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ABSTRACT. Deozyribonucleic Acid (DNA) has certain unique properties such as self-
assembly and self-complementary in hybridization, which are important in many DNA-
based technologies. DNA computing, for example, uses these properties to realize a com-
putation in vitro, which consists of several chemical reactions. Other DNA-based tech-
nologies such as DNA-based nanotechnology and polymerase chain reaction also depend
on hybridization to assemble nanostructure and to amplify DNA templates, respectively.
Hybridization of DNA can be controlled by properly designing DNA sequences. In this
paper, sequences are designed such that each sequence uniquely hybridizes to its comple-
mentary sequence, but not to any other sequences. Objective functions involved are simi-
larity, Hmeasure, continuity, and hairpin. Binary particle swarm optimization (BinPSO)
is employed to minimize those objectives subjected to two constraints: melting tempera-
ture and GCuontent- It is found that BinPSO can provide a set of good DNA sequences,
better than basic PSO algorithm in terms of aggregated fitness value.

Keywords: Particle swarm optimization, Binary PSO, DNA sequence design, Opti-
mization

1. Introduction. Deoxyribonucleic acid (DNA) is a nucleic acid that contains the ge-
netic instructions used in the development and functioning of all known living organisms
and some viruses. However, DNA molecules are presently used in many areas far beyond
its traditional function. In 1994 for example, a DNA-based computation has been intro-
duced by Adleman [1] to solve a Hamiltonian path problem (HPP). The success of the
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DNA-based computation depends on DNA sequences used. Thus, DNA sequence design
turns out to be one of the approaches to achieve high computation accuracy and become
one of the most important research topics in DNA computing.

Various kinds of methods and strategies have been proposed to date to obtain good
DNA set of DNA sequences. These methods are exhaustive search method [2], random
search algorithm [3], simulated annealing [4], dynamic programming approach [5], graph
method [6], template-map strategy [7,8], genetic algorithms [9,10], and multi-objective
evolutionary optimization [11]. Cui et al. have designed DNA sequences using PSO in
which the DNA sequences are connected one by one in the same direction to form a long
DNA sequence [12]. On the other hand, Zhou et al. have proposed a multi-objective PSO
(MOPSO) to design a set of good DNA sequences [13].

In previous work, we employed basic PSO algorithm to solve DNA sequence design
problem [14]. Continuous search space is utilized in which position in each dimension in-
dicates the possible DNA sequence. Compared with [12] and [13], different representation
is used such that A = 00, C = 01, G = 10, and T = 11. This algorithm has a certain
limitation. Since the search space is in continuous value, the positions are in floating
points. However, the representation of DNA sequences is discrete. Therefore, the floating
points need to be eliminated by approximating the floating values.

In this paper, DNA sequences are designed based on binary particle swarm optimization
(BinPSO) [15]. The representation of DNA bases is taken from [14]. Each dimension in
BinPSO has 2 possible binary values, 0 or 1. Thus, a base of DNA sequences is represented
by 2 bits of binary number.

2. Objectives and Constraints in DNA Sequence Design. Given several short
single-stranded DNAs in a test tube, if the temperature is decreased, these DNAs tend
to hybridize to other molecules in the tube subjected to Watson-Crick complementary.
Intuitively, the main objective of the DNA sequence design is to avoid this hybridization.
The probability of a DNA molecule to hybridize with itself and other DNAs can be mea-
sured using H,eqsure, Stmilarity, hairpin, and continuity. These objectives are subjected
to GCeontent and melting temperature constraints.

Generally, given a number of objective functions and constraints, formal objective of the
DNA sequence design is to produce a set of good DNA sequences with minimized values
of these objective functions. If this condition is achieved, it can be said that the sequences
in the set are unique and cannot hybridize to each another. In this paper, two objective
functions, namely H,,cqosure and similarity are chosen to estimate the uniqueness of each
DNA sequence. Another two additional objective functions, hairpin and continuity, are
used to prevent the secondary structure of a DNA sequence. Hence, the DNA sequence
design is formulated as follows:

min fpya = fi+ fo+ f3+ fa (1)

subjected to T, and G'C.onient constraints, where fi, fo, f3, and f4 are the objective func-
tion for Heasure, Similarity, hairpin, and continuity. The formulations for all objectives
and constraints have been published in [16].

