
International Journal of Innovative
Computing, Information and Control ICIC International c⃝2012 ISSN 1349-4198
Volume 8, Number 2, February 2012 pp. 1463–1477

GENERATING VALID REFERENCE BUSINESS PROCESS MODEL
USING GENETIC ALGORITHM

Bernardo Nugroho Yahya1, Hyerim Bae1,∗, Joonsoo Bae2

and Dongsoo Kim3

1Department of Industrial Engineering
Pusan National University

30-san, Jangjeon-dong, Geumjong-gu, Busan 609-735, South Korea
bernardo@pusan.ac.kr; ∗Corresponding author: hrbae@pusan.ac.kr

2Department of Industrial and Information Systems Engineering
Chonbuk National University

664-14 1-Ga Deokjin-dong, Jeonju, Jeonbuk 561-756, South Korea
jsbae@chonbuk.ac.kr

3Department of Industrial and Information Systems Engineering
Soongsil University

1-1 Sangdo-dong, Dongjak-gu, Seoul 156-743, South Korea
dskim@ssu.ac.kr

Received November 2010; revised April 2011

Abstract. With the growth of the Business Process Management (BPM) market, cus-
tomer requirements based process customization has emerged as a key to competitive
advantage. Where there are numerous demands for customization, a great number of
business process model variations result. The existence of numerous process variations
leads to both process redundancy and process underutilization, which impact on business
performance in negative ways. Thus, there is a need to create a process reference model
that can identify and find a representative model without redundancy. This paper intro-
duces a new, Genetic Algorithm (GA)-based approach to generation of a valid business
process reference model from a process repository. Previous research using the integer
programming (IP) problem produced a reference process model. However, there are prob-
lems, pertaining to presentational limitations and unguaranteed validation processes. The
GA procedure uses the randomness of genetic processes to resolve both problems in IP
formulation. Near the end of this paper, we show the experimental results of the proposed
method, which is conveniently executed using business process structure properties and
the proximity of activities. It is believed that this process reference model can help a
novice process designer to create a new process based on existing processes.
Keywords: Business process modeling, Process reference model, Genetic algorithm,
Proximity score

1. Introduction. In dynamic business environments, there exists a commonality among
process variants having common business goals but variance among process structures
[1]. These variations can occur as a consequence of individual customer requirements and
the different concerns of organizational units. Generally, process adaptations are needed
for configuration purposes at build time. Adaptive process management technology has
emerged in response to these needs. Accordingly, a significant number of process variants
are created from the same process model, but those variants slightly differ from each other
in their structures. There are only a few such approaches, which utilize information on
these variants and the corresponding process adaptations [2-5].

1463

1464 B. N. YAHYA, H. BAE, J. BAE AND D. KIM

Figure 1 illustrates the variation of business processes having common goals, showing
seven process variants as examples, modeled using Business Process Modeling Notation
(BPMN). Logistics processes are good examples to represent the various process variants.
It displays the setup workflow categories through flexible user-defined codes based on
customer numbers, customer types, quantity ordered, product categories, item numbers,
various combinations thereof, and/or special prices [6, 7]. The characteristics of each
process example have to be modeled for a specific goal (meet the requirements of each
product type) in the logistics process. In the example of purchase order process, eight
activities are initialized: order entry, order review, financial check, stock check, manager
review, billing system, shipping order, purchase order (PO) approval and PO invoice.
According to the given process context, the concerns of a certain organizational unit
and specific customer requirements, different variations of a basic process are needed.
Examples of these, again, are shown in Figure 1.
The generation of a generic process model, as a new reference model, is necessary for

future adaptations and decreasing change costs. Industrial process model collections and
reference process models such as ITIL, SCOR and eTOM exist, however, its high level
reference model corresponds to process-guidelines to match different aspects of IT, indus-
try, application, services, etc. without considering the level of implementation. Moreover,
existing approaches only attempted to create reference models based on history of process
configurations [2-4]. Thus, the present study developed a method for generating the best
reference model from a large number of past business process variants without any history
information of process configurations. The method can create a reference model with a
combinatorial optimization problem by using distance measure and considering a process
model’s mathematical formulation for optimization of the activity distances in a process
model [8]. However, in the model’s application, there are two limitations. First, the
math formulation has a semantic presentational limitation. A presentational limitation
is claimed as no consideration with regard to activity properties, e.g., split and merge
activity. Second, process may satisfy the safety property without any guarantee on pro-
cess validation. The safety property, as a part of soundness property, mentioned that a
business process will always satisfy a given property, e.g., it will always run to completion
[9]. However, there is no guarantee when a process has safety property, and it also follow
the soundness property as a validation approach.
To overcome these limitations, we provide a new, Genetic Algorithm (GA)-based method

of generating a BP reference model from a BP repository. We adopted a measure to as-
sess the proximity distance of activities in order to evaluate both integer programming
(IP) and GA measurements. Measuring the proximity between activities is a means of
extracting process structure knowledge from the process repository. A reference process
is considered as a valid model whenever it follows soundness properties [9] and corre-
sponds to the characteristics of existing process variants [5]. That is, by maximizing the
proximity value, we can obtain a reference model that can be representative of process
variants in a repository. The generated reference model can also be considered as process
template/library in order for ease of use the user experience design of BP.
This paper proceeds as follows. In Section 2, we briefly review the literature on GA

and graph theory in the Business Process Management (BPM) field. In Section 3, we
incorporate the proposed proximity score measurement (PSM) method into the evaluation
function of an IP problem. The GA method is proposed as a way to improve IP results.
Genetic processes such as selection, crossover and mutation methods are also presented.
Section 4 examines the experimental results using the IP problem and GA. Finally, Section
5 concludes this study.

