International Journal of Innovative
Computing, Information and Control ICIC International ©)2012 ISSN 1349-4198
Volume 8, Number 3(A), March 2012 pp. 1821-1836

DYNAMIC REMOTE ATTESTATION THROUGH BEHAVIOR
MEASUREMENT AND VERIFICATION

Masoom Aram!, XINWEN ZHANG?, MOHAMMAD NAUMAN!, TAMLEEK ALI!
SANAULLAH KHAN!, SHAHBAZ KHAN!, QURATULAIN ALAM!, SAJID ANWAR!
ARFAN JAFFAR?, AMIR HAYAT?, MUHAMMAD ALI' AND AWAIS ADNAN!

1Security Engineering Research Group, Institute of Management Sciences
1-A, E-5, Phase VII, Hayatabad, Peshawar, Pakistan
{ masoom.alam; nauman; tamleek; sanaullah }@imsciences.edu.pk
{ shazalive; q.alam; sajid.anwar; m.ali; awais }@imsciences.edu.pk

2Huawei Research Center at Santa Clara, CA, USA
Xinwen.Zhang@huawei.com

3FAST-National University of Computer and Emerging Sciences, Islamabad, Pakistan
arfan.jaffar@nu.edu.pk

4School of Electrical Engineering and Computer Science, NUST, Pakistan
amir.hayat@seecs.nust.edu.pk

Received November 2010; revised March 2011

ABSTRACT. The interdisciplinary nature of information handled by the enterprise in-
formation systems and their interaction with domains beyond organizational boundaries
necessitates the incorporation of comprehensive security mechanisms within such sys-
tems, enabling them to manage access control requirements in a flexible manner, making
sure that the data assets of the organization and its customers are safe not only within
the organization but also outside its boundaries. Therefore, state of the systems outside
the direct control of the organization must be verified before granting access to sensitive
data so as to make sure that such client systems are benign and that the resource will be
used according to expectations. UCON provides control over access to information and
its usage at a fine grained level which is not possible with traditional access control, while
trusted computing technologies in general and remote attestation in particular can be used
for the verification of the client systems along with the protection of the host systems from
rootkits and other security attacks. Remote attestation is an important characteristic of
trusted computing technology which provides reliable evidence that a trusted environment
actually exists. Existing approaches for the realization of remote attestation measure the
trustworthiness of a target platform from its binaries, configurations, properties or secu-
rity policies. All these approaches are low-level attestation techniques only, and none of
them define what a trusted behavior actually is and how to specify it. In this pape7E|, we
present a novel approach to verify the trustworthiness of a platform whereby trustworthi-
ness of the platform is associated with the behavior of a policy model. In our approach,
the behavior of a policy model is attested rather than a software or hardware platform.
Thus, the attestation feature is not tied to a specific software or hardware platform, or to
a particular remote attestation technique, or to an individual type of security policy. We
select usage control (UCON) as our target policy model in the context of a health care
enterprise information system. We propose a framework to identify, specify and attest
different behaviors of UCON. We discuss the prototype implementation for the realiza-
tion of our approach.

Keywords: Security, Trusted computing, Remote attestation, Behavioral attestation,
Usage control

LA previous version of the paper was published in SACMAT 2008.
1821

1822 M. ALAM ET AL.

1. Introduction. Security of enterprise information systems is of utmost importance in
todays computing environment, as it is increasingly becoming difficult for an organiztion
to effectively operate within the confines of a closed system. More often than not, an
enterprise information system exchanges data with other domains mostly over a network,
potentially exposing the system and the hosted information to malicious entities. There-
fore, it is crucial for an enterprise information system to not only protect the incumbent
data from unauthorize access but also make sure that the authorized entities use the data
or information according to expectations. To tackle these challenges effectively enterprise
information systems need to provide fine grain control access control over the data be-
longing to the organization or its customers. Ideally, an enterprise information system
should verify the configuration of a platform before communicating any sensitive data in
an open and potentially hostile environment. To counter these challenges there needs to
be paradigm shift in the way enterprise information systems are designed, maintained and
applied encorporating state of the art access control and computer security technologies
within them, utilizing software as well as leveraging capabilities of the hardware based
security.

Due to the inter-disciplinary nature of information handled by such systems, they need
a diverse form of access control one which is capable of handling traditional access control
as well as DRM while at the same time address the issues of trust managemet in an open
computing environment. Recent developments in the field of access control have resulted
in the emergence of usage control or UCON. Park and Sandhu [1] have coined the term
usage control and proposed a model called Usage CONtrol (UCON), which enhances
traditional access control models [2-4] in two respects: 1) continuity of an access decision
and 2) mutability of attributes. Continuity of an access decision means that a decision
to allow access to an object is made not only before access but also during access and
may result in revocation of access permissions if policy conditions are no longer satisfied.
Mutability of attributes means that attributes of subjects or objects may changeﬁ as side
effects of access, which may also result in a change in ongoing or subsequent access
decisions.

Research on computers and information security has exposed the weaknesses of software
based solutions for computer security in general and access control in particular. To
be truly effective, security of enterprise software must be rooted in hardware so as to
be effective against sophisticated security attacks such ad rootkits. Trusted computing
technology is an effort for enhancing the security of computer systems via hardware based
mechanisms augmenting the softwares responsible for the security of such platforms so as
to remove their inherent weaknesses.

