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Abstract. In this paper, we propose a new criterion in the form of linear matrix in-
equality (LMI) for the elimination of limit cycles in direct form digital filters with satu-
ration arithmetic and external interference. The proposed criterion not only guarantees
asymptotic stability, but also reduces the effect of external interference to an l2 − l∞
induced norm constraint. The criterion can be checked readily by using some standard
numerical packages. An illustrative example is given to demonstrate the effectiveness of
the proposed criterion.
Keywords: l2 − l∞ approach, Asymptotic stability, Digital filters, Finite wordlength
effects, Linear matrix inequality (LMI)

1. Introduction. When designing a digital filter using fixed-point arithmetic, quanti-
zation and overflow nonlinearities are produced due to finite wordlength. Because of
these nonlinearities, the filter may exhibit unstable behavior. Such nonlinearities may
also become the cause of the occurrence of phenomena like zero-input limit cycles. The
occurrence of limit cycles in digital filters is undesirable and represents an unstable be-
havior. When designing a digital filter using fixed-point arithmetic, therefore, one needs
to know the ranges of the values of the filter parameters for the nonexistence of limit
cycles and choose the values so that the designed filter is free of limit cycles. If one can
choose the values of the filter parameters so as to ensure the asymptotic stability of the
filter, then this automatically implies that the filter will be free of limit cycles. If one
can choose the values of the filter parameters so as to ensure the asymptotic stability of
the filter, then this automatically implies that the filter will be free of limit cycles. The
criteria for the nonexistence of limit cycles in digital filters employing saturation overflow
arithmetic have attracted much attention [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. In this paper, direct
form digital filters involving single overflow nonlinearity [1, 2, 6, 8, 9, 10] are considered.
Quantization and overflow nonlinearities may interact with each other. However, if the
total number of quantization steps is large, or in other words, the internal wordlength is
sufficiently long, then the effects of these nonlinearities can be regarded as decoupled or
noninteracting, and can therefore be investigated separately. Under this decoupling ap-
proximation, quantization effects may be neglected when studying the effects of overflow
[11]. For further study of effects of finite wordlength, the reader is referred to [11].

In the hardware implementation of a high-order digital filter, it is usually broken down
into several biquad filters before implementation. Then, interference between the biquad
filters becomes a factor: This interference ultimately results in malfunctioning and de-
struction of the device [12, 13]. However, most existing criteria for the stability of digital
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filters are only relevant to specific conditions; in unfavorable environments with external
interference, these criteria will be of little use. Therefore, it is desirable to obtain an
alternative criterion that can overcome the shortcomings of existing criteria.
In real physical systems, one is faced with model uncertainties and a lack of statistical

information on the signals. This has led to an interest in l2 − l∞ control and state
estimation in recent years, with the belief that an l2− l∞ approach (or L2−L∞ approach
for continuous-time systems) is more robust and less sensitive to disturbance variances
and model uncertainties [14, 15, 16, 17, 18, 19]. A natural question arises: can we obtain
an l2 − l∞ stability criterion for digital filters with saturation arithmetic and external
interference? This paper gives an answer to this interesting question. To the best of our
knowledge, in terms of the l2− l∞ stability of digital filters with saturation arithmetic and
external interference, there has been no result given in the literature so far; this remains
an open and challenging problem.
In this paper, we propose a new linear matrix inequality (LMI)-based criterion for

the l2 − l∞ stability of direct form digital filters with saturation arithmetic and external
interference. The proposed criterion guarantees that the digital filter is asymptotically
stable and the l2 − l∞ induced norm from the external interference to the state vector
is reduced to an interference attenuation level. The criterion can be checked easily by
recently developed convex optimization algorithms [20, 21].
This paper is organized as follows. In Section 2, an LMI criterion for the l2 − l∞

stability of direct form digital filters with saturation arithmetic and external interference
is proposed. In Section 3, a numerical example is given, and finally, conclusions are
presented in Section 4.

2. New Criterion. The system under consideration has a linear part described by the
transfer function G(z):

G(z) = h1z
−n + h2z

−(n−1) + h3z
−(n−2) + · · ·+ hnz

−1. (1)

The output of G(z) is y(r) and the input to G(z) is f(y(r)). The following condition is
imposed:

zn − hnz
n−1 − hn−1z

n−2 · · · − h2z − h1 ̸= 0 (2)

for all |z| ≥ 1, which implies that the infinite-precision counterpart of the filter is stable.
We assume that the saturation overflow arithmetic is given by

f(y(r)) =

 1, if y(r) > 1,
y(r), if − 1 ≤ y(r) ≤ 1,
−1, if y(r) < −1.