3. Particle Swarm Optimization. Particle swarm optimization (PSO) is a population-
based stochastic optimization technique developed by Kennedy and Eberhart in 1995 [17].
In past years, PSO has been successfully applied in both in computer science [18] and
engineering [19]. In original PSO algorithm, each particle knows its best value so far
(pbest), velocity, and position. Additionally, each particle knows the best value in its
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swarm (gbest). A particle modifies its position based on its current velocity and position.
The velocity of each particle is calculated using

vEtl = Lol 4 ¢r) (pbest, — s¥) + cory(gbest® — sF) (2)

where vF, vf“, and s¥, are the velocity vector, modified velocity vector, and positioning

vector of particle ¢ at generation k, respectively. pbesti-c is the best position found by
particle i and gbest® is the best position found by the particle’s entire swarm. ¢; and ¢,
are the cognitive and social coefficients, respectively, used to bias the search of a particle
toward its own best experience (pbest) and the best experience of the whole swarm (gbest).
w is called inertia weight, which is employed to control the impact of the previous history of
velocities on the current velocity of each particle. The w parameter regulates the trade-off
between the exploration and exploitation ability of the swarm. Large values of w facilitate
exploration and searching new areas, while small values of w navigate the particles to
more refined search. The velocity equation includes two different random parameters,
represented by a variable, r; and ry, sampled from uniform distribution between 0 and 1,
i.e., ~ U(0,1)". The modified position vector, s*™ is obtained using

%

shtl = gh 4 oit! (3)

The binary particle swarm optimization (BinPSO) algorithm has been introduced to
allow the PSO algorithm to operate in binary problem spaces [15]. It uses the concept
of velocity converted to a probability that a bit (position) takes on a value of 1 or 0. In
Binary PSO, Equation (2) of updating a velocity remains unchanged, but Equation (3)
of updating a position is re-defined by the following rule [12]:

p1_ [ O if rg > S(vffl) (4)
& 1 ifrg < S(vh™)

ij
with r3 ~ U(0,1) and S is the sigmoid function used to transform the velocity to a
probability constrained to the interval [0.0, 1.0] as follows:

S (5)

S(,Uk—H) —
14 e Y

ij

4. Optimization of DNA Sequence Based on BinPSO. In order to design a set of
DNA sequences based on Bin PSO, a sequence is represented as binary vector, where A,
C, G, and T, are encoded as 004, 015, 105, and 115, respectively. In order to find a set of
n-sequences with [-mer length, a search space of (n x [ x 2) dimensions is required.

In this study, 20 particles are employed and randomly initialized in the search space.
The values of the constraints are 30% < GClontent < 80% and 50°C < T, < 80°C. The
T,, was computed based on the nearest-neighbor (NN) method [20]. Table 1 summarizes
the values of PSO control parameters used in the experiments. In this study, a decreasing
inertia weight is used. A large starting value of w is used to initially accommodate
more exploration, and is dynamically reduced to speed up the convergence to the global
optimum at the end of the search process [21]. The values of cognitive and social factors,
as stated in Table 1, are chosen as these values have been found to work well in many
studies [22].