The term “Trusted Computing” refers to a technology introduced by the Trusted Com-
puting Group (TCG) [5], in which PCs, consumer electronic devices, PDA’s and other
mobile devices are equipped with a special hardware chip called Trusted Platform Module
(TPM).

TCG defines trust as follows: “trust is the expectation that a device will behave in a
particular manner for a specific purpose” [6]. The term particular manner is concerned
with the question of how a task is expected to be performed; specific purpose refers
to a particular task or scenario like usage of an object, web service access, or some
computational activity. In other words, “trust is directly associated with the expected
behavior of a particular task”.

Using trusted computing technologies, an enterprise information system can verify the
state of a platform before releasing sensitive data assests to make sure that the client

20nly subject or object attributes mutability is allowed in UCON.

DYNAMIC REMOTE ATTESTATION 1823

1. Object Request

2. Attestation '\ o
Request ”
P 3. Attestation

N _\ / Response
4. Object >

Challenger / Service Provider Target Platform

FIGURE 1. A typical remote attestation scenario

platform is capable of protecting the resource and that its usage will be according to ex-
pectations. Remote attestation is an essential characteristic of trusted computing which
provides reliable evidence that a trusted environment actually exists on a specified plat-
form. This feature enables a trusted computing platform to remotely certify to third
parties in enciphered form the behavior of its running software and the status of its hard-
ware and software components. In a typical remote attestation scenario (cf. Figure 1), a
challenger verifies the trustworthiness of a target or remote platform before dispatching
a resource, or before or during an access to an object. If the target platform has provable
trusted environment, sensitive information can be released to it.

Several approaches have been proposed in the literature for the realization of remote
attestation. For instance, configuration-based attestation requires that a target platform
presents the trusted configurations of its platform to a challenger. Based on the config-
urations, the challenger determines the trustworthiness of a target platform. However,
revealing all system configurations may give some insights into the target platform, thus
making a security attack inevitable [7].

1.1. Our approach. In this paper, we present a novel approach — Model-Based Behav-
ioral Attestation (MBA) — in which the trustworthiness of a target platform is associated
with the behavior of its policy model. As a policy model provides an abstract and formal
representation of the security properties of a platform, we define trust as follows: “trust
s the expectation that a policy model will behave in a particular manner for a specific
purpose”, where “the behavior of a policy model refers to the aggregate of its observable
actions or reactions in response to its environment”. Thus, in MBA, a target platform is
trustworthy for a challenger if each behavior of that policy model is trustworthy, which is
followed by the target platform for the specific purpose of the challenger.

An application, be it a Java virtual machine, or a browser, implements its policy model
through its reference monitor. A reference monitor is a module within an application
responsible for executing and enforcing its access control policies. According to MBA,
traditional chain of trust proposed by the TCG is taken further up to the reference
monitor of an application. Dynamic behavior of an application is achieved by analyzing
the enforcement of its access control policies. We present a case from health care domain;
however, in practice the approach of MBA is realizable for a wide range of softwares such
as virtual machines, browsers, etc.

Our MBA approach provides a high-level framework under which multiple low level
attestation frameworks can be realized. This means that our target architecture realizes
a high-level framework which uses 1) chain of trust mechanisms implemented by IMA,
thus ensuring that underling operating environment of an application is trustworthy, 2)

1824 M. ALAM ET AL.

application specific isolation mechanism enabled by the PRIMA, thus allowing only de-
fined applications to communicate with the target application and 3) property verification
approach defined by the property based attestation in order to verify abstract properties
of a platform rather than its hardware and software configurations. In fact, our MBA
approach brings the chain of trust up to the corresponding application (in our case health
care one) and afterwards, analyzes the reference monitor of the corresponding application
which implements a policy model.

1.2. Contributions. Our contributions in this paper are the following: 1) We present
MBA, which is a high-level framework that abstracts the details of low-level attestation
techniques. It is not a new attestation technique. Rather, it provides a framework through
which the existing low-level techniques can be selected based on different scenarios. 2) We
generalize behavioral attestation [8] and associate behaviors with policy models instead of
individual security policies. Thus, the attestation is more exact, simple and scalable. 3)
We identify and specify the correct behavior of UCON as an example target policy model
for demonstration of MBA. 4) Finally, we present a target architecture for the realization
of our approach in the context of behavioral attestation of the UCON model encorporated
in a healthcare enterprise information system.

UCON is a comprehensive usage control model, which covers all aspects of usage control.
This selection is motivated by the fact that usage control scenarios are concerned with the
enforcement of access control policies about an object, which does not necessarily remain
within the domain of its stakeholder. For example, in health care scenarios, medical
data can be accessed within private clinics, laboratories and/or other hospitals. Without
guaranteeing the correct enforcement of usage control policies, it is impossible to impose
constraints on object usage. For detail knowledge of the UCON model, we refer the reader
to [1].

1.3. Outline. The identification of different behaviors associated with the UCON model
is described in Section 2 and its specification elaborates the attestation of enforcement
behaviors. Section 3 presents the target architecture for the realization of our approach.
In Section 4, we conclude our contributions and present future directions for this research.

2. Behavior Identification and Association. In order to formally specify the behav-
ior of a policy model, its components need to be identified. A policy model is built from
its distinct components, the behavior of each of which effects the overall behavior of the
policy model. Thus, in our viewpoint, the behavior of a policy model is the aggregate of 0ob-
servable actions or reactions of its distinct components in response to their environment.
In this statement, the environment of a policy model is defined by its policy instance and
observable actions refer to those actions which are performed by different components of
a policy model during policy enforcement. Observability of actions means that there must
be a way of communicating to the challenger that the required actions were performed.

