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ABSTRACT. In this paper, a novel and automatic approach for skin tumor segmentation
is presented. Tumors images with a dermoscope are usually affected by hairs, low con-
trast, specular reflections, shadows due to uneven illumination, etc, making the segmenta-
tion step extremely difficult. The proposed technique, mainly based on region-based active
contour algorithm extended to multiple region detection, is performed in the CIECAMO02
based uniform color space to achieve an adaptation to human perception. It also avoids
the limitations introduced by the conventional active contour algorithms: level set initial-
ization step, fized reqularization parameters, and overlapping of the contours in the pres-
ence of multiple objects. The improved region-based active contour technique automati-
cally initializes the level set curves by a blob technique, determines the required param-
eters for convergence and utilizes a conditional function to avoid overlapping contours.
In this new algorithm, dermoscopic images are preprocessed in order to correct specu-
lar reflection, improve contrast and remove hairs with techniques based on homomorphic
filtering, optimal contrast adjustment and exemplar-based inpainting, respectively. To
validate the segmentation results obtained, comparisons with three state-of-the-art seg-
mentation algorithms have been performed. Ezperimental results on 170 images gave an
average segmentation error of 4.10 & 2.42. In terms of visual perception, the integration
of a uniform color space makes the algorithm closer to experts than the other state-of-the-
art methods. The preprocessing steps included and the improved segmentation algorithm
make the technique useful in practical applications.

Keywords: Skin tumor segmentation, Image enhancement, CIECAMO02 color appear-
ance model, Visual perception, Region-based active contour model

1. Introduction. Malignant melanoma (MM) [1] is one of the rare skin cancers with
an increasing incidence rate. In the United States alone, the number of new cases and
deaths associated with MM in 2010 is estimated to be 68,130 and 8,700, respectively [2].
In recent years, digital dermoscopy has revealed a new dimension of clinical morphology
in pigmented skin tumors, becoming one of the most cost-effective non-invasive technique
for early detection of skin cancer [3]. In dermoscopy, the diagnosis of skin tumors is
frequently performed according to the ABCD rule (A: asymmetry, B: border irregularity,

1837



1838 Q. ABBAS, M. E. CELEBI AND I. F. GARCTA

C': color variegation and D: diameter) [4]. In order to facilitate early detection, numerous
computerized methods have been developed [5]. In all these methods, skin tumor border
segmentation [6] is a key step.

These methods are mainly based on thresholding, clustering and region growing [6-8].
These algorithms perform well for single tumors with clear borders. In all these tech-
niques, they used color information in the non-uniform YC,C, and HSV color spaces. In
the literature, several algorithms based on active contour (AC) models have also been
proposed to segment single tumor or multi-tumor regions [9-11]. In these methods, the
curve is defined by partial differential equations (PDFEs). The PDFs are controlled by an
objective function. These active contour models are semi-automatic because of the selec-
tion of regularization parameters. The effectiveness of DGVF [9] and NBGP [10] methods
degrades in the case of specular reflection or insufficient contrast, overlapping contours.
In addition, contour re-initialization and the selection of regularization parameters are
difficult. In [11], a region-based method was used based on a region-based active contour
(RAC) model [12] to address the problems associated with DGVF and NBGP.

On the other hand, in the literature about skin tumors-like region segmentation, the
researchers have mainly considered a single level set (LS) initialization method to segment
multiple regions. However, single initialization has several drawbacks: (1) computational
inefficiency, (2) no guarantee of convergence and (3) difficult to get region-of-interest
(ROI) objects. Overlapping of contours is also an issue that needs to be addressed in
multi-region segmentation. Moreover, contrast enhancement has not been considered as
a preprocessing step in the literature. Color information is often discarded. Nevertheless,
there are a few approaches that use color information, albeit in non-uniform color spaces,
mainly RGB or HSV.

To overcome these limitations, an improved perceptually-oriented region-based active
contour (IRAC) method with effective image enhancement techniques is presented. In this
IRAC segmentation approach, a CIECAMO02 color appearance model based uniform color
space JCh is employed for the detection of the tumor region borders. Also, the homomor-
phic filter (HF) is utilized to reduce the specular reflection and a contrast improvement
technique is applied to facilitate the segmentation process. In order to reduce the influ-
ence of hairs on segmentation, hair detection and exemplar-based inpainting techniques
are utilized. With the proposed IRAC model provides a guarantee of convergence, com-
putational efficiency, while avoiding overlapping contours by means of a blob detection
method. In fact, these blobs are used to initialize multiple level set curves instead of single
contour initialization adopted by previous studies. Finally, to obtain smooth and refined
tumor regions, in contrast to conventional RAC algorithms that manually select radius
and lambda, the proposed TRAC method automatically determines these parameters.

