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Abstract. This paper studies the optimal control problem for a nonlinear electrical
circuit exemplified by a Duffing equation. Two cases are considered: first, if the cost
function to be optimized is a quadratic one and secondly, if the same quadratic cost func-
tion is optimized for a circuit that contains parameter uncertainties in the right-hand side
of this nonlinear differential equation. Even though this type of circuit has been object of
a variety of control strategies in the past, very few papers have been devoted to the design
of optimal control laws with quadratic performance indexes and subject to uncertainties.
For that propose, two main techniques are developed in this paper: the so-called state
dependent Riccati equation (SDRE) and the Robust Maximum Principle (RMP). Simu-
lation examples are presented to demonstrate that the optimal control strategy works well
for a circuit without uncertainties, and that an optimal control of the mini-max type can
also be implemented if there are uncertainties in the circuit.
Keywords: Nonlinear electrical circuit, Optimal control, Mini-max control, Uncertain
parameters

1. Introduction.

1.1. Antecedents and motivation. An interesting example of a nonlinear electric os-
cillator is described by the so-called Duffing equation. Such a circuit has attracted the
attention of the control community because it represents a complex chaotic nonlinear sys-
tem, which has a variety of applications ranging from physics to engineering [17, 20, 21, 24].
Given the complex behavior of the circuit, the control task becomes really challenging.
Most results found in the literature, regarding the control design, are based on nonlinear
control theory [17, 21, 25]. For instance, the Lyapunov design method has been widely
used in controlling this circuit. As usual, the control objective in the mentioned papers
is to stabilize the circuit variables around an equilibrium point or follow a given trajec-
tory (tracking problem, see [21]). We can also find control laws of the state feedback and
observer-based design (for more methods of controlling the Duffing equation, see [11]). To
the best of the authors’ knowledge, neither the previously mentioned papers, nor other
works, attempted to solve the control problem of the nonlinear circuit in an optimal
fashion. The main advantage of looking for an optimal control law is that the control
objective can be achieved at the same time as the control signal is minimized, which is of
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critical importance in many applications. Evidently, because of the non-linearity of the
problem, the standard optimal control approach cannot be straightforwardly applied, and
therefore, other techniques must be developed. On the other hand, the presence of uncer-
tainties is common in practice and becomes another critical point to consider. In recent
years, the optimal control techniques and related state-dependent Riccati equations have
been successfully developed for nonlinear polynomial systems [3, 4, 6] providing a wide
range of applicable feedback control laws. That approach, along with the so-called robust
maximum principle, leads to developing in this paper the optimal and robust control laws
for the nonlinear circuit control problem. The main problem of the obtained algorithms
occurs to be computational complexity, which will be addressed in more detail in the
future research, and meanwhile, a feasible algorithm for the two case scenario is explicitly
proposed in this paper.
The well-known electrical circuit with a nonlinear element, which is represented as

a nonlinear inductor, an alternating source of voltage, a pure resistive element and an
electrical capacitor, is shown in Figure 1. Applying the node law of the circuit theory,
such a circuit can be modeled as

d2

dt2
Φ +

1

RC

d

dt
Φ +

α1

C
Φ +

α3

C
Φ3 =

E0

R
cosωt, (1)

where Φ is the magnetic flux through the nonlinear inductor, E0 is the alternating source
voltage, R and C are the constants of the capacitor, α1 and α3 are some operation
constants. The nonlinear term appears because of the nonlinear inductor, which is an
inductor with a ferromagnetic core, and is modeled, if an abstraction of the hysteresis
phenomenon is made, by an i-Φ nonlinear characteristic. Here i is the electrical current.
Such a characteristic is approximated by a constitutive relation of the form [12, 26]:

i = α1Φ + α3Φ
3. (2)

Figure 1. Electrical network with a nonlinear element

Defining the variables:

p1 =
1

RC
, p2 =

α1

C
, p3 =

α3

C
, ζ (t) =

E0

R
cosωt, x1 = Φ, ẋ1 = x2, ẋ2 =

d2

dt2
Φ, (3)

the following second order system is obtained:

ẋ1 = x2, ẋ2 = −p1x2 − p2x1 − p3x
3
1 + ζ(t). (4)

Depending on the choice of these constants, it is known that solutions of (4) exhibit
periodic, almost periodic and chaotic behavior [20]. Note that this system is a nonlinear
polynomial system of the third order. Consider this system in a controlled form:

ẋ(t) = f(t, x) + Bu(t) + d(t), x(t0) = x0, (5)



ROBUST CONTROL OF A NONLINEAR ELECTRICAL OSCILLATOR 2943

where

f(t, x) =

(
x2

−p1x2 − p2x1 − p3x
3
1

)
, B =

(
0
1

)
, d(t) =

(
0 ζ(t)

)ᵀ
. (6)

Here, x(t) ∈ R2 is the state of the circuit, d(t) ∈ R2 is a known signal, and the affine control
u(t) is a physical control input, which will be designed later on. Consider also a more
general form for the nonlinear term (6) represented as f(t, x, α) = a0+a1x+a2xx

ᵀ+a3xxx,
where a1 is a standard 2D matrix, and a2 and a3 are 3D and 4D tensors (see [2] for details).
Such a representation allows us to design the suggested control law in a compact way.

1.2. Contribution. To control such a circuit, taking a different approach to that in the
above mentioned papers, we propose, as we already said, setting an optimal regulator
control problem to drive the nonlinear state dynamic to the origin. Observe that the
resulting nonlinear system is actually one of the polynomial types. Although the optimal
controller for nonlinear systems has to be determined using the nonlinear filtering theory
[18] and the general principles of maximum [19] or dynamic programming [7], which do
not provide an explicit form for the optimal control in most cases, there is actually a long
tradition of the optimal control design for nonlinear systems (see, for example, [1, 29])
and the optimal closed-form filter design for nonlinear [28], and in particular, polynomial
systems [3, 4, 6]. In this paper, we propose an optimal control law for (5), based on
[3, 4]. The tensor technique mentioned above allows one to find the optimal control law
in the feedback form with a gain matrix being the solution of a state-dependent Riccati
equation, which is proven to be a powerful technique to solve the optimal control problem
for nonlinear polynomial systems. Then, at the second step, a robust optimal control
technique based on the RMP [9, 23] for a circuit subject to uncertainties is developed,
and we combine the RMP with the SDRE to solve the robust optimal control for the non-
linear circuit. It is important to note that the “optimal” quadratic controller problem for
nonlinear, in particular, polynomial, systems with parameters belonging to an uncertain
finite set, to the best of the authors’ knowledge, has not even been consistently treated.
All of the above mentioned papers, which design an optimal control, study this problem
if the model of the considered dynamics is known with accuracy, but for many applica-
tions this assumption is unrealistic, because in practice it is common to find some sort of
uncertainties. Hence, it is desirable to develop some kind of robustness for the optimal
control problems to deal with such possible uncertainties which may have an impact on
the nonlinear dynamics of the system.

2. Optimal Control Design. Our objective is to drive the circuit variables to the
origin. To that end, consider the following quadratic performance index as the control
performance measure:

g(x(t), u(t)) =
1

2
xᵀ(T )Qx(T ) +

1

2

T∫
t0

(xᵀ(t)Lx(t) + uᵀ(t)Ru(t)) dt. (7)

The performance index is given in standard Bolza form, where it is assumed that R is
a strictly positive definite and symmetric matrix, L and Q are two non-negative definite
symmetric matrices, T > t0 is a certain time moment, and aT denotes transpose to a
vector (matrix) a. The solution of the optimal regulator (control) problem for polynomial
systems with linear control input and a quadratic criterion is given by the following feed-
back control law that realizes the optimal control with respect to the quadratic criterion
given in (7), for the polynomial system (5):

u = −R−1Bᵀ[M(t) + p(t)], (8)
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where the matrix function M is the solution of the state depended Riccati type equation:

−Ṁ(t) =L+ [a1 + 2a2x(t) + 3a3x(t)x
ᵀ(t)]ᵀ M(t)

+M(t) [a1 + a2x(t) + a3x(t)x
ᵀ(t)]−M(t)BR−1BᵀM(t),

(9)

with terminal condition M(T ) = Q, and the parameterized vector function p is solution
of the linear equation:

−ṗ(t) = [a1 + 2a2x(t) + 3a3x(t)x
ᵀ(t)]ᵀ p(t)−M(t)BR−1Bᵀp(t) +M(t)d(t), (10)

with boundary conditions p(T ) = 0. This result follows from the application of the maxi-
mum principle; the proof can be found in [2].