Based on the components of UCON, we identify three types of behaviors which need
to be associated with the UCON model. These are (1) active subject/object behaviors,
(2) state transition behaviors and (3) attribute update behaviors.

1. Active subject/object behaviors capture the behaviors of all subjects and objects and
their corresponding rights, which are active for a given system state. These behaviors
correspond to the subjects, objects, and rights of UCON.

2. State transition behaviors capture the behaviors of state transitions when associated
authorizations, obligations, and conditions are fulfilled. These behaviors correspond
to authorizations, obligations, conditions, system states, and state transition actions

DYNAMIC REMOTE ATTESTATION 1825

D

requesting

accessing
A

. s end
e create
revoked e revoke

NV

denied

M

AMM Domain

FicURE 2. UCON AMM domain

of UCON. Moreover, these behaviors also capture the behavior of attributes involved
in related predicates.

3. Attribute update behaviors capture the behaviors of attribute update actions such
as preupdate, onupdate, and postupdate. These behaviors correspond to the update
actions of subject and object attributes.

Note that although UCON considers conditions as decision making factors, it does not
capture changes to conditional information (system attributes). Therefore, behaviors of
system attribute updates are not included in MBA. In general, MBA trusts that system
attributes are monitored and updated in a trusted way.

In general, the criteria for behavior analysis is complete, if it covers all the components
of a given target policy model. Our behavior analysis of UCON is complete, since it covers
all the components of the UCON model.

2.1. Active subject/object behaviors. UCON is a session oriented model in which
a state transition activates or deactivates a subject and/or an object. We use Access
Monitoring Matrix (AMM) to capture the behaviors of subjects or objects added and
removed as a result of different state transitions. We define UCON ACM as follows:

Definition 2.1. The AMM of a UCON system state is defined as A : O x R — 2% where
O 1s a set of active objects, R is a set of rights, and S is a set of active subjects.

Thus, if s € A(o,r), it means that subject s is exercising right r on object o in some
state. For simplicity, we assume that there is only one usage session for a single (s, o0,r)
existing at one time. However, one subject can access multiple objects and one object can
be accessed by multiple subjects at the same time. Figure 2 shows different UCON states
and their associated AMM actions. The AMM actions mark the domain of active subjects
and objects. For example, a subject or object is considered active when a state transition
from requesting to accessing occurs. The AMM action create captures the corresponding
behavior. Likewise, the AMM action revoke and end capture the behaviors when an
access has been revoked and when an access is ended, respectively. These AMM actions
are described below.

AMM Action create: Whenever a subject is permitted to access an object, the AMM
action create adds a new subject s and object o to the set of active subjects S and the set
of active objects O, respectively. The new set of active subjects and set of active objects

1826 M. ALAM ET AL.

are denoted by S’ and O, respectively. Further, the creator s is added to AMM for (o,)
and the modified AMM (A’) is the new AMM. Formally:

create(s,o,r) = (0", 8", R, A")

where S" = S U {s}, O' =0 U{o} and A'(o,r) = A(o,7) U {s}.

AMM Action revoke: The AMM action revoke captures the behavior when a subject
or object is removed from the set of active subjects and the set of active objects due to
state transition from accessing to revoked. The revoke AMM action is defined as follows:

revoke(s,o0,r) = (0", S, R, A"

where
S A ({s})] > 2
o __def
S'=8So6{s}= { S — {s} otherwise ’
O 2i [Ao,mi)| = 2

0' =06 {o} =% { O — {0} otherwise
A'o,r) = Ao, 1) — {s}

In order to obtain the current set of active subjects, subject s is removed from the set
of active subjects (S © {s}). However, the removal places a restriction that if subject
s is accessing more than one objects on the AMM — verified through the inverse of A —
subject s is not removed. Similarly, before removing object o from the AMM, it is also
verified that object o is not being accessed by any subjects through any right. Further,
the AMM is updated at (o,r) by removing s from the AMM entry (o,7). The new set of
active subjects and objects are denoted by S" and O’, respectively.

AMM Action end: Similar to revoke, the AMM action end conditionally removes
the active subject and object from the AMM. Formally:

end(s,0,7) = (0", S, R, A")

The AMM action revoke is caused by a call from usage control system whereas, the
AMM action end is caused by a subject itself. The effects of both the transitions are
same, thus, both AMM actions result in the same behavior. Based on the AMM actions,
we now define the trustworthiness of the UCON AMM as follows:

Definition 2.2. The UCON AMM behavior is trustworthy if all of the following conditions
hold:

e create(s,0,7) >0€ O Nse€ S Nse Ao, r)
e revoke(s,0,17) = S' =S {s} ANO'=0 © {o}A
AI(Oa T) = A(07 7”) o {S}
e end(s,0,1) > S' =56 {s} ANO' =06 {o}A
AI(Oa T) = A(07 7”) - {S}
Three symbols CR, EN, RK are defined to show that trustworthiness is expected for
AMM actions create, end and revoke, respectively.

The above definition states that the UCON AMM is trustworthy if following the AMM
action create(s, o,r), subject s is added to the set of active subjects (represented by S’),
object o is added to the set of active objects (represented by O’) and the AMM itself
contains an entry (o,r) such that s € A(o,r). Similarly, based on the definitions of the

AMM actions end and revoke, the trustworthiness of the AMM actions end and revoke
is defined.