5. Result and Discussion. The results of the proposed approach, BinPSO, are com-
pared with existing approaches, taken from Deaton et al. [9], Tanaka et al. [4], Guangzhou
et al. [12], and Zhao et al. [13]. For each comparison, 100 runs have been performed by
BinPSO and the average performance is calculated in terms of the mean value and the
standard deviation of the fitness values.
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TABLE 1. The value of PSO control parameters

Parameter Value
Cognitive and social factors, ¢; and ¢ 2.0
Inertia weight, w 0.9-0.4
Random values: 1, 75 0, 1]
No. of particles 20
Max iteration 1000

The BinPSO method is first compared with results given in [9], which were obtained
using a genetic algorithm. The method produced 7 good sequences with the length of 20-
mer. Results of the two algorithms are compared in Table 2 and Figure 1. BinPSO reached
lower values in the total objectives, compared with the GA. The sequences generated by
BinPSO surpassed the sequences from the GA in three objectives. Sequences designed
by BinPSO show lower values of hairpin, continuity, and similarity, while sequences from
Deaton et al. are better than BinPSO in the H,,cqsure Objective.

Table 3 and Figure 2 contain the comparison between the results of the BinPSO with
the DNA sequences generated by simulated annealing (SA) [4]. A set of sequences, which
consists of 14 DNA sequences of 20-mer length, has been designed by simulated annealing.

TABLE 2. Comparison of the sequences in [9] and the sequences generated

by BinPSO
Sequences | C' | Ha® | Hw® | S* | Total
GA [10]
Fitness value 11.71 0.57 20.43 13.14 | 45.85
Standard Deviation | 14.80 1.51 7.14 7.43 —
BinPSO
Average 1.29 0.00 20.57 | 11.29 | 33.15
Standard Deviation | 3.019 | 0.326 | 4.346 | 2.140 —

1C, ?Ha, *Hm, and S are continuity, hairpin, Hcqsure, and similarity objectives
values, respectively.
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FIGURE 1. Average fitness comparison results between [9] and the proposed
approaches, with 7 sequences and length of 20-mer
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BinPSO significantly outperformed SA for most of the objectives, namely, Hmeasure,
similarity, and hairpin. However, the sequences obtained from SA showed lower values in
continuity. However, BinPSO still outperformed SA if the performance is measured based
on total fitness value.

The BinPSO method is then compared with results given in Guangzhou et al. [12],
which were obtained using PSO. However, the model was different from the BinPSO
model, where the sequences were represented by modulus 4, and the weights for the

TABLE 3. Comparison results of the sequences in [4] and the sequences by BinPSO

Sequences Ct Ha? Hw? [ S' | Total
SA [5]
Fitness Value 0 1.71 103.71 62.71 168.13
Standard Deviation 0 1.70 6.39 4.20 —
BinPSO
Average 20.71 | 0.57 76.86 61.86 | 160.00
Standard Deviation 1.594 0.12 3.15 0.568 —

1C, ?Ha, *Hm, and *S are continuity, hairpin, Hpeqsure, and similarity objectives
values, respectively.
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FIGURE 2. Average fitness comparison results between Tanaka et al. [4]
and BinPSO method with 14 sequences and length of 20

TABLE 4. Comparison of the sequences in [12] and the sequences generated

by BinPSO

Sequences Ct Ha? Hw® | S | Total

PSO [13]
Average 13.86 3.14 177.71 | 120.71 | 315.42
Standard Deviation | 7.125 | 2.447 | 5.146 5.428 3.521

BinPSO
Average 18.43 2.43 164.29 | 135.14 | 320.29
Standard Deviation | 3.154 | 0.113 | 1.421 2.571 1.618

1C, 2Ha, 3Hm, and *S are continuity, hairpin, Hpeqsure, and similarity objec-

tives values, respectively.
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FIGURE 3. Average fitness comparison results between [12] and the pro-
posed approach

fitness functions were obtained from Tanaka et al. [23]. The method from [12] produced
20 good sequences with the length of 20-mer. Results of the two algorithms are compared
in Table 4 and Figure 3. The total values for all the objectives for BinPSO were not
satisfying, where PSO [12] obtained better values. However, the sequences generated by
BinPSO surpassed the sequences from the PSO [12] in two objectives. Sequences designed
by BinPSO show lower values of hairpin and Heqsure, while sequences from PSO [12] are
better than BinPSO in the similarity and continuity objectives.