GENERATING VALID REFERENCE BP MODEL USING GA 1465

(a). Process p1 for product type 1

(d). Process p4 for product type 4

(b). Process p2 for product type 2

(e). Process p5 for product type 5

(c). Process p3 for product type 3

(f). Process p6 for product type 6

(g). Process p7 for product type 7

Figure 1. Process variants in logistics

2. Related Work. Although BP modeling recently has seen wide adoption among en-
terprises, BP design research is still in its developmental phase. There are several research
works of GA in the domain of BP [10-15]. The term Genetic Process Mining (GPM) was
proposed to retrieve process knowledge from logs [10]. The retrieval knowledge repre-
sented as the process model that reflects the process behavior in the log. Other similar
domain, based on project management, dealt with GA approach in personnel assignment
problem and network models and optimization [11, 12]. Additional attributes, e.g., re-
sources, in the activity to determine the optimum solution of objective function are out
of scope of this study. The design and model of GA approaches, encoding and decoding
function, that were carried out are somewhat significant to this study [13]. Other GA
approaches were used to solve subset sum problem and graph problem, which is similar
to the domain of this study [14, 15]. However, there is no research attempt on finding
reference model using GA.

There are some existing business-process-design-related research fields, which usually
are titled business process modeling, workflow verification, process change and workflow
patterns [16-19]. Process configurations using version management approach was dis-
cussed previously [16]. Research about pattern-based workflow design using Petri net
was also proposed [17]. Kim and Kim [19] developed a process design tool with regard
to fault-tolerant process debugger. Jung, Bae and Liu [18] discussed a method to find
similar process by clustering stored processes in repository. All researches developed such

1466 B. N. YAHYA, H. BAE, J. BAE AND D. KIM

approaches to improve new process disregard of reference models, and they become the
basic of BP modeling by means of process reference models.
Any discussions of reference model issues are mostly pertinent to process variants [2-5].

Recently, a comprehensive heuristics-based approach to discovering new reference mod-
els by learning from past process configurations was discussed [2], and a mathematical
programming approach was introduced [8]. The proposed heuristic [2] updates process
configurations and produces new reference models based on a minimum edit distance
from initial reference processes. However, most traditional process design tools have lack
of functions to store process configurations. When there are a lot of processes already
stored in the repository, it requires a special method to generate process reference model
without any process configuration information. The IP-based mathematical model [8]
was proposed to address the issue of creating reference processes without initial refer-
ence information or process reconfiguration. There remain problems in the presentational
and validation aspects of the process using IP formulations, which this study attempted
to overcome with a GA approach. The industry papers using refactoring operations
[3] emerged as process configuration tool from AS-IS into TO-BE process models. The
scenario of refactoring operations took into account an existing process models (AS-IS
model) with a reference model where some parts of the existing model should be pre-
served and others should be replaced, named as process merging. Process merging differs
from process configurations in the way that it usually requires to preserve certain parts
of the AS-IS model and the underlying IT system. It is significant to find configured
reference model from TO-BE process models that is less considerable on the underlying
approach. Scenario-based analysis on application of reference process models in SOA [4]
and survey results and classification [5] have all necessary concepts in regard to process
reference models with less quantitative techniques. Thus, this proposed method attempt
to enhance and overcome problems occurs on the previous works as a mean of creating a
valid reference process from repositories without information of process configurations.

3. Proposed Model. We measured the process structure distance using PSM. For a
simpler distance measure, the process variants in Figure 1 were transformed into graph
abstractions, as illustrated in Figure 2. In this approach, the transformation of process
variant into graph abstraction used string edit distance [20]. We also assume that process
variants are considered as directed acyclic graph. It means that we consider no loop
(cyclic) activity in the measurement. A discussion of distance measurement using PSM
and activity proximity score can be found in the following section.

3.1. Proximity score measurement (PSM). This section describes some definitions
as a prerequisite to convey about business process and activity proximity measurement.

Definition 3.1. Process Model. We define a process model pk, which means the k-th
process in a process repository. It can be represented as a tuple of ⟨Ak, Lk⟩, each element
of which is defined below.
Ak = {ai|i = 1, . . . , I} is a set of activities where ai is the i-th activity of pk and I is

the total number of activities in pk.
Lk ⊆ {lij = (ai, aj)|ai, aj ∈ Ak} is a set of links where lij is the link between two

activities ai and aj in the k-th process. The element (ai, aj) represents the fact that ai
immediately precedes aj.