DYNAMIC REMOTE ATTESTATION 1827

In general, for every identified behavior, the formal specification takes the form: first,
the behavior and its trustworthiness are defined. Afterwards, a symbol is used to denote
that trustworthiness is expected for the corresponding behavior.

2.2. State transition behaviors. In UCON, a state transition action is associated with
a combination of authorization, obligation and condition statements. For simplicity, we
assume that a logical expression represents all of them such that a state transition occurs
only if the logical expression associated with the transition is true. We define a state
transition behavior as follows:

Definition 2.3. Given a state t; and a logical expression e, we write t;_1 —. t; if the
transition from state t;_1 to t; is allowed by the logical expression e where e is a conjunction
of authorization, obligation, and condition statements.

Logical expressions contain subject, object and/or environment attributes. These at-
tributes play a key role in sorting out usage control decisions in UCON. Due to their
significant importance, the correct enforcement of UCON policies requires that all at-
tributes involved in a particular usage control scenario should be trusted. If attributes,
or the procedures responsible for updating them are not trusted, the end result is an
untrusted attributes mutability, or untrusted decision continuity. Consider an example,
when attribute like subject location or number of times that an object can be accessed
is updated in an untrusted way, or the behavior of the login shell representing a subject
or the memory area used to load an object is not trusted, the state transition resulting
from this attribute predicate is not a valid transition; i.e., the resulting system state is
not trusted. Instead of relying on normal attribute mutability and decision continuity —
the key UCON concepts, we propose trusted attribute mutability and trusted decision
continuity.

Trusted attribute mutability means that subject or object attributes can be updated,
if and only if, the corresponding attribute behaviors are trusted and the procedures re-
sponsible for updating them are also trusted. Similarly, trusted decision continuity means
that in addition to decision continuity features of UCON, all the attributes involved in a
particular state transition should be in a trusted state.

Each subject s or object o is represented by a set of attributes in UCON. For trusted
decision continuity, we define each attribute attr; to be a 3-tuple (name, value, behavior),
where name and value have the same semantics as defined in UCON, and behavior rep-
resents the trusted status of the attribute. At model level, behavior is an abstract entity
which can have different semantics for different attributes. For example, for memory, it
can mean the status of memory protection against intrusions; for a binary file, it can mean
the integrity of the file. The actual semantics are augmented in the behavior transforma-
tion step. The behavior of an attribute is either TRUSTED or UNTRUSTED, where a
TRUSTED value corresponds to a Boolean value true and UNTRUSTED corresponds
to a Boolean value false. We define the trustworthiness of a state transition behavior as
follows:

Definition 2.4. Let Attributes = {attry, attrs, ..., attr,} represent a finite set of subject,
object and environment attributes defined in a logical expression e such that t;_1 —. t;.
Then, the trustworthiness of a state transition behavior takes the form:

Vj. attrj.behavior = TRUSTED Ne = TRUE

where j =1,...,n.
We use —. to denote that trustworthiness is expected for the corresponding state tran-
sitton behavior.

1828 M. ALAM ET AL.

2.3. Attribute update behaviors. Attribute update actions such as preupdate, onup-
date and postupdate enable attributes mutability. We define attribute update behavior as
follows:

Definition 2.5. Given an attribute x;, and an update operation ‘update’, the attribute
update behavior is defined as the application of the update operation on the attribute. The
application of the operation yields a new value which is assigned to the attribute. Formally:

update : ; —
The trustworthiness of attribute update behavior is defined as follows:

Definition 2.6. An attribute update behavior is trustworthy iff the corresponding attribute
18 ©n a trusted state and the procedure updating it is also trusted. Formally:

true iff x;.behavior = TRUSTED A
update(z;) = update.behavior = TRUSTED
false otherwise

wheretr =1,...,n and x; represents the subject or object attribute that needs to be updated.
We write AU, to denote that a trusted change is expected for attribute x, and AU for
the set of all attributes that can be updated.

The update represents the preupdate, onupdate and postupdate attribute update ac-
tions. Any attribute update action is an (update, behavior) pair, where behavior repre-
sents the trusted status of the corresponding update procedure.

3. Target Architecture. In this section, we present our reference architecture for the
realization of MBA approach using a case study from health care domain. Figure 3 is a
high level abstraction our target architecture. The client side hosts a remote attestation
agent that is capable of handling various remote attestation scenarios using different tech-
niques. The server specifies the remote attestation requirements in the remote attestation
challenge. The remote attestation challenge is a request which identifies the information
that is to be reported by the remote attestation agent, e.g., the server may request the
client system to perform binary attestation on specified applications or other system com-
ponents alternatively other remote attestation techniques might be used such as property
based attestation or any other remote attestation scheme if the client implements it. The
remote attestation agent observes the request and reports the information accordingly.

In our case, the communication between different stakeholders is performed in the
following steps (cf. Figure 4):

e The hospital site (server) has the object (medical record) that may be requested by
a client medical application (client).

e Upon request for the medical data, The hospital evaluates its access control policy [2]
in order to determine whether the client medical application is authorized to access
the object and verifies the capabilities of the client platform to make sure that it
is capable of handling the access control and usage control requirements associated
with the object that has been requested.

e Afterwards, the object and its associated meta data are transfered to the client via
a secure connection.

e The meta data consists of a UCON policy and a file which contains the attributes
of the object referred in the UCON policy. These attributes are described as (name,
value) pair in XML format.