(3)

Note that the saturation overflow arithmetic is confined to the sector [0, 1], i.e.,

f(0) = 0, −1 ≤ f(y(r))

y(r)
≤ 1. (4)

The system (1) can be represented by the following state equations:

x1(r + 1) = x2(r),

x2(r + 1) = x3(r),

... (5)

xn−1(r + 1) = xn(r),

xn(r + 1) = f(h1x1(r) + h2x2(r) + · · ·+ hnxn(r)),
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which can be put in the following matrix form:

x(r + 1) = Ax(r) +Bf
(
HTx(r)

)
, (6)

where

A =


0
0 In−1
...
0 0 · · · 0

 , B =


0
...
0
1

 , H =


h1
...

hn−1

hn

 , x(r) =


x1(r)
...

xn−1(r)
xn(r)

 , (7)

and In−1 denotes the (n−1)×(n−1) identity matrix. Equation (6) with the condition (3)
may be used to describe a class of discrete-time dynamical systems with state saturation,
which include digital filters using saturation overflow arithmetic, digital control systems
with saturation nonlinearities, a class of neural networks, and so on.

In this paper, we consider the following digital filter with external interference:

x(r + 1) = Ax(r) +Bf
(
HTx(r)

)
+ w(r), (8)

where w(r) ∈ Rn is the external interference. Let z(r) ∈ Rp be a linear combination of
the states, which is given by

z(r) = [z1(r) z2(r) · · · zp(r)]
T

= Kx(r), (9)

where K ∈ Rp×n is a known constant matrix.
Given a level γ > 0, the purpose of this paper is to obtain a new l2 − l∞ stability

criterion such that the system (8) and (9) with w(r) = 0 is asymptotically stable and

sup
r≥0

{
zT (r)z(r)

}
< γ2

∞∑
r=0

wT (r)w(r) (10)

under zero-initial conditions for all nonzero w(r). The parameter γ is called the l2 − l∞
induced norm bound or the interference attenuation level. In this case, the system (8)
and (9) is said to be asymptotically stable with l2 − l∞ performance γ.

Now we are ready to state a new l2 − l∞ stability criterion for direct form digital filters
with saturation arithmetic and external interference.

Theorem 2.1. For a given level γ > 0, if we assume that there exist a symmetric positive
definite matrix P and positive scalars δ, m such that δHHT + ATPA− P ATPB +mH ATP

BTPA+mHT BTPB − 2m− δ BTP
PA PB P − I

 < 0, (11)

[
−P KT

K −γ2I

]
< 0, (12)

then the system (8) and (9) is asymptotically stable with l2 − l∞ performance γ.

Proof: First, to establish the l2 − l∞ performance for the system (8) and (9), consider
the following Lyapunov function:

V (x(r)) = xT (r)Px(r). (13)
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Along the trajectory of (8), we have

∆V (x(r)) =V (x(r + 1))− V (x(r))

=
[
Ax(r) + Bf

(
HTx(r)

)
+ w(r)

]T
P
[
Ax(r) +Bf

(
HTx(r)

)
+ w(r)

]
− xT (r)Px(r)

=xT (r)
[
ATPA− P

]
x(r) + xT (r)ATPBf

(
HTx(r)

)
+ xT (r)ATPw(r)

+ f
(
HTx(r)

)
BTPAx(r) +

{
f
(
HTx(r)

)}2
BTPB + f

(
HTx(r)

)
BTPw(r)

+ wT (r)PAx(r) + wT (r)PBf
(
HTx(r)

)
+ wT (r)Pw(r)

+ f(HTx(r))
[
2mHTx(r)− 2mf

(
HTx(r)

)]
− 2mf(y(r))[y(r)− f(y(r))].

From (4), it is clear that

{f(HTx(r))}2 ≤ {HTx(r))}2 = xT (r)HHTx(r). (14)

Then, for a positive scalar δ, we have

δ
[
xT (r)HHTx(r)−

{
f
(
HTx(r)

)}2
]
≥ 0. (15)

Using (15), a new bound for ∆V (x(r)) can be obtained as

∆V (x(r)) ≤xT (r)
[
ATPA− P

]
x(r) + xT (r)

[
ATPB +mH

]
f
(
HTx(r)

)
+ xT (r)ATPw(r) + f(HTx(r))

[
BTPA+mHT

]
x(r)

+
{
f
(
HTx(r)

)}2 [
BTPB − 2m

]
+ f

(
HTx(r)

)
BTPw(r)

+ wT (r)PAx(r) + wT (r)PBf
(
HTx(r)

)
+ wT (r)Pw(r)

− 2mf(y(r))[y(r)− f(y(r))] + δ
[
xT (r)HHTx(r)−

{
f
(
HTx(r)

)}2
]

=

 x(r)
f
(
HTx(r)

)
w(r)

T  δHHT + ATPA− P ATPB +mH ATP
BTPA+mHT BTPB − 2m− δ BTP

PA PB P − I


×

 x(r)
f
(
HTx(r)

)
w(r)

+ wT (r)w(r) + Φ(r), (16)

where Φ(r) = −2mf(y(r))[y(r)− f(y(r))]. Note that Φ(r) is nonpositive in view of (3).
If the LMI (11) is satisfied, we have

∆V (x(r)) < wT (r)w(r). (17)

Under the zero-initial condition, one has V (x(r))|r=0 = 0 and V (x(r)) ≥ 0. Define

J(r) = V (x(r))−
r−1∑
k=0

wT (k)w(k). (18)

Then, for any nonzero w(r), we obtain

J(r) = V (x(r))− V (x(r))|r=0 −
r−1∑
k=0

wT (k)w(k)

=
r−1∑
k=0

[
∆V (x(k))− wT (k)w(k)

]
.
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From (17), we have J(r) < 0. It means that

V (x(r)) <
r−1∑
k=0

wT (k)w(k).