Remark 2.1. The presence of the states in the right-hand sides of the Equations (9)
and (10) requires solving them simultaneously with the circuit Equation (5), where the
closedloop control (8) is applied to. Feasible numerical algorithms may be employed to
solve this problem, such as “shooting”, which is the one used for simulation of the examples
in this paper.

3. Robust Optimal Case. To solve a regulator problem of the most general type for
that circuit, we introduce a different type of control concept for a polynomial system
subject to uncertainties. Consider the uncertain circuit as follows:

ẋ(t;α) = f(t, x, α) + B(t;α)u(t) + d(t;α), x(t0;α) = x0, (11)

where α is a parameter which belongs to a given parametric set A. In this paper, we
consider A as a finite set, that is A = {α1, α2, . . . , αN} , each one representing a possible
realization or a possible model of the system. The time variable varies in an interval
t ∈ [t0, T ]. By instance, the parameters of the polynomial system (11) belong to:

a0 = {a0,1, a0,2, . . . , a0,N} , B = {B1, . . . , BN} , d = {d1, . . . , dN} .
The circuit dynamics is given by a family of N different possible non-linear differential

equations sometimes called Multi-Model problem, with no information about the trajec-
tory that is realized. So, it appears that for this type of problems we have N possible
state dynamic equations, each of them describing a model and there is no a priory infor-
mation which will be the active one, but of course, it will be at least one. The system
(5) is assumed to be uniformly controllable and observable for each fixed parameter α;
the definitions of uniform controllability and observability for nonlinear systems can be
found in [13]. For each fixed parameter α, the nonlinear function of the circuit, f(t, x, α),
is a polynomial of 2 variables, which are the components of the state vectors x(t;α) ∈ R2.
Following the previous work [5], a p-degree polynomial of a vector x(t;α) ∈ Rn is regarded
as a p-linear form of n components of x(t), that is:

f (t, x, α) = a0(t;α) + a1(t;α)x+ a2(t;α)xx
ᵀ + · · ·+ a3(t;α)xxx. (12)

Here, the involved parameters are: a0 is a vector of dimension 2, a1 is a matrix of dimension
2× 2, a2 is a 3D tensor of dimension 2× 2× 2, etc.

Remark 3.1. Clearly, the uncertainty on the realized parameters is represented by the
value of α. Such a parameter belongs, as we said, to the finite set A that contains all the
possible scenarios or parametric realizations of the nonlinear plant, which is fixed during
the actual process, with no possibility of change once the process has started. So, each
trajectory is uniquely determined by such a set of parameters. Nevertheless, there is no
information on the trajectory that is realized. In this way, the proposed control should
deal with all of the parameters and should provide an acceptable behavior for such a class
of systems.
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The quadratic cost criteria to be minimized are:

g (x(t;α), u(t), α) =
1

2
xᵀ(T ;α)Qx(T ;α) +

1

2

T∫
t1

(xᵀ(t;α)Lx(t;α) + uᵀ(t)Ru(t)) dt. (13)

That type of the criteria with uncertain dynamics have been studied in the past [14, 15].
The problem is stated and solved applying the min-max concept, that is, taking the worst
case scenario of the functional and then minimizing it by the control. Therefore, the
problem to solve is:

minu(t)maxα∈A g (x(t;α), u, α) . (14)

Therefore, the philosophy of design here is really based on the concept of min–max
control where the operation of maximization is taken over a set of uncertainties (in our
case, a parameter from a finite set) and the operation of minimization is taken over a set
of admissible control strategies. Thus, this paper focuses on the design of a control, which
exhibits some sort of robustness property for a class of multi-plant polynomial systems
given by a system of ordinary differential equations with parameters from a given finite
set. As well-known [22], the Bolza problem can be simplified expressing the original cost
function (7) as a Mayer-type functional, that is, a cost function depending only on the
terminal values of the state vector; such a transformation involves the extension of the
state space. In what follows, we define:

xn+1(t;α) : =
1

2

t∫
t1

(xᵀ(ξ;α)Lx(ξ;α) + uᵀ(ξ)Ru(ξ)) dξ.

Taking the derivative in time

ẋn+1(t;α) = xᵀ(t;α)Lx(t;α) + uᵀ(t)Ru(t),

the new cost function is given by

g (x(t;α), u(t), α) =
1

2
xᵀ(T ;α)Qx(T ;α) + xn+1(T ;α).