DYNAMIC REMOTE ATTESTATION 1829

S
NS Attestation Request + Reporting Requirements
Q
NS
Verification Service >
TPM
Remote
. Attestation « Measurements
Blnar)_/ Behavioral — // ey $ Agent (Binary)
Attestation Attestation [Attestation Response &
fa

Verify Client state_*

Data Provider

Behavior
Monitor

b e d | Reference
rovide data + usage policy— Monitor
—)

Usage policies

Monitor policy Enforcement

O
E

Request for Data:

FiGUrE 3. Target architecture

e The protected medical object and its meta data are stored in protected repository
on the client platform. During the usage of the medical data by the corresponding
medical application, the associated UCON policies are enforced.

e The hospital can later perform an attestation of the runtime behavior of the health
care application regarding the correct enforcement of its UCON policy.

Owner Server Client Protected Storage

Object + Policy + Object Attributes
|

Request For an Object

2
I
|
<
I
|

D Check for Authz

|
|
|
|
|
|
|
|
|
1
|
|
|
|
:
: Transfer Object + meta data :

Store Object + meta data

|
|
|
|
:
: D Use the Object
|
|
|
|
|
|
|

Send Attestation Challenge

Return SML + Policy Enforcement Log + TPM quotes

K mmm 1
|
|

E> Verify Behavior

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
N
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |

FIGURE 4. Interaction between server and the client during behavior attestation

1830 M. ALAM ET AL.

In addition to the versatile remote attestation agent, an enterprise healthcare applica-
tion has been deployed on the client platform which enforces the usage control require-
ments associated with the objects originating from the server. The application has two
major components which enable policy enforcement and remote attestation. These com-
ponents are known as the reference monitor and the behavior monitor. The reference
monitor enforces the UCON policies that are received from the server along with the pro-
tected medical object. The behavior monitor measures the policy enforcement behavior of
the reference monitor to enable the server (or challenger) to attest the runtime behavior
of the target application. The behavior monitor uses trusted logging mechanism to store
and protect the behavior measurement logs. A trusted computing base is the set of all
hardware and software components that are responsible for enforcing security policies on
a platform [9] and whose untrusted behavior can not be detected. The behavior monitor
is part of our trusted computing base.

The object and its associated meta data are transferred to the client medical application
in an secure manner encrypted with the AIK public key so as to prevent the object and its
associated policy from being tampered in transit from the server to the client. The server
attests the core system components that are detrimental to the correct enforcement of
the UCON policy including the target application and its reference monitor. The secret
of the key with which the object and its meta data are encrypted by the server is known
only to the reference monitor of the target application. Consequently, the object can only
be decrypted and accessed by the reference monitor of the target application and ensures
the protection of the supplied object from untrusted applications. After the provisioning
of the object to the client platform the server can perform behavioural attestation on the
client platform specifying the attestation requirements.

The following sections describe different essential components of our target architecture
in greater detail.

3.1. Reference monitor. The reference monitor in the target application on the client
platform is responsible for controlling usage of the object by enforcing the UCON policies.
Figure 5 shows how various components of the reference monitor interact during the
enforcement of the UCON policy. When an object is received by the application on the
client platform, it is registered with the reference monitor and is added to the protected
repository along with its associated meta data. The object can only be accessed by
subjects or users after it is registered with the reference monitor.

We bind the protected repository with the TPM in order to secure it. We have used
Trusted Java libraries [10] to bind the protected repository with the platform. Trusted
Java provides a high-level API to Java programs for communicating with the TPM. When
some data is bound to a specific TPM, it can only be decrypted on the hardware platform
to which it is bound. By binding the data with a specific binding key, it can be ensured
that only the application which has the private portion of the key and which is operating
on the specific TPM’s platform can decrypt the data. Thus, using this approach, we
can ensure that the protected object can only be decrypted 1) by the authorized reference
monitor, i.e., one which has access to the specific binding key, and 2) on the same platform
for which the object was released.

Access to the protected repository is maintained by a component known as access
manager which is part of the reference monitor. The protected repository contains the
objects and their associated meta data in an encrypted form (cf. Figure 6). Subjects can
only request for exercising rights on objects after they have been successfully authenticated
by various means such as login password, biometrics, etc. An authentication mechanism
creates meta data consisting of the attributes of the subject when a subject has been

DYNAMIC REMOTE ATTESTATION 1831

¢ o

Authentication Manager ﬁ User Interface >

2 ‘ i
/ Reference Monitor \
/ Policy Enforcement Point \ e Access Manager \
Context Manager \
Access
Usage Monitoring
Threads Session ° Matrix
Manager —\ Resource
/ — Manager << (un) binding >>
> Meta Data J
° Manager
Attribute Update Manager _~TPM
[o' ©

/ Policy Decision Point \
Policy Evaluator
Condition Handler
Attribute Reader

Expression Parser

- /

FIGURE 5. Details of the reference monitor

successfully authenticated. The reference monitor gets the meta data of the subject which
contains the attributes of the subject, from the authentication mechanism (cf. Figure 6),
and adds it to the protected repository by the access manager, this procedure is depicted
in the first four steps shown in Figure 6. The attributes of subjects are similar to those
of objects and are also stored in XML files. The attributes of subjects must be supported
by a certificate which certifies that the attributes are trustworthy.