The remainder of this paper is organized as follows. Section 2 describes the color
space transform step, which converts RGB image to CIECAMO02 color appearance model.
In section 3, the preprocessing step that enhances the dermoscopy images is described
in detail. Multi-region segmentation model is then applied to tumor segmentation in
Section 4. In Section 5, we present the experimental results. Finally, conclusions are
given in Section 6.

2. Color Space Transformation. This new segmentation algorithm is intended to
make the early diagnosis of skin cancer easier for the dermatologists. Accordingly, the
algorithm has to emulate the perception of the medical expert in order to isolate from the
image only the area of unhealthy skin. Therefore, the chosen color space must be a uni-
form. When dealing with almost uniform color spaces, CIEL*a*b* is the most widely used,
especially when combined with the advanced distance metrics CIE9/ and CIEDE2000.



A NOVEL PERCEPTUALLY-ORIENTED APPROACH 1839

This color system, accounts for chromatic adaptation when the illuminant of the scene is
near day-light, the background is medium gray and the surround levels of luminance are
moderate. However, it does not account for changes in background or luminance, can not
predict brightness and colorfulness and give erroneous results when the illuminant of the
scene is largely different from day-light.

The illumination changes the contrast of the scene, making some borders to disappear,
especially in dark areas of the image [13]. Therefore, it is necessary to predict the per-
ceived appearance of the dark tumor in a bright surrounding. Moreover, as stated in the
literature, among the existing color spaces with their corresponding color formula, it is
preferable to select a color appearance based uniform color space which is capable of con-
sidering viewing conditions [14]. A color appearance model, CAM, provides us the scene
[15] as we would actually see it. This color appearance model [15] defines six dimensions
of color appearance: brightness Q, lightness J, colorfulness M, chroma C, saturation s and
hue h. In this space, first tristimulus values for both the sample and white are transformed
to spectrally-sharpened cone responses as follows:

B
v (1)
7Z
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|

(5]

where Mo args 1s defined as:

0.7328 0.4296 —0.1624 1.0961 —0.2789 0.1827
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0.0030 0.0136 0.9834 —0.0096 —0.0057 1.0153
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For chromatic adaptation transform the one used is the von Kries as given in Equations
(3) and (4). Additionally, a variable D is used to specify the degree of adaptation. D
is set to 1.0 for complete adaptation or discounting the illuminant (as is typically the
case for reflecting materials). D is set to 0.0 for no adaptation, whereas intermediate
values correspond to different degrees of intermediate chromatic adaptation and can be
computed as follows:

R.=[Yw (D/Rw)+ (1 —D)|R
G.=[Yw (D/Gw)+ (1 - D)|G (3)
B, = [Yw (D/Bw) +(1-D)| B

where R, GG, and B, are the RGB values of the reference white.
D=FI[1—-(1/3.6) x exp((—La —42)/92)] (4)

Before obtaining the appearance correlates, some factors must be calculated as shown in
Equation (5), including the background induction factor, n, the background and chromatic
brightness induction factors, N, and N, luminance level adaptation factor Fj, and the
base exponential nonlinearity, z.

k=1/(5L4+1)

Fp = 0.2k* (5L4) + 0.1 (1 — k%) (5L 4)"?

n=Y,/Y, (5)
Ny, = Noy = 0.725 (1/n)°

7z =1.48 +n'/?
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In the post-adaptation step, the sample and white values are transformed from the
sharpened cone responses to the Hunt-Pointer-Estevez cone responses as follows:

[ R’ 1 R¢c 1 [ 0.38971 0.68898 —0.07868 1
G' | = MyMgZhro, | Be My = | —0.22981 1.18340 0.004641 (6)
{ B’ J { Re J { 0.00 0.00 1.0 J

A non-linear response compression is then performed as follows:
R! = (400 (FLR'/100)* /((FLR'/100)"** 4+ 27.13)) + 0.1
G = 400 (FL,G'/100)°* /((FL,G'/100)*** 4 27.13) + 0.1 (7)
B!, = 400 (F,B'/100)*"* /((F,B'/100)*** + 27.13) 4+ 0.1
Finally, opponent responses (red-green and yellow-blue) can be obtained by