Definition 3.2. Activity Proximity Score. We have to obtain the Activity Proximity Score
(APS) for each process. The APS value, which is denoted by qkij, is defined in Equation

GENERATING VALID REFERENCE BP MODEL USING GA 1467

l13

l34

a1 a3

a4

l12

l25

a1

a2

a3

l35

a4

l12

l23

a1 a2

a3

(b). process variant 2 (p2)

(f). process variant 6 (p6)

(a). process variant 1 (p1)

a5

l45

a6

a5

a6
()

l35

l46

l56

l36

l13

l14

(c). process variant 3 (p3)

a5)

l12

l13

l24

l34

a1

a2

a3

a4
(

l45

a6

l56

a4 a5l24

l45

l56

l23

l34

a2 a3

a4

(e). process variant 5 (p5)

a5

a6
()

l35

l46

l56

a1

l12

(g). process variant 7 (p7)

a6)

l13

l14

l35

l45

a1

a3

a4

a5
(

l56

l12 l23

a1

a2 a3

(d). process variant 4 (p4)

a6

l36

a4 a5l24 l45 l56

a7

l57

a8

l68

l78

a8

l68

a6l56

a7

l57

a8

l68

l78

a7 a8

l78l67

a7 a8

l78
l67

a7 a8

l78
l67

a7 a8

l78
l67

) (

) (
) (

()
) (

) (

Figure 2. Graph abstraction from Figure 1

(1) as

qkij =
hk(i, j)

dkij
(1)

where hk(i, j) = 1 if ai → aj in the k-th process; 0, otherwise, and dkij is the average path
distance between activity ai and aj of the k-th process. Each pair of activities (ai and aj)
has a single value of APS, k = 1, 2, 3, . . . , K, where qkij is the APS of the k-th process in
a process repository, K is the total number of processes, and ai → aj denotes that activity
aj is reachable from ai. Detailed distance calculations can be found in Yahya et al. [21].

Definition 3.3. InDegree and OutDegree of activity. InDegree defines the number of
edges incoming to an activity, and OutDegree defines the number of edges outgoing from
an activity. We denote the InDegree and the OutDegree of the i-th activity as inDegree(ai)
and outDegree(ai), respectively, and according to these concepts, we can define start/end
activities and split/merge semantics.

Start activity (aS) is an activity with an empty set of preceding activities, inDegree(ai) =
0. End activity (aE) is an activity with an empty set of succeeding activities, outDegree(ai)
= 0.

For a split activity ai such that outDegree(ai) > 1, fs(ai) = AND if all of the succeeding
activities should be executed; otherwise, fs(ai) = OR.

For a merge activity ai such that inDegree(ai) > 1, fm(ai) = AND if all of the preceding
activities should be executed; otherwise, fm(ai) = OR.

In this study, a reference process is considered as a valid process (validity property) if
its activity satisfy the split and merge property using the InDegree and OutDegree value.

1468 B. N. YAHYA, H. BAE, J. BAE AND D. KIM

3.2. Integer programming mathematical formulation. A process of automatic ref-
erence model creation finds an optimum reference process by maximizing the sum of
proximity scores among the process variants in a process repository. The following no-
tations, extended from [10], are used in the mathematical formulation of our problem.
Notice that y i, z j and x ij are decision variables.
i, j : activity index (i, j = 1, . . . , I), where I is the number of activities;
k : process variant index (k = 1, . . . , K), where K is the number of process variants;
y i: 1, if the i -th activity is a start activity; 0, otherwise;
z j: 1, if the j -th activity is an end activity; 0, otherwise;
x ij: 1, if the i -th activity immediately precedes the j -th activity; 0, otherwise.
Mathematical Formulation

min
∑
i

∑
j

((K − cij).xij + cij(1− xij)) (2)

I∑
i

yi = 1 (3)

I∑
j

zj = 1 (4)

yi + xji ≤ 1 ∀k, qkji = 1 (5)

zi + xij ≤ 1 ∀k, qkij = 1 (6)

yi +
I∑

(j:qkji=1)

xji ≤ 1 i = 1, . . . , I (7)

zi +
I∑

(j:qkij=1)

xij ≤ 1 i = 1, . . . , I (8)

xij ∈ 0, 1 ∀k, qkij = 1 (9)

yi, zi ∈ 0, 1 i = 1, . . . , I (10)

In this model, we link two activities based on the information from the existing process
variants. The summation of the number of adjacent links among all of the process variants
is denoted as cij, where cij =

∑
(k:qkij=1) q

k
ij. This determines the cost of creating a link

between ai and aj. When the constraints are satisfied, we minimize the multiplication of
the integer values of possible link (xij) and negative cost (−cij) of links ai and aj. To
avoid unexpected links, we multiply (1 − xij) by the cost. In other words, in order to
maximize the sum of proximity scores among process variants, the objective functions
have to be minimized (2). Constraints (3) and (4) impose the condition that there is only
one start (yi) activity and one end activity (z i) in a process reference model. Constraints
(5) and (6) guarantee that there are no immediate predecessors to the start activity and no
immediate successors of the end activity, respectively. Constraints (7) and (8) determine
that there should be at least one path following the start activity and preceding the end
activity, respectively. The adjacent relationship of activity ai and aj is denoted as xij

with a binary value element, as shown by constraint (9). Constraint (10) reflects the fact
that the start/end activity has a binary value element.
By using the graph example in Figure 2 and applying the mathematical approach, we

obtain the result from LINGO, shown in Figure 3. The process provides us with insight
into the new reference process. The safety property, as a part of soundness property,