Table 5 and Figure 4 compare the results of the BinPSO with multi-objective PSO
(MOPSO) [13]. The sequences generated by MOPSO also have 7 DNA sequences of 20-
mer length, similar to sequences generated by SA. BinPSO significantly outperformed
MOPSO for two objectives, namely, H,cqsure and continuity. The sequences obtained
from MOPSO showed lower values in similarity, while the values of hairpin for both
approaches are equal to zero. For the total overall objectives, BinPSO achieved better
minimum value.

From the computation point of view, an initial hypothesis is that BinPSO model is
better than Continuous PSO model [14] since floating point does not exist in BinPSO
computation. The number of sequence is chosen as 7 and the length for each sequence is
20-mer. Results of these two algorithms are compared in Table 6 and Figure 5.

TABLE 5. Comparison results of the sequences in [13] and the sequences by BinPSO

Sequences | C' | Ha® | Hw® | S* | Total
MOPSO [14]

Average 10.00 0.00 22.43 11.14 43.57
Standard Deviation 1.795 2.532 1.534 2.034 1.356
BinPSO
Average 1.29 0.00 20.57 | 11.29 | 33.15
Standard Deviation 3.019 0.326 4.346 2.140 1.112

1C, ?Ha, *Hm, and S are continuity, hairpin, Hcqsure, and similarity objectives

values, respectively.
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FIGURE 4. Average fitness comparison results between Zhao et al. [13] and
BinPSO method with 7 sequences and length of 20

TABLE 6. Comparison of the sequences from continuous PSO [14] and BinPSO

Sequences | C' | Ha® | Hm® | S* | Total
Continuous PSO
Average 1.773 | 0.456 | 56.77 | 50.82 | 109.82
Standard Deviation | 1.366 | 0.342 | 1.408 | 1.096 | 1.025
BinPSO
Average 0.00 0.57 | 54.22 | 43.95 | 98.74
Standard Deviation | 0.321 | 1.502 | 1.211 | 0.745 | 0.912

C!, Ha?, Hm?, and S* are continuity, hairpin, Hpeqsure, and similarity ob-
jectives values, respectively.
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FIGURE 5. Average fitness comparison results between continuous PSO
[14] and BinPSO
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Ficure 7. Convergence pattern of fpya for the BinPSO algorithm for the
case of 7 sequences with 20-mer length

The observations show that BinPSO algorithm is able to provide the lowest values in the
total objectives, compared with Continuous PSO. The sequences generated by BinPSO
surpassed the sequences from Continuous PSO not only in certain objectives, but in all
the objectives. Figure 6 demonstrates that the fitness function of fpya for Continuous
PSO algorithm leads to convergence after 390 iterations, while the convergence pattern
of BinPSO algorithm is illustrated in Figure 7. The particles for BinPSO converge after
380 iterations.

6. Conclusions. This study presented an application of binary particle swarm optimiza-
tion in DNA sequence design. BinPSO was implemented to minimize four objectives,
namely H,eqsure, Stmilarity, continuity, and hairpin, and subjected to two constraints,
G Ceontent and T;,. The results of the BinPSO were compared to results obtained from
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GA, SA, PSO and MOPSO. It was shown that BinPSO able to generate better or com-
parative sequences in several objectives than other approaches. Results from Continuous
PSO also have been shown and compared with BinPSO. Continuous PSO has certain
limitation, which can be overcome by BinPSO to produce better results. Future research
will include improvements of the method by considering multi-objective PSO algorithms
such as the vector evaluated PSO (VEPSO).

However, the necessity of DNA sequence design appears not only in DNA computing,
but also in other fields, such as DNA nanotechnology and biotechnology [2]. In these fields,
sequences are designed such that each element uniquely hybridizes to its complementary
sequence, but not to any other sequence. The base sequences of the single strands DNA
sequences determine the resulting DNA structure. Taking the wrong sequences would
produce undesired structures. Therefore, many works have concentrated on producing
good DNA sequences to avoid incorrect results.
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