 99 98 98 98 98
C7 99 100 100 100 100

Average 95.57 96.00 96.29 96.29 96.29
Average 96.09

Table 8 shows the comparison in terms of the percent classification accuracy between
the results of this study (SVM and KPCA-SVM) and the classification scheme in [27,28]
in case without noise. It can be seen that, the proposed KPCA-SVM method achieves
high classification success over other methods.

Table 9 shows the comparison in terms of the percent classification accuracy between
the results of this study and the classification scheme in [2]. It can be seen that, the pro-
posed KPCA-SVM method not only withstands noise but also achieves high classification
success.

6. Conclusion. An application of PSO based KPCA-SVM for PQ problem classification
has been presented in this paper. The best characteristics of KPCA and SVMs theories
are utilized for detecting as well as classifying nonlinear behavior of PQ events. The MRA
is used to extract the features of PQ signals. The KPCA is applied to the selection of
dominant MRA features which are used as the input of the binary-tree SVM. The PSO is
adopted for optimizing KPCA and SVM parameters simultaneously. The proposed PSO
based KPCA-SVM, not only reduces the features dimension but also robustly tolerates the
noisy environments. Experimental results with seven types of PQ signals, i.e., pure-sine,
harmonics, sag, swell, outage, sag with harmonics and swell with harmonics, demonstrate
that the proposed method can improve the classification accuracy under both noiseless
and noisy conditions.
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Table 8. Performance comparison in terms of percentage of correct clas-
sification in case without noise

PQ problem
T. K. Abdel- H. He et al.

SVM KPCA-SVM
Galil et al. [27] [28]

C1 100 100 100 100
C2 100 100 100 100
C3 76.5 87 79 83
C4 97 100 98 100
C5 90 80.5 86 93
C6 71.5 97 95 98
C7 98 100 100 100

Average 90.43 94.93 94.00 96.29

Table 9. Performance comparison in terms of percentage of correct classification

Condition M. Uyar et al. [2] SVM KPCA-SVM
Without noise 95.71 94.00 96.29
With noise: SNR 50 dB 95.14 94.00 96.29
With noise: SNR 40 dB 93.64 94.57 96.29
With noise: SNR 30 dB 91.85 94.00 96.00
With noise: SNR 20 dB 89.92 90.42 95.57

Average 92.50 93.40 96.09

Nevertheless, the weakness of the proposed technique is the strategy to extract the
features from the PQ signals. The advent of PQ feature extraction methode can be
adopted here such as energy difference of multiresolution, S-transform algorithm, hyper-
bolic S-transform and TT-transform. Integrating these transformation techniques into
the feature extraction stage, is able to achieve more classification accuracy because all
important information of PQ signals can be represented actually.
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