GENERATING VALID REFERENCE BP MODEL USING GA 1469

a1

a2

a3

a4

a5 a6

Result from LINGO (Objective = 37)

a7 a8

Figure 3. Result from LINGO

has been considered in the IP constraint. However, behavior in between start and end
activities may hold some irrelevant properties. For example, the result is considered to be
an invalid process, since activity a3 (financial check activity) has never been experienced
as a merge activity. Therefore, the present study set about solving the validity problem
using a GA approach. The randomness of GA may aid the search for the best chromosome
to represent a valid process that achieves the optimum solution.

3.3. Genetic algorithm procedure. The structure of the GA procedure is shown in
Figure 4. Detailed descriptions of each step are provided thereafter.

START

Generate

Population

Evaluate

population

Select k parents

from population

Satisfy

stopping rule

Crossover &

Mutation

END

N
Decoding &

Validation

Y
Selection

Parameter Value

Generations 100

Population size 10

Selection Roulette wheel & elitist

Crossover Uniform

Crossover rate 80%

Mutation Swapping

Mutation rate 10 %

Figure 4. Genetic algorithm structure and parameters

3.3.1. Initialization. In order to create a random initial population, we first retrieve
related process variants from the repositories. Afterwards, we collect the relevant in-
formation such as activity adjacent constraints and the number of ingoing and outgo-
ing edges based on the existing process variants. Let us denote maxk(inDegree(ai)),
mink(inDegree(ai)), maxk(outDegree(ai)) and mink(outDegree(ai)), where k ∈ K is the
maximum of the ingoing edges, the minimum of the ingoing edges, the maximum of the
outgoing edges and the minimum of the outgoing edges of the i -th activity among the
k -th process variants in the repository, respectively. This constraint limits an activity to
have either ingoing or outgoing edges without any prior experience of it among process
variants. A later Subsection 3.3.4 will discuss in more detail of the activity adjacent
constraint and the maximum and minimum of the ingoing and outgoing edges on each
activity. An initial population of processes can be randomly generated based on the con-
straint developed from the retrieval of process variants knowledge from the repositories.
Each initialized process will be encoded as explained in the following section.

3.3.2. Encoding. Each solution is an individual in a population, and the encoding of each
individual is based on the precedence relation between activities. We can see the structure
of the chromosome in Figure 5. The first and the last part are the assignment of the start

1470 B. N. YAHYA, H. BAE, J. BAE AND D. KIM

activity and the end activity, respectively. The middle part is the possible precedence
relation between the two activities. The length of each chromosome is equal to two times
the total number of activities (2× I), representing start and end activities, added to the
combinatorial problem of the directed relations of two activities (I × (I − 1)).
An example of encoding from process variant (p1) to an individual chromosome is

presented in Figure 6. It is apparent that a1 is a start activity and a8 is an end activity.
The middle part shows all of the adjacent relationships between the two activities in p1.

y1 yI x12 x13 x1I x21 x23 x2I x(I-2)I x(I-1)I z1 zI

Figure 5. Representation of chromosome

Figure 5. Representation of chromosome

Individual chromosome:

100000001110000000100000010000001000000011000000010000001000000000000001

y1 y2 y3 y4 y5 y6 y7 y8 x12 x13 x14 x15 x16 x17 x18 x21 x23 x24 x25 x26 x27 x28 x31 x32 x34 x35 x36 x37 x38

1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0

x41 x42 x43 x45 x46 x47 x48 x51 x52 x53 x54 x56 x57 x58 x61 x62 x63 x64 x65 x67 x68

0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1

x71 x72 x73 x74 x75 x76 x78 x81 x82 x83 x84 x85 x86 x87 z1 z2 z3 z4 z5 z6 z7 z8

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 6. Encoding from process variant p1 (see Figure 1) to individual chromosome

3.3.3. Crossover and mutation. Here, we describe the genetic operators that are used in
our GA procedure. First, the crossover operator is designed. At each step of the GA
procedure, for further generation of offspring, we select parents from the population of
the generation. We use a uniform crossover to combine two parents, which process is
illustrated in Figure 7. We also design a swap mutation to modify the activity position
in an individual for a process variant. A combination roulette-wheel-and-elitist method
is adopted for the selection procedure.

1 0 0 0 1

0 1 1 0 1

Parents 1

Offspring

Parents 2

1 0 1 0 1

(a). Uniform Crossover

Parents

Position selected

Offspring

(b). Swap Mutation

1 0 0 1 1

0 1 1 0 1

Figure 7. Crossover and mutation operation

3.3.4. Decoding and validation. The illustration in Figure 8 shows the method of decoding
from a chromosome to a process. Due to the random genetic processes (crossover and
mutation) that might produce an invalid result, it is necessary to verify the process for
further generation. We apply the soundness properties of business processes to verify the
process well-formedness. For a business process model to be sound, three properties are
required [9]:

GENERATING VALID REFERENCE BP MODEL USING GA 1471

1) For every activity aj that is reachable from ai, there exists a sequence to the next
activity until a preferred end activity aE is reached.

