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ABSTRACT. Artificial Immune System (AIS) is known as the collection of all researches
including computational models and knowledge discovery algorithms inspired by the nat-
wral immune system. One of the most widely used techniques in the field of artificial
immune system is Negative Selection Algorithm (NSA). The principle of this algorithm
is finding a set of detectors which can discriminate the self and non-self areas. FEach
detector in NSA defines a subspace of problem space where no self data is located. As the
obtained set of detectors paves the way of discriminating the self and non-self data, NSA
finds its main application in anomaly detection problems. What significantly affects the
detection performance of NSA is choosing a proper shape/representation for detectors
to model the reqularities of non-self area precisely in one hand, and on the other hand,
number of generated detectors should be tuned in a delicate manner. Using a general
and polymorphic representation scheme for covering non-self area can elegantly alleviate
the above mentioned issues. This paper presents a novel representation method based on
convex hulls, named CH-NSA, which is general enough to support polymorphic shapes
with variable properties. Convex hull is a general form representation which supports not
only regular symmetric shapes such as rectangles, spheres and ellipse but also irreqular
asymmetric shapes. The experimental results show that applying this new representation
to well-known benchmark problems in the literature enhances the accuracy of NSA by
significantly decreasing the number of needed detectors compared with the other common
representation methods.

Keywords: Artificial immune system, Negative selection algorithm, Convex hull repre-
sentation

1. Introduction. Artificial Immune Systems (AISs) are biological inspired techniques,
based on theories and knowledge of vertebrate immune system. They represent an identi-
fication mechanism capable of performing several tasks like pattern recognition, learning,
memory acquisition, distributed detection and optimization [1]. The common techniques
inspired by the immune system are Clonal Selection Algorithm (CSA), Negative Selection
Algorithms (NSA) and Immune Network Algorithms. This paper focuses on NSA which
has potential applications in various research areas such as anomaly detection. Anomaly
detection refers to the problem of discriminating the incoming data as normal or anomaly
data, by giving a collection of normal data as the training samples. Computer security
is a well known application of anomaly detection in which case only positive samples are
available and we aim at detecting negative ones. NSA has been widely used for such
problems because of its ability to model the problem space using just positive samples.
In NSA, a group of detectors are generated by some random processes to cover those
parts of problem space where negative samples might appear. These detectors are then
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used to categorize the new data into positive or negative. A common representation of
NSA detectors was binary representation due to its simplicity [2, 3]. Almost all represen-
tations can theoretically be translated into binary form, but it imposes some limitations
such as binary string size, accessible distance measures and comprehensibility. Hence,
real valued representation has received great attention in the recent decades.

This paper intends to introduce a new representation of detector definition and match-
ing mechanism for NSA which is designed for real valued problem spaces. There are some
previous efforts to find the proper representation for detectors in real world problems,
such as hyper rectangle [4], hyper sphere [5] and multi-shape [6]. Here, the proposed rep-
resentation is based on convex hull shape which delineates a convex region in the problem
space. Since convex hull provides asymmetric shape, it can partition the problem space
into complex regions and model complicated boundaries. Indeed, convex hull is general
form of other geometric shapes such as hyper rectangle and hyper sphere. To the best of
our knowledge, this paper for the first time proposes the use of convex hull for detector
representation.

The performance of the proposed method, called CH-NSA, is comparable to those
methods which use other representations. Moreover, experimental results show that in
term of true positive rate, the proposed convex based representation could lead to a better
performance with less number of detectors in well known benchmark [6, 7, 8, 9].

The remaining of this paper is organized as follows. Section 2 briefly reviews some
related negative selection algorithms. Section 3 introduces convex hull representation for
NSA and also describes the implementation details of CH-NSA. Experiments are given
in Section 4. Next, in Section 5, the applicability of the proposed method is discussed
and the influence of the main control parameters is illustrated. The last section includes
summary and conclusion.

2. Related Work. NSA was firstly proposed by Forrest [2] and soon later D’haeseler et
al. [3] presented an efficient implementation of it, named greedy algorithm. The greedy al-
gorithm used a binary representation of data space and r-continues matching rule which is
designed especially for string and binary data. Two strings are matched using r-continues
matching rule if r-continues bits of them are equal in corresponding positions [11]. In [10],
it is mentioned that binary representation has three advantages. First, it is easy to an-
alyze. Second, it is a proper representation for textual and categorical information and
third, any data can be changed into binary format. Despite these advantages, this rep-
resentation made the algorithm hard to be used in real world problems with real valued
data. In addition, a large number of detectors were generated to achieve a good level of
detection.