The reference monitor is virtually non by-passable, as only the reference monitor has
the capability to decrypt the objects stored in the protected repository. Thus, every
subject that needs to access objects must request the reference monitor to grant access
to the object. The reference monitor then parses and enforces the UCON policies for the
use of the object before granting access to the subject on the object.

The reference monitor evaluates and enforces UCON policies using policy decision point
(PDP) — which decides about the usage of an object by a subject, and policy enforcement
point (PEP) — which enforces the decisions of the policy decision point.

The policy enforcement point manages all the usage sessions that are active within the
application at any one instance of time, and keeps track of the states transition taking
place within each usage session. A usage session consists of various UCON states. The
policy enforcement point is responsible for starting and ending usage sessions, allowing or
denying a state transition to occur, and for performing attribute updates specified in the
UCON policy.

The policy enforcement point handles requests of subjects for exercising rights on ob-
jects, but is dependent on the access manager for gaining access to the object. When a

1832 M. ALAM ET AL.

Subject/User User Interface Authentication mechanism PEP Access Manager ‘ PDP ‘ Protected Repository
:- Login : .
— Authenticate K

1
I

Submit Subject Attributes

;

1

1

b

1

1

1

1

1

i
Request For Access to an Object

e

e]

Release Object :
1

i
I
1
i
]
1
i
L] ' :
i Store Subject Attributes i
i I >
I 1 1
I I I
r] I 1
! ! Request for exercising of a right on Object ! ! !
I b 1 = 1 I
I I I I I I
] 1 1] 1 1
I 1 I D——_____ I I I
I I I I : I I
| | | | _> Create Usage session " |
i i | Yot g | | i
i i i , Get protected Object | i I
i i | | 2 . | i
| | N | , Access is Allowed? | |
I
i i i i 4 i
I I I I I I I
] 1 1] 1 1 1
1 [1 I 1 m— I
[[| [1] " Evaluate Policy
I I : I 1 h_dj- :
| i 1 i H Grant Access 1 [
I 1 1 I I(1 1
I [| I i | [
! ! | ! 1 Decrypt Object !
I I 1 I I ' aI
] 1 1] ¥ +
! ! ! ! ! Return Decrypted Object !
| [| I e m o m e ——————— 4
K k ' X Return Object H
i i i e |
] 1 1
I] I
I I I
] 1 1
I I 1
] 1
I 1
I [
]
I
I
I
I
]
I
I
I

FiGURE 6. Enforcement of UCON policy by the reference monitor

subject tries to access an object the policy enforcement point creates a usage session with
the subject in the requesting state and asks the access manager to grant access to the
object.

The access manager as the name suggests manages access to the encrypted repository
that contains objects and their meta data. It is the only component which is capable of
encrypting and decrypting the objects stored within the protected repository, consequently
any change to the object or meta data (e.g., attribute updates) is carried out through the
access manager. When the policy enforcement point requests the access manager to get
access to an object, the access manager queries the policy decision point in order to get a
decision on whether access should be granted or denied. If access is allowed then access
manager decrypts the object and provides it to the policy enforcement point which grants
access to the user.

When a state transition into a given state occurs the policy enforcement point performs
the attribute updates that are specified in the policy associated with the corresponding
state. The policy enforcement point also keeps track of all subjects and objects, that are
active within the application at any one instance of time.

The policy decision point evaluates the UCON policy associated with an object in order
to determine whether access has to be granted or not. The policy decision point is also
responsible for parsing and evaluating UCON policies. When the conditions specified in
the UCON policy are satisfied, the policy decision point directs the access manager to
grant, access to the object.

DYNAMIC REMOTE ATTESTATION 1833

| | <PolicyEnforcementLog>

2 <UsageSession>

3 <SubjectID>Doctor</SubjectID>

4 <ObjectID>PatientRecord</0ObjectID>

5 <Right>Read</Right>

6 <StateTransition>

7 <TimeStamp>06-13-2009 09:46:43 AM</TimeStamp>

8 <PreviousState>Initial</PreviousState>

9 <Policy>Requesting</Policy>

10 <CurrentState>Requesting</CurrentState>

11 <AttributelUpdatelctions>

12 <TimeStamp>06-13-2009 09:47:34 AM</TimeStamp>

13 <TargetAttribute>

14 <ObjectID>PatientRecord</ObjectID>

15 <AttributeName>NoOfTimesRequested</AttributeName>
16 </TargetAttribute>

17 <InitialValue>0</InitialValue>

18 <InitialState>Trusted</InitialState>

19 <UpdatedValue>1</UpdatedValue>
20 <UpdatedValueEvaluation>
21 <Expression>
22 <FunctionID>
23 edu.serg.mbar.algorithms.functions.Add
24 </FunctionID>
25 <Inputs>
26 <Input Type="ObjectAttribute" State="Trusted">0</Input>
27 <Input Type="Constant" State="Trusted">1</Input>
28 </Inputs>
29 <0utputs>
30 <Output>1</0utput>
31 </0utputs>
32 </Expression>
33 </UpdatedValueEvaluation>
34 </AttributelUpdateActions>
35 </StateTransition>
36 <AccMatrixAction Type="Create" TimeStamp="06-13-2009 09:47:53">
37

F1GURE 7. A policy enforcement log created by the behavior monitor

The following section gives an overview of how the enforcement behavior of the reference
monitor is measured using the behavior monitor. Afterwards, how measured behavior is
verified at the challenger end, is detailed.