2) A preferred end activity aE is the activity that should be reachable from a start
activity aS.

3) There is no activity that is never processed in any execution of the model (there are
no needless elements).

Individual chromosome:

100000001000000010000000110000001000000010000000100000001000000000000001

y1 y2 y3 y4 y5 y6 y7 y8 x12 x13 x14 x15 x16 x17 x18 x21 x23 x24 x25 x26 x27 x28 x31 x32 x34 x35 x36 x37 x38

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0

x41 x42 x43 x45 x46 x47 x48 x51 x52 x53 x54 x56 x57 x58 x61 x62 x63 x64 x65 x67 x68

0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0

x71 x72 x73 x74 x75 x76 x78 x81 x82 x83 x84 x85 x86 x87 z1 z2 z3 z4 z5 z6 z7 z8

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

a
1

a
2

a
3

a
4

a
5

a
6

a
7

a
8

Figure 8. Decoding from chromosome to process variant

The Figure 8 illustration shows that any activity aj that is reachable from ai has a
sequence to end activity aE (a8 is reachable from any earlier activities (a1 − a5)). There
also exists a path from start activity aS (a1) to end activity aE (a8). Since the process
model has no iterative path, we consider that each activity in the process has a chance to
be executed. Since GA is based on randomness, we need a mechanism to guarantee the
validation of a business process while we decode a chromosome into a business process. In
order to satisfy the process validation, we use three boundaries: a precedence matrix, the
maximum in/out degree and the minimum in/out degree (Figure 9). A precedence matrix
is a binary value matrix where value 1 denotes that there exists at least one link among
process variants in the repository. The maximum and minimum in/out degrees represent
the maximum and minimum number of ingoing and outgoing edges among process variants
in the repository, respectively. Both boundaries are important to the creation of a valid
process.

 a1 a2 a3 a4 a5 a6 a7 a8

a1 0 1 1 1 0 0 0 0

a2 0 0 1 1 1 0 0 0

a3 0 0 0 1 1 1 0 0

a4 0 0 0 0 1 1 0 0

a5 0 0 0 0 0 1 1 0

a6 0 0 0 0 0 0 1 1

a7 0 0 0 0 0 0 0 1

a8 0 0 0 0 0 0 0 0

Max Outdegree
a1 a2 a3 a4 a5 a6 a7 a8

3 2 2 1 2 1 1 0

Max Indegree
a1 a2 a3 a4 a5 a6 a7 a8

0 1 1 2 3 2 1 2

Min Outdegree
a1 a2 a3 a4 a5 a6 a7 a8

1 0 1 1 0 1 0 0

Min Indegree
a1 a2 a3 a4 a5 a6 a7 a8

0 0 1 1 0 1 0 1

Figure 9. Precedence relation matrix (left figure) for creating valid process
and maximum and minimum of outdegree and indegree of each activity
(right figure), based on Figure 1

The randomness of the genetic process might result in a process without a start/end
activity or a start/end activity that is greater than one. There are some cases in which

1472 B. N. YAHYA, H. BAE, J. BAE AND D. KIM

an invalid process can be created (see Figures 10(a) and 10(b)). To create a valid process,
we developed the start end algorithm to certify that there will be only one start/end
activity that satisfies the constraint (inDegree = 0 and outDegree = 0 for the start and end
activities, respectively). Figure 11 shows the start end algorithm assigning and validating
the start and end activities. Figure 10 shows some other cases of invalid processes. Case
3 illustrates a process that is invalid given the fact that there is a link from a1 to a5 that
has no precedence relation (as shown in Figure 9). The other case, case 4, shows that
there is a link from a1 to a3 with previous precedence relation information. However, it
is also considered to be an invalid process, since a3 has a maximum inDegree equal to 1,
though a1 has the possibility of being a split activity (the maximum outDegree is greater
than 1). Thus, we need to delete the link that creates an invalid process.

a1 a2

a3

(c). Case 3 (deletion)

a6

a4 a5

a3

a4

(f). Case 6 (insertion)

a5

a6a1

a1

a2 a3

(e). Case 4 (deletion)

a6

a4 a5

a1 a2

a3

a6

a4 a5

(d). Case 5 (insertion)

a1 a2

(a). Case 1 (selection of start activity)

a8

a7

(b). Case 2 (selection of end activity)

a7 a8

a7 a8

Figure 10. Randomness cases for genetic process

There can be other cases in which some activities are not connected. To establish
a valid business process, we establish that there is only one start activity and one end
activity, as denoted by the start end algorithm. Therefore, case 5 and case 6 violate the
business process soundness property, since there is more than 1 activity for which the
in/out degree values are equal to 0. The start end algorithm is only an attempt to assign
the right start/end activity without considering any link activity with an in/out degree
equal to 0. In case 5, both activities a1 and a2 have an inDegree equal to 0. Additionally,
in case 6, both activities a4 and a8 have an outDegree equal to 0. With regard to this
problem, our approach creates links based on the cost value to minimize the objective
function.
The valid process algorithm (Figure 12) was developed to generate a valid process