Soon later, the real valued representation was used in [4] to characterize the self/non-
self space. Each detector in the algorithm was represented by a lower and upper bound
for all dimensions of the data space which means any data instance lay within this bend is
matched with the detector. The resulted detectors were in fact hyper rectangles and are
called “detector rules”. A genetic algorithm was used as the detector generator to evolve
good detectors which goodness was defined as having less coverage of self space and less
overlap with other detectors.

Next, Gonzales et al. suggested a real valued representation for NSA and called the
algorithm Real Valued Negative Selection or RNS [5]. In general, a real valued detector
covers a region of non self space and any data situated in this region is recognized by
the detector and classified as non self data. They used a detector generation algorithm
based on a heuristic which tries to distribute detectors in the non-self space to maximize
the coverage. They used an iterative process to change the position of detectors in a way
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that detectors have a minimum overlap with each other and cover no self data. Fuzzy
membership function was used as matching rule and therefore their detectors were hyper
spheres with a non self recognition fuzzy radius or in general, fuzzy spheres.

As an improvement to RNS; in [12] instead of the heuristic approach mentioned above,
Monte Carlo simulation technique was used to estimate the volume of the non self space
and decide the number of needed detectors. In addition, simulated annealing was applied
to optimizing the distribution of detectors in non-self space. The algorithm was called
Randomized Real Valued Negative Selection or RRNS. The new algorithm was claimed
to be better than RNS in providing a theoretical basis for analysis but it did not give a
better performance.

A new approach to detector representation named V-detector was introduced in [8]. It
emphasized on having individual specific properties for detectors and ‘V’ in V-detector
came from the word ‘variable’. Euclidean based matching rule was used and matching
threshold was variable in detector set. This means detectors were hyper spheres with
individual specific radius. This variable radius is dynamically defined equal to the distance
between center of hyper sphere and nearest self data given in the training dataset. The
flexibility of the size property provided a notable improvement in detector set coverage,
compared with the most of the earlier NSA reported. Besides, significantly less number
of detectors was generated.

Already, the idea of having detectors with variable properties has been examined in
some other ways. For example in [13], detectors with different sizes were used and in [14],
a variable sized hyper sphere was used based on Minkowsky distance. In training phase,
the detectors which fell in self space were moved away from training data. They also
applied detector cloning and random exploration.

Next, in [6] a frame work for multi-shape detector representation was presented. Tested
shapes were hyper sphere, hyper rectangle and hyper ellipses and could be extended to
other shapes. An evolutionary approach was applied to generate hyper shapes and Monte
Carlo estimation technique was used to ensure enough coverage by detectors. Using
variable sized and variable shape detectors resulted in a better coverage of non-self space
with small number of detectors.

One of the latest efforts on reducing the number of detectors was an improvement to
V-detector by [7]. The algorithm combined a statistical estimation of coverage with the
detector generation mechanism to control the number of generated detectors. The method
would finish detector generation when estimated coverage is close to target value, having
predefined statistical confidence in estimating coverage. The used statistical inference was
Hypothesis testing and the null hypothesis was defined as “The coverage of the non-self
region by all the existing detectors is below percentage puyin” -

Finally, there are some other works [15, 16, 17| where it is tried to overcome the in-
efficiency of using random generation mechanism. They used some other optimization
techniques like genetic algorithm to help the detector generation component in producing
effective detectors.

3. Proposed Approach. Why using convex hulls? As it is mentioned in previous sec-
tion, there had been some valuable efforts to achieve a proper representation for the
detectors in some classic benchmark problems. Yet, convex hull whose particular prop-
erties make it a fine choice for complicated problem spaces is not examined. Due to the
fact that convex hulls offer asymmetric shapes, bring the idea that it can successfully
represent complex boundaries. On the other hand, all the other geometric shapes can
be approximated through convex hulls with sufficient number of points. This property
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shows the generality of convex hull which means that at least it can solve those problems
answered by the other geometric shapes.

Convex hull representation is not a complete stranger in knowledge representation field.
In fact, it has been used previously in learning classifier systems literature [18] where
representation showed to be a challenging issue. The reported experimental results of this
representation showed a significant improvement at a 99.99% confidence level. It is also
mentioned that “convex conditions find solutions that are on average at least as complex
as those produced by hyper rectangles (interval condition)”. This result and the studied
characteristics of convex hulls motivated us to test this representation in NSA as well.