3.2. Behavior monitor. Behavior monitor is responsible for recording and logging the
enforcement behavior of the reference monitor during the evaluation of a UCON Policy.
The behavior monitor is part of our trusted computing base and thus, it is trusted by the
challenging party.

All enforcement behaviors are recorded in XML format called the behavior enforcement
log. This log contains fine grained details about the enforcement of the UCON policy.
The behavior monitor records the policy enforcement behavior with the help of hooks
inserted into the procedures which are responsible for enforcing the UCON policy and
carry out state transitions and attribute updates. In order to monitor the enforcement
of UCON policies, the behavior monitor logs state transition behavior, attribute update
behavior and active subject/object behavior.

These behaviors are helpful in determining whether the enforcement of UCON policies
was carried out in a trustworthy manner. Figure 7 shows an example of the enforce-
ment log created by the behavior monitor. The policy enforcement log begins with the
<PolicyEnforcementLog> markup tag (line 1). The policy enforcement log contains the
details of all the usage sessions that were initiated by the application on the client plat-
form. These usage sessions show how UCON policy was evaluated and enforced on the

1834 M. ALAM ET AL.

client platform. The policy enforcement log contains various <UsageSession> tags which
contains the details of a usage session (line 2). A usage session is initiated whenever a
subject requests a right on an object (cf. Figure 7 — lines 3, 4 and 5). The usage ses-
sion tag contains various <StateTransition> tags (line 6) these contain the details of
the states and state transitions that took place within a usage session during the policy
enforcement process. The following subsections describe in detail the contents of these
logs.

3.2.1. Active subject/object behavior. The behavior monitor records the behavior all of
the subjects and objects that are active within the application at any one instance of
time. When subjects and the objects become active, i.e., a right is granted to the subject
on an object then they are added to the Access Monitoring Matrix (AMM). Therefore
the addition and removal of the subject, the object and right from the AMM is recorded
by the behavior monitor.

A subject s, an object o, or a right r is added to the AMM when a state transition to
accessing state is made by the subject s while exercising right r on the object o. Line 36
of Figure 7 is an example of how changes to the AMM are recorded. There are two types
of actions that are performed on the AMM 1) Create where a subject, an object or a right
is added into the AMM and 2) Remove where a subject, an object, or a right is removed
from the AMM when a subject ends access to an object or when access is revoked from
the subject.

3.2.2. State transition behavior. State transitions are allowed only after the policy asso-
ciated with the given state is evaluated successfully and the conditions specified in the
policy are satisfied. Therefore, to monitor state transition behavior, the behavior monitor
collects information about the evaluation of the conditions in the policies associated with
the specified state. The following information is logged in order to monitor state transi-
tions; 1) Time — of the state transition (cf. Figure 7 — line 7), 2) PreviousState — the
state before the state transition took place (cf. Figure 7 — line 8), 3) CurrentState — the
state after the state transition or the new state (line 10), 4) Policy — the type of policy
that was evaluated after the successful evaluation of which the state transition took place,
for example Requesting, PermitAccess, DenyAccess, RevokeAccess, or EndAcces (line
9) and 5) Condition Evaluation — that provides information about the functions that were
used to evaluate the expressions that make up the conditions in the policy, the inputs of
those functions and their outputs.

3.2.3. Attribute update behavior. The attribute updates are also specified in the policy
associated with a state. To monitor the enforcement of policies, the behavior monitor
records how the attribute updates are performed in various states during a usage session.
Line 11 in Figure 7 shows how attribute updates are recorded by the behavior monitor.
The information recorded by the behavior monitor pertaining to attribute updates in-
cludes 1) Time — the time when the attribute update was performed (cf. Figure 7 — line
12), 2) TargetAttribute — the attribute which was updated (cf. Figure 7 — line 13), 3)
InitialValue — the value before the attribute Update was performed (cf. Figure 7 — line
17), 4) InitialState — e.g., trusted or untrusted (cf. Figure 7 —line 18), 5) UpdatedV alue
— the updated value of the attribute after the attribute update action is performed (cf.
Figure 7 —line 19), 6) EvaluationoftheUpdatedvalue —how the updated value was evalu-
ated, this information is helpful in analyzing how the expression stipulated in the UCON
policy was evaluated. Thus, this section of the log contains the functions used to evaluate
the expression, the inputs supplied to these functions and the output generated by these
functions are logged (cf. Figure 7 — lines 20, 25, 29).

DYNAMIC REMOTE ATTESTATION 1835

The following section provides an overview of how the enforcement behavior is verified
by the challenger in order to determine whether the UCON policy was enforced in a
trustworthy manner.

3.3. Behavior verification. The verification process consists of two major steps. The
first step consists of the binary attestation of the application, so as to verify that the
binary of the application is trusted, and has not been manipulated or modified mali-
ciously. In order to attest the binary of the medical application, IMA is used on the client
platform to measure the executable of the application. The Behavior Monitor on the
client platform measures the binary of the application by writing a request to the securi-
tyfs, i.e., /sys/security/measure. The second step consists of the analysis of the policy
enforcement log, in order to verify that the behavior of the application is trustworthy.

The semantics of each of individual entries in the log are verified in order to determine
whether the UCON policy has been enforced correctly or not. The entries in the enforce-
ment log describe the attribute update actions, state transition and the changes made to
the AMM. Each of these entries contain different kinds of information. Therefore, each
of these entries are verified differently.