based on the soundness properties. There are two functions included in the valid process
algorithm. The first is link deletion, and the second is link insertion. The deletion
function deletes any link with no implication for the definition of a core process, such as
when there is no respective link in the process repository or when the split-join behavior
shows that either the ingoing or the outgoing link has more than the maximum constraint.
Meanwhile, the insertion function connects any activity without either an ingoing or an
outgoing edge.
The total time complexity of decode mechanism (both start end and valid process

algorithm) of validity process is O(N 2) where N = |A|. The time complexity of start end
algorithm is O(N) since it performs the N times of total activities. To find a valid
link between two activities, the valid process algorithm has O(N 2) in calculating each of
activity link on both deletion and insertion process. Figure 13 shows the GA results. As
explained previously, the result from LINGO is invalid (the objective value = 37) since

GENERATING VALID REFERENCE BP MODEL USING GA 1473

Algorithm start_end (p

k
)

Input : a chromosome of a process p
k
 (y1 yI ; z1, zI)

Output : aS and aE in p
k

Begin

/* Selection of start activity */

int i, start 0;

WHILE ((start <1) || (i<=I)) /* select the first yi that is equal to 1 */

 IF (yi=1) THEN {

 IF (inDegree(yi)=0) THEN

 start++; return aS yi ;}

 i++;

END WHILE

IF (aS =null) THEN

 FOR each ai A
k
 DO /* select the first ai for which inDegree(ai)=0 */

 IF (inDegree(ai)=0) THEN

 return aS yi ;

 END FOR

/* Selection of end activity */

int end 0; i I ;

WHILE ((end <1) || (i >=1)) /* select the last zi that is equal to 1 */

 IF (zi=1) THEN {

 IF (outDegree(zi)=0) THEN

 end++; return aE zi ;}

 i--;

END WHILE

i I ;

IF (aE =null) THEN

 WHILE (i >= 1) /*select the last ai for which outDegree(ai)=0 */

 IF (outDegree(ai)=0) THEN return aE zi ;

 i-- ;

 END FOR

End.

Figure 11. start_end algorithm

Figure 11. start end algorithm

activity a3 has never been a merge activity. By using the valid process algorithm to check
the process path (the GA decoding verification method), we can produce the result shown
in Figure 13, with the objective function greater than the result of LINGO (Figure 3).
Although the GA results in a greater objective value, the process model fits with the
soundness and validation of the process variants properties.

4. Experimental Results and Discussions. We conducted experiments as presented
in Section 4.1. This section demonstrates the experiment results with regard to best
fitness value and execution time. Section 4.2 discusses qualitative analysis of experiment
results, along with its limitation and directions for further research.

4.1. Experimental results. In the present study, we conducted experiments in the
mathematical model using LINGO combined with the Java programming language (Java-
APS) [22]. The resulting Java-APS inputs an APS value into LINGO. That is, by using
Java-APS, we retrieved topological information on the BP model and generated the APS
value in a text file for LINGO computation. Afterward, LINGO computed the combi-
natorial optimization problem based on those APS values generated by Java-APS. With
regard to GA, we ran the experiments using the parameters in Figure 4 and retrieved
process variants from the repository with various numbers of activities, as shown in Table
1 (avg. # of activities). The objective value and execution time results for both LINGO
and GA are listed in Table 1.

1474 B. N. YAHYA, H. BAE, J. BAE AND D. KIM

Algorithm valid_process (p
k
)

Input : a chromosome of a process p
k

Output : valid process p
k

Begin

/* Link Deletion */

 FOR each ai A
k
 DO // A

k
 is a set of activities in p

k

 FOR each aj A
k
, aj ai

 IF (qji
k
= 1) THEN

 IF ((cji=0) || (outDegree(aj) > maxk(outDegree(aj)))) THEN

 L
k

L
k
-{lij}; outDegree(aj)--; inDegree(ai)--; // L

k
 is a set of links in p

k

 IF (qij
k
= 1) THEN

 IF ((cij=0) || (inDegree(aj) > maxk(inDegree(aj)))) THEN

 L
k

L
k
-{lij}; outDegree(ai)--; inDegree(aj)--;

/* Link Insertion */

 FOR each ai A
k
 DO link_insert(ai);

 IF ((inDegree(ai)==0) && (ai aS))THEN

 FOR each aj A
k
 , aj ai (ai ,aj) L

k

 IF ((outDegree(aj)>0) && (outDegree(aj) < maxk(outDegree(aj)))) THEN

 IF (cji > max_in(ai)) THEN max_in(ai) = cji;

 END FOR

 FOR each aj A
k
 , aj ai

 IF (cji = max_in(ai)) THEN L
k

L
k
+{lij};

 outDegree(aj)++; inDegree(ai)++;

 END FOR

 IF ((outDegree(ai)==0) && (ai aE)) THEN

 FOR each aj A
k
 , aj ai (ai ,aj) L

k

 IF ((inDegree(aj)>0) && (inDegree(aj) < maxk(inDegree(aj)))) THEN

 IF (cij > max_out(ai)) THEN max_out(ai) = cij;

 END FOR

 FOR each aj A
k
 , aj ai

 IF (cij = max_out(ai)) THEN L
k

L
k
+{lij};

 outDegree(ai)++; inDegree(aj)++;

 END FOR

 END FOR
 End.