Evidently, the term xᵀ(T ;α)Qx(T ;α) does not depend on the new introduced coordinate,
that is:

∂

∂xn+1(T ;α)
xᵀ(T ;α)Qx(T ;α) = 0.

We proceed with finding the necessary condition for mini-max optimality, for the new
Mayer problem. Introduce the following Hamiltonian function:

H(t, x, q, u, α) : = qᵀ(t;α) [f(t, x, α) + B(t;α)u(t) + d(t;α)]

+ qᵀn+1(t;α)
1

2
(xᵀ(t;α)Lx(t;α) + uᵀ(t)Ru(t)) ,

which depends on the given uncertain vector. Under the general mini-max necessary
conditions given in the original work [9], the vectors q(t;α) satisfy, for each parameter α,
the following equation

− d

dt
q (t;α) =

∂

∂x(t;α)
[H (t, x, q, u, α)]

= qᵀn+1 (t;α)Lx (t;α) +

(
∂f (t, x, α)

∂x(t;α)

)ᵀ
q (t;α) .

For the last coordinate the time derivative is:

q̇n+1 (t;α) = 0,
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and the transversality conditions for these vectors at the terminal time are:

q (T ;α) =− µ (α) grad [xᵀ (T ;α)Qx (T ;α) +xn+1(t;α)]

= −µ (α)QxT ;α] qn+1 (T ;αi)

=− µ (α) ,

where the constant µ (α) is a non-negative real value appearing from the general case of
the mini-max problem (for more details on this conditions, see also [23]). For each fixed
parameter the partial derivative of f (t, x, α) in x is given by:

∂f (t, x, α)

∂x(t;α)
= a1 (t;α)+2a2 (t;α)x+3a3 (t;α)xx

ᵀ. (15)

Consider the following technique of summation of the individual Hamiltonian functions
for each αi (i = 1, . . . , N) , where the summation is taken over all the possible uncer-
tainty parameters. Indeed, it is possible to introduce a generalized Hamiltonian function
encompassing all of the family plants:

H♦ (t, x, q, u) =
N∑
i=1

[(qᵀ (t;αi) [f (t, x, αi) +B (t;αi)u (t) + d (t;αi)])

+qᵀn+1 (t;αi)
1
2
(xᵀ (t;αi)Lx (t;αi)+uᵀ (t)Ru (t))

]
,

which allows us to find the minimax control as

u (t) = R−1
N∑
i=1

λiB
ᵀ (t;αi) q (t;αi) , (16)

where we take the vector of parameters λ = (λ1, λ2, . . . , λN)
ᵀ from the set

SN : =

{
λ ∈ RN : λi ≥ 0;

N∑
i=1

λi = 1

}
. (17)

Similarly to the linear-quadratic case, the mini-max control appears as a mixture of the
controls that are the optimal strategies for each fixed parameter value α and the controls
are to be found in a multi-dimensional simplex set (17). Now the mini-max strategies are
to be found in a finite dimensional space instead of the original functional space.

4. Parameterized Mini-Max Control for Duffing Equation. Let us now introduce
the following block-diagonal matrices:

f : =

 f (t, x, α1) . . . 0
... .

...
0 . . . f (t, x, αN)

 , L : =

 L . . . 0
... .

...
0 . . . L

 ,

Λ : =

 λ1In×n · · · 0
...

. . .
...

0 · · · λ2In×n

 , Q : =

 Q · · · 0
...

. . .
...

0 · · · Q

 ,

Bᵀ : = [Bᵀ (t, α1) · · ·Bᵀ (t, αN)] , I ∈ Rn×n, i = 1, 2,

(18)

the following vectors for the extended state and the known external signal:

dᵀ : =
(
d1ᵀ, . . . , dMᵀ) ∈ Rn·M

x : =
(
x1ᵀ, . . . , xMᵀ)ᵀ ∈ Rn·M
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and the following tensor matrix for the coefficients of the polynomial:

ai :=

 ai · · · 0
...

. . .
...

0 · · · ai

 ,

i = 0, . . . , s.

The extended dynamics for the polynomial systems appears as:

ẋ = f (t,x (t)) +B (t)u (t) + d (t) .