A convex hull can be defined for a set of points which are in any dimensions including
infinite dimensions. A convex polyhedron in n dimension space is composed of some
faces which is the intersection of the convex polygon and a supporting hyperplane. A
hyperplane is said to support a convex polyhedron C'H iff some x ¢ C'H are on the
hyperplane and all the other x ¢ C'H lies on the same side of the hyperplane. A face of
CH is called a k-face if it is in k dimension. For CH in n dimension, the (n — 1)-faces
are called facets, the (n—2)-faces are called ridges, and the 0-faces are called vertices.

As previously mentioned, NSA contains three components, detector representation,
matching rules and detector generation method. In what follows, we adapt NSA’s com-
ponents for convex hull representations.

3.1. Detectors. A detector with this representation simply can be defined as a set
of points by their Cartesian coordinates when they define the convex hull’s vertices
Py, Py,...,P,. Tt is assumed that the vertices in P are ordered counterclockwise, us-
ing P, as origin. It does not matter which vertex is chosen as the origin point since all
the vertices of a convex hull are external points. In case of a tie, we take the one with
lowest, y coordinate. The decision to list vertices counterclockwise instead of clockwise is
arbitrary. The convex can have a fixed number of vertices or a variable number of them.
The number of convex hulls vertices can be defined in two ways: first, a fixed number of
points and second, a variable number of points chosen randomly within a lower and up-
per bound. In the former case, the larger the number of points is fixed on, more complex
regions are covered. However, generating such a complex detector would be harder. In
the latter case, the lower bound should obviously set to three. The upper bound has a
direct effect on the complexity of detector. Since a complex convex hull is less feasible to
generate, smaller amount of such detectors would be generated. A detailed description of
convex hull behavior can be found in Section 4.

3.2. Matching rule. Convex hull detectors match all the points located in their cor-
responding convex hull. Therefore, matching rule will be the algorithm which defines
whether a point is in the convex hull or not. A point is inside a convex polygon iff it lies
on the same side of all the facets of the convex polyhedron (polygon). Now we need to
determine whether a point is on the right side of a facet or the left side of it. This can
be implemented by calculating the area of the hypertriangle (or triangle for 2-D) which
connects the vertices of the facet and the corresponding point. The area of a hypertriangle
PyPy ... P, where PP, ... P, are the vertices of the facet, P,.; is the new point and
Pi = (l‘i,()) Tily--- ,l‘im) is
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If the area is positive then the point P, ; is to the left of the facet. If it is negative the
point P, is to the right of the facet and if it is zero, it is on the facet.

3.3. Detector generation. Let us first concentrate on generating one detector. Since
a convex hull detector is represented by its points, the number of convex hulls vertices is
considered as the detector size.

The first approach one may come up with is to generate n random points in Cartesian
coordinate and then use a convex hull algorithm such as [19] to find the convex region
that covers these points. Next step is to check the detector against self data. If it matches
with even one self data it must be eliminated and another detector should be generated.
Despite the simple implementation of this approach, it has a disadvantage. It causes
elimination of a huge number of detectors in the second step since it has no control
mechanism to keep the detector away from the self region space.

A simple control mechanism which has been used for spherical detectors [8] is to choose
the center of sphere out of the self space. Also its radius is defined equal to Euclidean
distance of the nearest self instance to the center. This control mechanism can be ex-
tended to convex hulls. Therefore, instead of generating n random point, a center point
is produced randomly. The center is checked to be out of the self space. Also as an
optimization mechanism to keep number of generated detectors under control, the center
is examined to find the number of already generated detectors it matches with. If it is
more than a predefined (€,periap) percentage of the whole number of generated detectors
by now, the center is eliminated and a new one is produced. Otherwise, the center point
is accepted. Then, n points are generated in polar coordinate centered in the accepted
center point. Again, to reduce possible self coverage by the detector, it is tried to choose n
points out of the self space. Thus, the points are generated as the following. The angular
space around the center point is divided into n parts. For each part, a random angle is
generated, and then the radius corresponding to each angle is defined equal to distance
between the center point and nearest self data point located close to the corresponding
angle. As usual [6, 7, 8], if one of the radiuses is less than a predefined value (thetasy),
the detector is ignored and a new center would be generated.