Figure 12. valid_process algorithm

Figure 12. valid process algorithm

a
1

a
2

a
3

a
4

a
5

a
6

a
7

a
8

13 Reference Process Model as result of GA (Fitness = 38)

Figure 13. Reference process model as result of GA (fitness = 38)

4.2. Discussions. The IP problem, which has lesser computational time than GA ap-
proach, can result invalid BP reference model. First, it has no consideration with regard
to activity properties, e.g., split and merge activity. Second, it guarantees only the safety
property. The safety property always guarantees that a process will always run to com-
pletion. However, it does not guarantee that in-between start and end activity of BP
reference model correspond to existing properties of process variants, referred to validity
property. Thus, GA approach attempts to solve these problems. Existing approach of
generating reference model [2-5] were ineffective when there is no information with re-
gard to process configurations. Since it is too complex to collect information about the
configurations of large numbers of process variants, it is particularly necessary to have
functions as presented at this present study. By retrieving all process variants without any

GENERATING VALID REFERENCE BP MODEL USING GA 1475

Table 1. Experimental results

Process Avg. #
IP-BP GA-BP

Group of Act
Obj. Exec.

Best
Avg. St.

Min. Max.
Exec.

Value Time Fitness Dev Time
PG-I 6.1 49 0.17 50 50.18 0.064 50 79 1.19
PG-II 10.4 63 0.17 63 63.69 0.098 63 145 1.09
PG-III 14.8 124 0.39 125 125.44 0.055 125 176 1.89
PG-IV 19.0 152 0.31 154 155.05 0.104 154 274 1.81
PG-V 23.2 205 0.56 207 208.63 0.079 207 381 2.00
PG-VI 28.6 199 0.92 202 203.88 0.198 202 412 3.75
PG-VII 33.1 339 1.49 345 346.72 0.205 345 552 5.45
PG-VIII 38.3 305 2.45 306 309.40 0.330 306 696 9.77
PG-IX 43.0 438 3.72 447 449.95 0.245 447 779 14.75
PG-X 47.2 538 5.56 548 551.23 0.222 548 903 20.69

information of process configuration, it may help general organizations, which apply GA
approach, to solve both problems mentioned above. The random search mechanism using
GA can guarantee the soundness of BP reference model with some validation algorithms
to rearrange the result of crossover and mutation process. The usage of three boundaries,
a precedence matrix, the maximum in/out degree and the minimum in/out degree, is
considered as a measure to achieve the soundness properties [9]. The fitness values of GA
were slightly greater than the IP problem, however, it can represent a sound and a more
compliant process. It is recommended that when the numbers of activities increase, such
heuristics be applied to result a better process model with a rational computational time.
We left this issue to our further research.

(a). Graphic of Fitness Functions comparison (b). Graphic of Execution Time Comparison

0

100

200

300

400

500

600

P
G
-I

P
G
-I
I

P
G
-I
II

P
G
-I
V

P
G
-V

P
G
-V
I

P
G
-V
II

P
G
-V
II
I

P
G
-I
X

P
G
-X

F
it

n
e

ss
 V

a
lu

e

Process Variants

IP-BP

GA-BP

0

5

10

15

20

25

P
G
-I

P
G
-I
I

P
G
-I
II

P
G
-I
V

P
G
-V

P
G
-V
I

P
G
-V
II

P
G
-V
II
I

P
G
-I
X

P
G
-X

E
x

e
cu

ti
o

n
 T

im
e

 (
se

c)

Process Variants

IP-BP

GA-BP

Figure 14. Graphic of (a) fitness values comparison and (b) execution
time comparison

There are two major deficiencies of our main results. First, this proposed method
considered directed acyclic graph with exclusion of loop/iterative activity. The existence
of loop/iterative activity may hinder the distance calculation between reachable activities.
Thus, it is considerable for future work to make a distance measure specifically for loop
activity with regard to the probability of execution. Second, indexing on graph abstraction
activity mapping is simply based on string edit distance. Semantic accuracy can be
obtained not only using topological information of BP but also by considering other
attribute such as performers, documents and artifacts. We put both of these issues for
our future works.