Note that the dependence on the uncertain parameter α has disappeared, the new dy-
namics includes the complete family of plants, but the control remains the same for all
plants. That means that the same control will be applied for all the dynamics simulta-
neously. Based on the extended system, the mini-max regulator that realizes (14) with
respect to the quadratic criterion given in (13), for the polynomial system (11), takes the
form:

u = −R−1Bᵀ [Mλ + pλ] , (19)

where the matrix function Mλ is the solution of the Riccati-type equation

−Ṁλ = ΛL+ [a1 + 2a2x+3a3xx
ᵀ + . . .+ sasx· · · (s− 1) times · · ·x]ᵀMλ

+Mλ [a1 + a2x+ a3xx
ᵀ + . . .+ asx· · · (s− 1) times · · ·x]

−MλBR−1BᵀMλ,

(20)

with terminal condition Mλ (T ) = ΛQ, and the parameterized vector function pλ is the
solution of the linear equation

−ṗλ =Mλa0 + [a1 + 2a2x+3a3xx
ᵀ + . . .+ sasx· · · (s− 1) times · · ·x]ᵀ pλ

−MλBR−1Bᵀpλ +Mλd,
(21)

with terminal condition as pλ (T ) = 0. The matrix Λ containing the optimal weight
parameters λ = λ∗ solves the following optimization problem:

λ∗ = minλ∈SN J (λ) ,

J (λ) : = maxα∈A g (x (t;α) , u, α) ,
(22)

with u (t), given in (19), parameterized by the vector λ = (λ∗
1, λ

∗
2, . . . , λ

∗
N)

ᵀ (
λ∗
i ∈ SN

)
through (20) and (21).

Remark 4.1. In the case of a fully known plant (α = 1), that is, there is no parametric
uncertainty, the above equations collapse into the standard known result of the optimal
control for the polynomial system [2].

Remark 4.2. The dependence on λ in the cost function can be seen through the de-
pendence of the cost on the solutions of the parameterized Equations (20) and (21); an
expression for this can be found in [10].

Finding the optimal weight vector λ∗, which solves the problem (7), may not be, an
easy task. In what follows, we provide a feasible numerical procedure to find the mini-max
weights in the case of two scenarios (α = 2).
Algorithm:
Step 1) Select an initial condition for the control weights Λ in the extended SDRE (20).
Step 2) Apply the control action equal to the combination of standard optimal strategies
using the solution of the individual SDRE (19).
Step 3) Determine the corresponding possible dynamics by means of the numerical method
mentioned in the Remark 2.1 solving (14) and (15), along with (11), and calculate the
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corresponding cost functional.
Step 4) Using the corresponding cost functional values, and considering that λ := (λ1, 1−
λ1), perform a search to find the minimizing values of λ.
It is still possible to explore numerical methods to solve the problem for more than two

scenarios, this will be the object of future research.

5. Simulation Example. In this section, we present two numerical examples for the
controlling of the Duffing equation. In the first case presents the numerical results pro-
duced by the robust algorithm for the given two sets of parameters, in the second one, we
consider the optimal control of the circuit with no uncertainties.

5.1. Example 1. Consider the following 2-model circuit

Model 1

{
ẋ1
1 = x1

2

ẋ1
2 = −1.1 ∗ x1

1 − 0.4 ∗ x1
2 − (x1

1)
3 + 2.05 ∗ cos(1.8 ∗ t) + u

Model 2

{
ẋ2
1 = x2

2

ẋ2
2 = −1.15 ∗ x2

1 − 0.45 ∗ x2
2 − 1.05 ∗ (x2

1)
3 + 2 ∗ cos(1.9 ∗ t) + u

(23)

Given the differences between the two models of the parameters, it is impossible to
design an individual control for each plant, because it would not work for another plant.
We select R = 1, Q = 1, L = 1 and T = 1.5. The following table (Table 1) shows the
values of the performance index for different values of the parameter λ.

Table 1. Values of the performance index for different values of the pa-
rameter λ

λ1 λ2 g (x, u, 1) g (x, u, 2)

0 1 2.5688 2.5843

1 0 2.6255 2.6409

0.5000 0.5000 2.5639 2.5796

0.2500 0.7500 2.5577 2.5733

0.3000 0.7000 2.5576 2.5733

0.2700 0.7300 2.5576 2.5732

0.2800 0.7200 2.5576 2.5732

This table presents the corresponding changes in the values of the cost function de-
pending on the values of the parameter λ. We can still perform a search to see for which
set of values of the vector λ the cost takes the minimum value, considering that we are
minimizing a weighted sum. The minimum is achieved on λ =