The state transitions in the enforcement log are verified by analyzing the UCON policy
of the concerned object, i.e., the object which has been used in the usage session. A
state transition is said to be trusted when the right type (i.e., Requesting, PermitAccess,
EndAccess, RevokeAccess and DenyAccess) of policy has been evaluated before the state
transition took place, and also that the successful evaluation of the policy resulted in
the state transition. Furthermore, the functions used in evaluating the policy are also
verified along with their inputs and outputs so as to make sure that the functions used
for evaluation were correct and that they behaved in a trustworthy manner.

Each state transition entry contains various attribute updates. Attribute updates in
the policy enforcement log are verified against the Attribute Update predicates of the
UCON policy. The Values that are verified in this regard is the nature of the update,
i.e., Preupdate, Postupdate, Outdate to make sure that the right kind of updates were
performed. After looking at the type of attribute update the initial value of the attribute is
verified. In order to determine the trustworthiness of the attribute updates, the functions
used to evaluate the updated value are analyzed along with their corresponding inputs
and outputs. Attribute updates are trusted only if the right kind of attribute updates
were performed and that the correct functions were used to evaluate the expressions and
that the inputs given to the functions were trustworthy. The output from the functions
is also verified in order to make sure that the functions behaved in a trustworthy manner.

Changes to the AMM are also verified during the behavior verification mechanism. If
a subject made a transition to the accessing state then such a state transition must be
followed by an AMM action Create which creates the record for the concerned subject,
object and right in the matrix. On the other hand if a subject ends access or access is
revoked from the subject then such state transitions must be followed by an AMM action
Remove which removes the subject, object, or the right from the matrix. Active subject
object behavior is said to be trusted if all of the actions performed on the AMM are
correct according to the state transitions that occurred during the various usage sessions
on the client platform.

4. Conclusion. In this paper, we have presented a high-level behavior specification and
attestation framework, which can be built on top of various low-level attestation tech-
niques and realized in various enterprise information systems to satisfy modern informa-
tion security requirements. In our approach, the behavior of a model is attested rather

1836 M. ALAM ET AL.

than a hardware or software platform. We selected UCON as an example target model as
it captures continuous access control over objects in a distributed and dynamic computing
environment. We have described the implementation issues involved in the realization of
a dynamic attestation system based on our MBA approach.

The product of our work presented here is a high-level framework which can utilize dif-
ferent low-level techniques in a supporting manner for the purpose of attesting a remote
platform. Behavior is associated with different components of a policy model. The behav-
ior of each of these components can be attested separately at runtime and the aggregate of
these behaviors can be used to measure the trustworthiness of the remote platform. Trust
is thus associated with the dynamic behavior of a policy model instead of static measures
such as hardware or software configurations or properties of the remote platform.

Although we would like to vouch for the integrity of the attestation information by
extending them into the PCR of the TPM and use these aggregates to verify the integrity
of the information reported during behavioural attestation, however the continuous nature
of the usage of an object mandates requires these aggregates to persist over several system
boots as compared to being volatile.

Acknowledgment. This work has been supported by the Institute of Management Sci-
ences research grant number RG-CS-07001 and National ICTR&D Fund research Grant
No. ICTRDF/TR&D/2008/45 to Security Engineering Research Group, Peshawar, Pak-
istan.

REFERENCES

[1] J. Park and R. Sandhu, Towards usage control models: Beyond traditional access control, Proc. of
the 7Tth ACM Symposium on Access Control Models and Technologies, New York, NY, USA, pp.57-64,
2002,

[2] S. Osborn, Mandatory access control and role-based access control revisited, Proc. of the 2nd ACM
Workshop on Role-based Access Control, New York, NY, USA, pp.31-40, 1997.

[3] J. Joshi, E. Bertino, U. Latif and A. Ghafoor, A generalized temporal role-based access control
model, IEEFE Transactions on Knowledge and Data Engineering, vol.17, no.1, pp.4-23, 2005.

[4] R. Sandhu, Rationale for the RBAC96 family of access control models, Proc. of the 1st ACM Work-
shop on Role-based Access Control, New York, NY, USA, 1996.

[5] Trusted Computing Group, http://www.trustedcomputinggroup.org/, 2000.

[6] S. Pearson, Trusted Computing Platforms: TCPA Technology in Context, Prentice Hall PTR, Upper
Saddle River, NJ, USA, 2002.

[7] T. Jaeger, R. Sailer and U. Shankar, PRIMA: Policy-reduced integrity measurement architecture,
Proc. of the 11th ACM Symposium on Access Control Models and Technologies, New York, NY,
USA, pp.19-28, 2006.

[8] X.-Y. Li, C. X. Shen and X.-D. Zuo, An efficient attestation for trustworthiness of computing plat-
form, ITH-MSP, pp.625-630, 2006.

[9] P. Kanerva, Anonymous Authorization in Networked Systems: An Implementation of Physical Access
Control System, Master Thesis, Helsinki University of Technology, 2001.

[10] Trusted-Java, Jsr821: Trusted Computing Api for Java(tm), http://jcp.org/en/jsr/detail?7id=321,
2009.

	1. Introduction
	1.1. Our approach
	1.2. Contributions
	1.3. Outline

	2. Behavior Identification and Association
	2.1. Active subject/object behaviors
	2.2. State transition behaviors
	2.3. Attribute update behaviors

	3. Target Architecture
	3.1. Reference monitor
	3.2. Behavior monitor
	3.3. Behavior verification

	4. Conclusion
	Acknowledgment
	REFERENCES