A =[2R. + G + (1/20) B! — 0.305] Ny,
a=R —12G"/11+ B/ /11 (8)
b= (1/9) (R, + G, — 2B;)

Hue angle, h, is calculated from a and b:

h = tan ' (b/a) 9)
Lightness, .J, is obtained from the achromatic signals of the stimulus, A, and white, A,:
J =100 (A/Aw)“ (10)

Brightness, @), is calculated from .J and A,:
Q = (4/c) (J/100)"° (Aw + 4) F>-® (11)

Chroma, (', is obtained by:

o — i fcos (h(r/180) + 2) + 3.]
t = (50000/13) NoNoe (a® + 12)/2 /(R + G, + (21/20) B!) (12)
C' =19 (.J/100)™ (1.64 — 0.297)"™
Colorfulness, M, is calculated using:
M = CF})* (13)

Finally, saturation, s, is computed using:

s = 100/M/Q (14)

CIECAMO02 does not explicitly construct a color space [16,17]. However, CIECAM02
lightness, chroma, and hue correlates (J,C,h) can be used to build a color space by
considering them as cylindrical coordinates in the same way as CIEL*a*b* color space
with L*, C¥*, and hg,. But we can use an advanced metric very similar to CIEDE2000 [18]
in CIEL*a*b* to correct the remaining non-uniformity, which is given as follows:

AEgp—opr = [(AT/k;S,)* + (AC/(keSe))? + (AH/(kuSu))?]

S; =054 (J/100)*;  Se=1+0.02C; Sy =1+0.01C (15)
kJ == kc = kH =1

1/2

The JCh uniform color space is the color system adopted by the proposed method
because of its uniformity and adaptation to human perception. This color space could be
used for various tasks including image enhancement, feature extraction [19], segmentation
and digital watermarking [20].
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3. Preprocessing. A preprocessing step is crucial to facilitate the segmentation process.
For assessing the illumination correction problem, the proposed algorithm performs homo-
morphic filtering (HF) in both, spatial and frequency domains, by processing the .J plane
of the JCh color space followed by a contrast adjustment in this color space. There are
numerous image enhancement techniques such as Shearlet transform [21], and minimum
mean brightness error dynamic histogram equalization (MMBEDHE) [22]. However, the
HF method is another nonlinear effective image enhancement technique due to processing
in frequency domain. It is also computational efficient and easy to implement.

3.1. Specular reflection adjustment. HF [23] is a generalized technique for nonlinear
image enhancement and correction in both RGB and grayscale images. It concurrently
normalizes the brightness of a dermoscopic image. In this study, the HF technique is
adapted to human perception by adopting JCh color space and choosing J component.
The method is briefly described here, and the interested reader should refer to [11] for
more detailed information.

Consider the J component denoted as s;(z,y), which can be divided as the product of
intensity illumination i(x, y) and spatial-distribution reflectance r(z,y), i.e.,

si(z,y) =i(z,y) X r(zr,y) (16)

For illumination reduction by Fourier transform, we must model an image in an additive
manner rather than a multiplicative one. Therefore, a logarithmic transform is applied to
the s;(x,y) image to separate the illumination and reflectance components. By perform-
ing 2-D Fast Fourier transform (FFT) on the logarithmic transformed image S;(z,y), a
Butterworth high-pass filter can be applied to amplify high frequency information. Then,
after calculating the inverse Fourier transform and exponentiating, an enhanced image is
obtained. This enhanced .J image is used to replace the original one in the CIECAMO02
model. The resulting corrected image with its three components (Je,n, C' and h) is de-
noted by Icap(x,y). The result of this step is illustrated in Figure 1. In this figure, final
Ican(z,y) is presented in Figure 1(e).

3.2. Contrast enhancement. As described in Section 3.1, illumination correction is
very important to achieve an effective enhancement solution but it is not enough for
contrast improvement. An optimal solution is proposed for contrast enhancement that is
adapted to human perception. Note that the CIECAMO02 color appearance model provides
a more reliable separation between luminance and chrominance information than other
color models.

Firstly we use C' and h components of Icay (z,y) of CIECAMO02 image while keeping .J
component constant. This is due to the fact that J component represents the luminance
of image that has been corrected as explained in Section 3.1.