1476 B. N. YAHYA, H. BAE, J. BAE AND D. KIM

5. Conclusions. This paper presents a new method of finding a process reference model.
In order to generate a valid reference process, we enhanced the math formulation of the
IP problem, which is a combinatorial optimization problem, with the GA procedure.
Although the GA procedure has a higher cost on execution time and a greater fitness
value than the IP problem, it resulted in a more valid process compared with the IP
approach. We applied the GA procedure to large problems and successfully acquired
reference models.
Problems associated with the use of IP formulation, such as the selection of the start/end

activity and the selection of activity links, were resolved using the GA procedure with
the start end and valid process algorithms. Selection of a start/end activity based on the
in/out degree of links produced, in comparison with the IP approach, a valid reference
process. The deletion and insertion of links during the decoding procedure, which are not
parts of the IP approach, are considered to be important to generating a valid reference
process. Even though the GA fitness value is greater than in the IP approach, the GA
reference process satisfies the validity and soundness properties necessary to represent
the corresponding process variants in the repository. In other words, the presentation
limitations of the mathematical formulation and the possibility of an unguaranteed valid
process were resolved by using the GA procedure. Due to the cost of GA execution time,
there remain issues for further research. Other meta-heuristic approaches might hold
some advantages for reducing the execution time.
The process reference model derived by our approach can be utilized for various pur-

poses. First, it can be a process template for certain process variants. Second, it can deal
with the process reuse issue. Hence, our approach can be a robust decision making tool
for convenient process modeling by novice designers.

Acknowledgment. This work was supported by a Korea Research Foundation Grant
funded by the Korean Government (MOEHRD) and the Regional Research Universities
Program/Research Center for Logistic Information Technology.

REFERENCES

[1] A. Hallerbach, T. Bauer and M. Reichert, Managing process variants in the process lifecycle, Proc.
of the 10th International Conference on Enterprise Information Systems, pp.154-161, 2008.

[2] C. Li, M. Reichert and A. Wombacher, Discovering reference model by mining process variants
using a heuristic approach, Proc. of BPM the 7th International Conference, LNCS, Ulm, Germany,
vol.5701, pp.344-362, 2009.

[3] J. M. Kuster, J. Koehler and K. Ryndina, Improving business process models with reference models
in business-driven development, BPM Workshops, LNCS, vol.4103, pp.35-44, 2006.

[4] O. Holschke, P. Gelpke, P. Offermann and C. Schropfer, Business process improvement by applying
reference process models in SOA – A scenario-based analysis, Multikonferenz Wirtschaftsinformatik,
2008.

[5] P. Fettke, P. Loos and J. Zwicker, Business process reference models: Survey and classification, BPM
Workshops, LNCS, vol.3812, pp.469-483, 2006.

[6] D. Hong, H. Ling and Y. Li, A novel theory of business process virtualization on E-commerce, ICIC
Express Letters, vol.4, no.2, pp.381-388, 2010.

[7] X. Wang, K. Zhang, D. Yang and X. Zhang, Simulation research on resource deployment of logistics
distribution system under mobile business environment, ICIC Express Letters, vol.4, no.2, pp.435-
440, 2010.

[8] J. Bae, T. Lee, H. Bae and K. Lee, Process reference model generation by using graph edit distance,
Korean Institute Industrial Engineering Conference, Korean, 2010.

[9] W. M. P. van der Aalst, Workflow verification: Finding control-flow errors using petri-net-based
techniques, Business Process Management, LNCS, no.1806, pp.161-183, 2000.

[10] A. L. Alves de Medeiros, Genetic Process Mining, Ph.D. Thesis, Eindhoven Technical University,
2006.

GENERATING VALID REFERENCE BP MODEL USING GA 1477

[11] C. K. Chang, M. J. Christensen and T. Zhang, Genetic algorithms for project management, Annals
of Software Engineering, vol.11, pp.107-139, 2001.

[12] M. Gen, R. Cheng and L. Lin, Network Models and Optimization Multiobjective Genetic Algorithm
Approach, Springer-Verlag, London, 2008.

[13] D. E. Goldberg, Genetic Algorithm in Search, Optimization, and Machine Learning, Addison-Wesley
Publishing Company, 1989.

[14] R. L. Wang, A genetic algorithm for subset sum problem, Neurocomputing, vol.57, pp.463-468, 2004.
[15] Z. Q. Chen, R. Wang and K. Okazaki, An efficient genetic algorithm based approach for the minimum

graph bisection problem, International Journal of Computer Science and Network Security, vol.8,
no.6, pp.118-124, 2008.

[16] D. Kim, N. Lee, S. Kan, M. Cho and M. Kim, Business process version management based on
process change patterns, International Journal of Innovative Computing, Information and Control,
vol.6, no.2, pp.567-575, 2010.

[17] G. Zhou, Y. He and P. Yu, Modelling workflow patterns based on P/T nets, International Journal
of Innovative Computing, Information and Control, vol.1, no.4, pp.673-684, 2005.

[18] J. Jung, J. Bae and L. Liu, Hierarchical clustering of business process models, International Journal
of Innovative Computing, Information and Control, vol.5, no.12(A), pp.4501-4511, 2009.

[19] M. Kim and D. Kim, Fault-tolerant process debugger for business process design, International
Journal of Innovative Computing, Information and Control, vol.6, no.4, pp.1679-1687, 2010.

[20] I. Levenshtein, Binary code capable of correcting deletions, insertions and reversal, Cybernetics and
Control Theory, vol.10, no.8, pp.707-710, 1966.

[21] B. N. Yahya, H. Bae and J. Bae, Process design selection using proximity score measurement, BPM
2009 Workshop, LNBIP, Germany, vol.43, pp.330-341, 2009.

[22] R. Sedgewick, Algorithm in Java, Part 5 Graph Algorithm, Addison-Wesley, Pearson Education,
2004.