(
0.2800 0.7200

)
and, as

a result, the individual cost for each one of the two scenarios has almost the same value.
We obtain the performance index as a function of the weighting parameter λ near the
extremum point. This is illustrated in Figure 2, where we can see that the performance
index has the minimum around λ1 = 0.28. The corresponding state variable dynamics
is depicted in Figure 3. Actually, it is shown for both plants: the blue and green lines
correspond to the states 1 and 2 of the first plant and the red and light blue lines represent
states 1 and 2 of the second plant, respectively. Note that both plants demonstrate almost
identical behavior, when the robust control is applied, thus proving that the robust design
works well for any of the two plants. The control law and the final criterion as functions
of time are shown in Figures 4 and 5. Here, the blue line corresponds to plant 1 and the
green line represents plant 2. Note again that both lines virtually coincide due to the
practically same cost.
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Figure 2. 2-Model: Performance index J(λ)
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Figure 3. 2-Model: Circuit states
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Figure 4. 2-Model: Control signal corresponding to λ∗

5.2. Example 2. Consider the following one-model circuit:

1-Model

{
ẋ1
1 = x1

2

ẋ1
2 = −1.1 ∗ x1

1 − 0.4 ∗ x1
2 − (x1

1)
3 + 2.1 ∗ cos(1.8 ∗ t) + u

(24)



2950 M. JIMÉNEZ-LIZÁRRAGA, M. BASIN, P. RODRIGUEZ-RAMIREZ AND J. DE J. RUBIO

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

Time

Cr
ite

rio
n

Figure 5. 2-Model: Criterion corresponding to λ∗
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Figure 6. 1-Model: Circuit states
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Figure 7. 1-Model: Control signal

In this example, we select the parameters of the cost function as R = 1, Q = 1, L = 1
and T = 1.5. The corresponding state variable dynamics is depicted in Figure 6, where
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Figure 8. 1-Model: Criterion

the blue and green lines correspond to the states 1 and 2, respectively. The control law
and the criterion are shown in Figures 7 and 8. We can see that the SDRE technique-
based control law efficiently works to stabilize the states around zero, upon being applied
to the model (24). In this example, the time is set to 1.5; however, it can be extended as
much as needed.

6. Conclusion. This paper studied the optimal and the robust optimal control problems
for a nonlinear electrical circuit modeled by a Duffing equation with a quadratic cost as
a performance index. The control laws are designed for a system with and without
parameter uncertainties in the right-hand side of this nonlinear differential equation. The
obtained robust strategy allows one to efficiently solve the problem of controlling the
Duffing equation with uncertainties in the parameters. The simulations examples show
good performance of both controllers for a given set of parameters.

Acknowledgment. Manuel Jiménez-Lizárragawas supported by project PAICyT CE403-
10 and CONACYT 169734. Michael Basin was supported by project CONACYT 129081.

REFERENCES

[1] E. Albrekht, On the optimal stabilization of nonlinear systems, J. Appl. Math. Mech, vol.25, pp.1254-
1266, 1962.

[2] M. Basin and D. Calderon-Alvarez, Optimal controller for uncertain stochastic polynomial systems
with deterministic disturbances, International Journal of Control, vol.82, pp.1435-1447, 2009.

[3] M. Basin, On optimal filtering for polynomial system states, ASME Trans. J. Dynamic Systems,
Measurement, and Control, vol.125, pp.123-125, 2003.

[4] M. Basin, D. Calderon-Alvarez and M. Skliar, Optimal filtering for incompletely measured polyno-
mial states over linear observations, International J. Adaptive Control and Signal Processing, vol.22,
pp.482-494, 2008.

[5] M. Basin, J. Perez and M. Skliar, Optimal filtering for polynomial system states with polynomial
multiplicative noise, International Journal of Robust and Nonlinear Control, vol.16, pp.287-298,
2006.

[6] M. Basin, J. Perez and D. Calderon-Alvarez, Optimal filtering for linear systems over polynomial
observations, International Journal of Innovative Computing, Information and Control, vol.4, no.2,
pp.313-320, 2008.

[7] R. Bellman, Dynamic Programming, Princeton University Press, Princeton, 1957.
[8] V. Benes, Exact finite-dimensional filters for certain diffusions with nonlinear drift, Stochastics, vol.5,

pp.65-92, 1981.
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