3.3.1. Convex hull construction algorithm. To solve the convex hull problem in 2-D or
higher dimensions, there exist numerous proposed methods among them Gift Wraping
is a well-known one for computing the convex hull of a set of points in two or more
dimensions [20]. The special case of this method is Jarviss March algorithm in 2-D [19].
The idea of this method is based on the fact that all points of a set lie on the same side
of their convex hull edges (or on the edges). Jarviss March algorithm initializes the first
vertex of convex hull, vy, with an external point which is defined as the furthest point
from all points in some direction. Next, the algorithm tries to find the adjacent point of
vo which is the point that builds a convex hull edge with vy. Due to the mentioned fact,
an edge between two points is a convex hull edge iff all other points lie on the same side
of the edge. The algorithm continues with finding the adjacent vertex of the lastly found
vertex v; and this process repeats until one reaches vy. This approach can be extended
to higher dimensions called Gift Wrapping algorithm. After generating convex hull of the
detector, it is checked if it contains any self data or not. As usual, the detector which
includes any self data instance is eliminated.

3.3.2. Complexity. Figure 1 shows the flow diagram of the detector generation phase in
CH-NSA. The control parameters of the algorithm are self radius, f,.;f, maximum number
of allowed overlapped detectors, Opyeriap, and the number of convex hull vertices which is
called the detector size, |d|. From Figure 1, it can be observed that this detector generation
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Ficure 1. Flow diagram of CH-NSA
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mechanism can be divided into three phases. The first phase is to find a proper center
for the convex hull which can be assumed to have the complexity of O;. The complexity
of this phase is dependent on the value of parameter 0yer1qp Which would be discussed in
next section. The second phase is to generate the proper radiuses and produce convex
hull with complexity O, which is equal to size of the training dataset, |S|, in addition to
the complexity of generating a convex hull with |d| vertices. The complexity of generating
a convex hull of n points in D dimensions using Gift Wrapping is O(n{(P/2+1) which can
be negligible for low dimension problem space. The last phase is to check the detector
against self data with complexity O3 equal to the size of the training dataset. Therefore,
the whole complexity could be estimated from Equation (2).

O(CH-NSA) = (O1 + S|+ |al|[%]Jrl + |S|) * |detectorset| (2)

where, |detectorset| indicates the number of generated detectors.

4. Results and Discussion. This section presents the experimental results in four sub-
sections. First, the tested datasets are described and second, the experimental setup for
control parameters of proposed method is given in detail. The next subsection presents
the achieved results of CH-NSA in comparison with the well known V-detector algorithm.
Finally in the last subsection, the behavior of the proposed algorithm and the effect of
control parameters are analyzed.

4.1. Experiments design. To verify the basic behavior of CH-NSA, experiments were
carried out using six synthetic data which have been used in literature as benchmark
problems [6, 7, 8]. These datasets are selected due to their various shapes, small size
and few dimensions which would lead to better visual understanding of the algorithm
behavior. The different shapes are designed as the self space which are normalized in
the unit square [0, 1]2. These shapes are shown in Figure 2. The datasets contain certain
known characteristics of common problem spaces such as sharp corners, curvilinear spaces
and disjoint parts.

In Figure 2, the white area presents the self space and the remaining is considered as
non-self space. The training data is composed of 1000 random points sampled from self
space and the test data consists of 1000 random points from both non-self and self space.
Each instance of the training data has two real valued attribute according to the position
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FIGure 2. Different types of shape used as synthetic data, drawn from [7]:
(a) ring; (b) intersection; (c¢) pentagram; (d) triangle; (e) cross; (f) stripe

of corresponding sample pixel. In addition to these two attributes, test data contains a
class label for each instance which determines self/non-self status of the sample.

4.2. Experimental settings. To obtain performance of CH-NSA, the average and stan-
dard deviation of the accuracy over 50 independent runs of the algorithm is calculated.
As it is mentioned earlier, the algorithm has four control parameters; Ose;r, Ooperiap, CONVEX
size |d| and number of detectors |S|. To compare performance of the V-detector algorithm
and CH-NSA, the parameters are configured as follows; 0,7 is set to 0.05 as it is common
in the literature, [6, 7, 8]. Oyperiap 1S set to % experimentally, |d| is randomly chosen among
4, 5 and 6 and number of detectors, |S|, is set to 50 the same as in V-detector to have
a fair comparison. Also, the one-tailed pairwise ¢-test is applied to check whether the
difference between results of two methods over the datasets is statistically significant or
not. The null hypothesis of this test is that CH-NSA and V-detector perform the same on
average over 50 independent runs against the alternative that the average performances
are not equal.