On the other hand, by the Schur complement, the LMI (12) is equivalent to

KTK − γ2P < 0. (19)

Noting (9) and (13), (19) implies that

zT (r)z(r) = xT (r)KTKx(r)

< γ2xT (r)Px(r)

= γ2V (x(r))

< γ2

r−1∑
k=0

wT (k)w(k)

≤ γ2

∞∑
k=0

wT (k)w(k). (20)

Taking the supremum over r ≥ 0 leads to (10).
Next, we show that, under the LMI conditions (11) and (12), the system (8) with

w(r) = 0 is asymptotically stable. When w(r) = 0, we have

∆V (x(r)) < 0 (21)

from (17). This guarantees

lim
r→∞

x(r) = 0 (22)

from Lyapunov stability theory [22]. This completes the proof.

Remark 2.1. The stability condition proposed in this paper is given in terms of LMIs.
This LMI-based criterion is computationally efficient and flexible due to the recently devel-
oped convex optimization algorithms [20]. Various efficient convex optimization algorithms
can be used to check whether the LMIs (11) and (12) are feasible. In this paper, in order
to solve the LMIs, we utilized MATLAB LMI Control Toolbox, which implements state-of-
the-art interior-point algorithms [21, 23, 24, 25].

Remark 2.2. Most existing results on stability analysis for digital filters in the litera-
ture were restricted to digital filters without external interference. Unfortunately, with the
existing works, it is impossible to analyze stability for digital filters with external interfer-
ence. For the first time, this paper proposes a criterion for stability of digital filters with
external interference. The presented result of this paper opens a new path for application
of the l2 − l∞ approach to stability analysis for digital filters. In contrast to the existing
works on stability analysis for digital filters, the advantage of our approach is that it can
be applied to digital filters with parametric uncertainty and external interference.

Remark 2.3. If we use the following augmented Lyapunov function:

V (x(r)) = xT (r)P1x(r) + xT (r + 1)P2x(r + 1),

where P1 = P1 > 0 and P2 = P2 > 0, instead of (13), the potential conservatism of LMI
condition (11) and (12) may be reduced. The reduction of the conservatism remains as a
future work.
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Figure 1. The plot of L(r)

Remark 2.4. The l2 − l∞ induced norm [26, 27] is defined as

∥Tzw∥l2−l∞ =

√
supr≥0{zT (r)z(r)}√∑∞

r=0w
T (r)w(r)

where Tzw is a transfer function matrix from w(r) to z(r). For a given level γ > 0,
∥Tzw∥l2−l∞ can be restated in the equivalent form (10). If we define

L(r) =
sup0≤k≤r

{
zT (k)z(k)

}∑r
k=0w

T (k)w(k)
, (23)

the relation (10) can be represented by

L(∞) < γ2. (24)

In the next section, through the plot of L(r), the relation (24) is verified.

3. Numerical Example. Consider a second-order system (8) with

h1 = −0.6, h2 = 1.1, w(r) =

[
cos(5r)
sin2(2r)

]
, K =

[
0.1 0
0 0.1

]
. (25)

For the design objective (10), let the l2−l∞ performance be specified by γ = 0.45. Solv-
ing the LMIs (11) and (12) by the convex optimization technique of MATLAB software
gives

P =

[
0.0963 −0.0749
−0.0749 0.1771

]
, m = 0.1595, δ = 0.0041.

Figure 1 shows the plot of L(r) and verifies L(∞) < γ2 = 0.2025. This means that
the l2 − l∞ induced norm from the external interference w(r) to the state vector z(r) is
reduced within the l2 − l∞ induced norm bound γ. It can be easily verified that each
of the criteria in previous works [1, 2, 6, 8, 9, 10] fails in the example given by (8) and
(9) with the parameters (25). On the other hand, the criterion (11) and (12) guarantees
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Figure 2. Response of the state x1(r)
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Figure 3. Response of the state x2(r)

the asymptotic stability with l2 − l∞ performance in this example. Figures 2 and 3 show
state trajectories when the initial state vector is given by x(0) = [−23 35]T . From these
figures, it can be seen that the proposed criterion guarantees to reduce the effect of the
external interference w(r) on the state vector x(r) to within a disturbance attenuation
level γ = 0.45.
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4. Conclusions. In this paper, a new LMI-based criterion for the l2−l∞ stability of direct
form digital filters with saturation arithmetic and external interference has been proposed.
The proposed criterion can guarantee reduction in the effect of external interference to
an interference attenuation level. Thus, it overcomes the limitations of existing criteria.
A numerical example is presented to demonstrate the validity of the proposed approach.
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