Let Coam(z,y) and hean(x,y) denote the two selected components from Ican(z,y)
in (z,y) coordinate space. In order to determine a reliable color distribution in the two
components, we have selected a method based on the standard deviation of these images.
In contrast, the deviation method considers the probability of each color in the space and
fully describes the color distribution in image.

The estimate of standard deviations o, and o, within Coap(x,y) and hean(z,y) vec-
tors we apply Equations (17) and (18):

1/2
o, = ((1/n —1) x> (Cean(@,y) — Coanla, y))2> (17)

LM
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1/2
op = ((1/” — 1) x Y (hoam(w,y) - BCAM(SL‘,?J)V) (18)
LM

where, n, L and M represent the total number of pixels and the height and width of
the image respectively. Ceanr(z,y) and hoap(x,y) are the mean of Coap(z,y) and
heam (z,y) vectors. Next, updated components of Coan(x,y) and heoan(x,y) vectors,
denoted by C{ 4y (z,y) and hi 4, (%, y) are obtained as follows:

Coan(,y) = Ceam(@,y) + (p—0c) x (Ic — Coan(z,y)) (19)
can(@,y) = hean(2,y) + (W — on) x (he — heam(z,y)) (20)
where p = 0.00136 and w = —0.7036 are constants whose values were determined empiri-

cally. The constant parameters I~ and he were determined by calculating the minimum
and maximum intensity variations of the C' component of the CIECAMO02 color appear-
ance model, respectively. The selection of C' is due to the better visualization of the
texture information in that plane. The estimated contrast of Icap(x,y) is updated by
Ctan(z,y) and hi 4, (z,y) components. After this homogeneity adjustment, the final
contrast enhanced image N¢an(2,y) is obtained by:

Neav(z,y) = Toam (@, Y) gen — (Jeant (2, Y)min) / (Joam (T, Y)max — Joam (2, Y)min)) (21)

where Joapy (2, Y)min and Joan (T, Y)max represent the minimum and maximum intensity
values on the .J plane of the Icap(x,y) image.

b. 1l d.

Ficure 1. Illumination correction, contrast enhancement and hair re-
moval: (a) original input image, (b) J component of the input image in
the CIECAMO2 color space, (c) illumination corrected image of the J com-
ponent, (d) RGB illumination corrected image, (e) contrast enhancement
output and hair removal result

3.3. Hair removal. Before performing segmentation, hairs in the tumor image must be
removed without affecting the texture part of the tumor. In the literature, there are
several techniques developed to remove hairs. However, many of them often leave behind
undesirable blurring, disturb the texture of the tumor, and result in color bleeding. In
the proposed algorithm we have employed the technique described in [11], but adapted
to human perception thanks to the use of the JCh color space. The method first detects
the lines in the image by using derivative of Gaussian, and then removes these lines using
exemplar-based image inpainting technique. As illustrated in Figure 1(f), the hair pixels
are effectively removed by this algorithm.
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4. Skin Tumor Segmentation Method. Skin tumor images often contain multiple
tumors. If a traditional algorithm tries to identify the edges of the tumors, it will most
likely fail because the algorithm will look for a single contour to describe a group of
pigmented tumors. Therefore, an effective multi-tumor segmentation algorithm is needed.
In the present approach, we have used an improved version of the well known region-
based active contour method using blob detection technique. However, the blob detection
technique has the drawback of giving many false regions such as skin lines or regions inside
the tumors. This method also requires an initial threshold value for rough segmentation.
In this study, a minimum-error based thresholding procedure has been used [24] and
circularity constraints have been imposed [25] to avoid these problems.

4.1. Initial segmentation. A threshold is determined automatically by using the minim-
um-error [24] technique applied to Noay(x,y) image expressed in the approximately uni-
form JCh color space. This threshold value will be useful to obtain a rough segmentation
of the tumor image. After that the blob detection technique is used. As it was already
mentioned, the basic aim of this step is the initialization of multiple LS curves close to
multi-region tumors. To select the largest circular blobs, the maximum area in pixels and
estimated circularity descriptors are measured. In this manner, foreign objects such as
skin lines or tiny dermoscopy gel artifacts are discarded. For quantifying circularity, we
used the method developed by Haralick [25], which is based on mean and variance of radial
distances. As the boundaries detected by this blob extraction method are not smooth, so
a RAC technique is employed with the detected blobs initializing the LS curves.