4.3. Results. Table 1 highlights the difference between the CH-NSA and V-detector
algorithms. V-detector algorithm is implemented as in [7] and is justified by results men-
tioned there.

TABLE 1. The results of applying CH-NSA and V-detector algorithm in
selected datasets

Data Set CH-NSA V-detector p-value
TP FP TP FP
Pentagram | 99.60+0.2 1.7+0.7| 96.4+1.7 0.5+£0.7| 2.7802¢ — 021
Intersection | 98.60 0.4 3.7%1 90.6 2.7 4.3+2.2| 1.4308e — 035
Ring 98.70+ 0.5 48+1 93.2+£3.2 6.3£1 1.1045¢ — 018
Cross 99.18£0.4 2.84+0.6| 95.124+2.2 22+0.4]| 3.1861le — 026
Stripe 99.3+£03 1.3£0.7| 994408 22+0.6]| 1.5321e— 031
Triangle 99.75+0.2 0.8%+09| 99.4+0.5 1.0£0.7| 2.1584e — 024
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The table contains the average of true positive rate (TP), false positive rate (FP) and
their standard deviation over 50 independent runs. Also, the obtained p-value of pairwaise
t-test with 5% significance level is presented. The results show that with the same number
of detectors, CH-NSA can achieve better TP and FP rate in almost all datasets.

It was stated earlier that the results presented in Table 1 is obtained by a fixed number
of detectors, 50. Nevertheless, using proposed method, acceptable results can be achieved
with a very small number of detectors. This is shown in Figure 3 where, results of CH-
NSA and V-detector algorithm with different values for |S| on pentagram, intersection,
cross and ring benchmarks are illustrated. Comparison of the two methods shows that the
proposed method results in slightly few detectors to reach 90 percentage of true positive
rate.
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Ficure 3. Comparison of proposed method and V-detector algorithm in
different values of |S| on: (a) cross; (b) intersection; (c) ring; (d) pentagram

4.4. Discussions. To determine the reason of this improvement in achieved performance,
first take a look at the visual results in Figure 4 where the results of both algorithms on
pentagram and intersection benchmarks are compared. As it seems, CH-NSA can better
cover the corner areas. This is perfectly obvious in the results, for example in pentagram
shape, Figure 4(a). Although V-detector tries to fill the corners with small spheres, it
does not succeed in a complete coverage of those corners.

As shown in the Figures 4(c) and 4(d), it seems that the spherical shape is not a good
choice to be matched with the self data boundaries. The self boundaries can be categorized
in four main groups: straight lines, corners, convex and concave curves. The detectors
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FIGURE 4. Comparison of CH-NSA and V-detector in pentagram and in-
tersection shapes. (a) Result of pentagram shape by CH-NSA; (b) results of
intersection shape by CH-NSA; (c) result of pentagram shape by V-detector;
(d) result of intersection shape by V-detector.

with spherical representation can effectively cover the convex curves, obviously because
sphere is a convex curve. However, it can estimate the other three groups only if a large
number of them are used. In contrast, the convex hull representation has better ability
to match with straight lines and corners. As it was mentioned in the previous section,
a convex hull can be created using a center, a list of angles and their corresponding
radiuses. The strategy for determining the radius is the same in both convex hulls and
spheres; they are computed equal to the distance to the nearest self data. However, the
interesting point is that convex hull has an asymmetric shape which needs several numbers
of different radiuses whereas sphere is symmetric shape and may have just one radius.
It is possible to interpret this property as degree of freedom. Therefore, convex hull has
higher degree of freedom in contrast with sphere. Although sphere shape has intuitive
ability in matching with curve boundaries and convex hull shape does not, high degree
of freedom gives a hand to convex hull in matching with these curvilinear boundaries.
The result of CH-NSA for intersection shape which contains both curvilinear and sharp
corners confirms the above claim.

One of the notable features in intersection benchmark is disjoint self spaces. Due to
this property, the detector generation mechanism must be in a way that the whole non-
self regions around the self space would be covered. V-detector has a simple detector
generation mechanism; the centers of detectors are generated randomly and the overlap
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of detectors is not considered. Instead, the covered area by all detectors is estimated with
a hypothesis test. The number of generated random points is proportionate to the number
of detectors. Therefore, the narrow areas between the self spaces would have less chance
to be selected as center. This problem is apparent in the intersection shape results.

A straightforward solution to above drawback is to consider the overlapping centers.
This is done in CH-NSA by rejecting those random centers which are covered in more
than a predefined number of already generated detectors. To perceive the influence of
the remarked solution, we changed the V-detector algorithm so that instead of estimating
coverage, it eliminates the overlapped detectors as explained above. In this way, the non
covered narrow areas would have more chance to be selected as center what in turn can
boost the performance of our model. Table 2 presents the results of new V-detector in
comparison with its original form.

TABLE 2. The results of applying CH-NSA and V-detector algorithm in
selected datasets

Data Set V-detector changed V-detector
TP FP TP FP
Pentagram | 96.4+1.7 0.5+0.7| 98.55+0.5 1.0+0.1
Intersection | 90.6 £2.7 4.3+22| 93.924+1.7 5.0+2
Ring 93.2+32 63+1 | 98.20+1.6 6.5+1
Cross 95.124+2.2 22404 | 98.74+0.7 26+0.4

Figure 5 shows the effect of control parameter f,,c,0p on the true positive rate, and
also, the proportion of elapsed time for generating center to that of needed to generate
detectors. Different values of Oyyeriap are tested on pentagram shape. Opperiqp can be
defined as a fraction of the number of generated detectors. In this experiment Oyyeriap iS
defined as:

1
Ooveriap = p X |detector set| (3)

For each marker in Figure 5, the parameter value is reported as a function of ¢. The
smaller @yyeriap, the higher detection rate, and the more time is taken to get the results.
Therefore, this parameter can be used as a balance between high detection rate and low
elapsed time. It is worth mentioning that elapsed time is not a problem since the whole
time expended for detection is not too long.

5 L " L
L7 96 48 & 92 954 4“6 “E
Trus Fositve Rate

FIGURE 5. Results of different values of 0y,er10p On pentagram shape. The
parameter value is reported as a function of .
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Figure 6 shows the complete affect of detector size, |d| on detection rate and number of
detectors needed to reach 99 percentage of true positive rate. Two series of experiments
are conducted to explore the effect of value of |d|. In the first round of experiments, the
value of |d| is set to a predefined number 3, 4 or 5 where this value remain intact in
the meanwhile. In the second round of experiments though, the value of |d| is randomly
selected from the list (3, 4, 5). Please note that the notation x|y stands for selecting be-
tween x and y in a random fashion. The results are obtained from pentagram benchmark.
It is clear that using larger |d| causes increased true positive rate.

True Positive Rate

34l 314516 45 4158 34l 314516 45 4158

FIGURE 6. Results of different values of |d| on pentagram benchmark. (a)
Affect of |d| on |S| needed to reach 99% of true positive rate; (b) affect of
|d| on true positive rate.

Since in this method, vertices of convex hull are generated by a pseudo random process,
larger number of vertices can make greater convex hull in terms of covered area. Therefore,
with smaller number of such convex hulls, higher coverage can be achieved. So, it can be
said that larger |d| causes an increase in complexity of generating centers.

5. Conclusions and Future Work. Here, Negative Selection Algorithm is investigated
and regarding its structure, it is described that the representation component is one of
its main sources of power. It is its representation component which determines available
tools to determine the shape of self region and therefore it affects its ability to detect
anomaly and its performance. In this work, a new extension of NSA named CH-NSA
with convex hull based representation is presented. CH-NSA is tried to cover the self
space using convex regions to achieve better maximum coverage with lower number of
detectors. To explore the advantages of CH-NSA over the well known NSA, named V-
detector algorithm, in terms of true positive rate, standard deviations and number of
detectors, a number of experiments on well known benchmarks are conducted.

Regarding to the reported results, CH-NSA has showed a good performance regarding
both the coverage area and the needed number of detectors. Also, it can outperform the
variable size spherical representation due to both mentioned performance criterion in well-
known benchmark problems. As it was mentioned in the discussion section, this better
performance is somehow due to the asymmetric shape and higher flexibility of convex
hulls in covering complex areas. The flexibility of convex hull representation brings the
benefit to CH-NSA algorithm in the sense that it provides less number of detectors with
more efficient detection of new sample, and also, promising true positive rate.

The detector generation mechanism used in this algorithm is a pseudo random process
which considers the uncovered area of problem space. Hence, it seems that a good topic
as a future work can be designing a detector generation mechanism which can distinguish
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the best detectors in terms of its covered area. Also, the influence of higher dimensional
data sets needs further study including more experiments and analysis.
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