4.2. Segmentation refinement by IRAC model. The RAC [11,12] model is used to
segment multiple regions, simultaneously with some improvements. The advantage of this
region-based technique when compared to edge-based methods is that it can segment mul-
tiple areas with “local energies” when “global energies” fail. In this study, the localization
method employed is the Chan-Vese (CV) energy model for LS curves in the JCh color
space. This C'V approach for LS forms the snake curve through an energy minimization
method, which has been widely used in several medical applications such as in brain MRI
[26]. In the basic RAC model, Lankton and Tannenbaum [12] defined the energy function
in terms of a generic force function as:

mwzjkww/mnmfmw¢@MWx (22)

Qx Qy

where E(¢) represents the energy function for the level set ¢, i.e. C' = {¢(z) = 0}. The
generic force function F' allows the curve to move freely. The Dirac delta function is
denoted by d¢(x) while B(x,y) function denotes local mask regions returning 1 when the
point y is within a ball of radius r centered at x and 0 otherwise.

In this RAC method, the value of r is selected manually. By choosing r parameter,
the smoothness condition inside and outside the contour is enforced. In the proposed
IRAC method, the value of r is determined by using the scale of the tumors region
(r = (Area(b))/100). The smoothed version of Equation (22) is given by:

ﬂ@z/ﬂmm/B@wFWw¢@MWx

Qx Qy

42 [ 80() [Vo(a) | do

Qx
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And the derivative of Equation (23) is calculated as:

00)/0t(x) =5(6()) [ Bl.5). s F(1(0). o))y

+ A6 (6(2))div(Vo(z)/ |V (x)|)

where )\ is a regularization term used for ensuring the smoothness of the curves. In
previous RAC model, it must be defined and if fixed this could lead to an erroneous
segmentation result. Moreover, each image would presumably have a different value of
A. In IRAC; to avoid this problem of local minima of the energy function E(¢), A is
determined automatically in a similar way to [12], i.e., by obtaining local interior and
exterior points using Equations (28) and (29). Thus, to minimize the energy function
E(¢) in terms of A, a linear combination is defined as:

Ay = Ay + (1 — N, (25)

where A\ = (1 — \) and A = (1 — A\%) ensure that the segmentation solution can only
operate on the boundaries. Next, the minimization Equation (25) is defined based on the
mean interior (u,) and exterior points (v,) as:

A= <¢(x).i2:1:ui,> / <z:;u — 1+ e) — <z:;v)/ (z:;v)Q —1+¢€| (26)

Consequently, the algorithm calculates A, the smoothing parameter, based on a level set
¢(z) points of the energy function E(¢). In this segmentation model, the energy function
is modeled by C'V energy, which is defined as:

awwwz/iw@xﬂw—mz+a—ﬂamxﬂw—vfw (27)

(24)

where u and v are the local interior and exterior points, respectively and H¢(y) is the
Heaviside function. The mean interior and exterior points of (u,v) denoted by (u,v)
are calculated by the following equations:

%2/3WWHM@J@@[/M%wHﬂWw (28)

Qy

mz/B@wu—waﬂwmm/mawu—waw (20)

To improve efficiency, we have also computed values in a narrow band around the
zero level set. For a detailed numerical implementation of this CV model, the interested
reader is referred to [11,12]. Moreover, in order to avoid overlapping contours issue, we
have integrated a conditional function derived from the initial blobs. For example, two LS
curves merge in a single LS curve if there only one blob detected in that region. Similarly,
if an LS curve is going to split into two LS curves if there are two blobs detected in that
region. As a result, the CF condition saves the overlapping contour problem, which can
be integrated in many AC-based segmentation techniques.

5. Results. The proposed multi-tumor segmentation method was tested on a set of 175
dermoscopic images. This dataset consists of 80 benign (B) and 190 malignant melanoma
(MM) tumors. Specular reflection, low contrast, and hair artifacts were generally present
in these images. Therefore, the algorithm begins enhancing the images using the proposed
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preprocessing steps. In order to obtain a ground truth for each of the images in the dataset,
we requested an experienced dermatologist to manually draw the tumor borders on each
of the enhanced images. The results of the proposed IRAC method were compared to
three state-of-the-art active contour (AC) models: C'V, Geodesic Active Contours (GAC)
and traditional RAC. The experiments were performed on a 2.3GHz dual-core 64-bit
AMD processor with 4GB DDR2 RAM. The algorithms were implemented in MATLAB
7.6.0.324 ® (The Mathworks, Natick, MA).
An error measure was used to quantify the quality of segmentation:

ER; = (A4;(GT) @ A;(AS))/(A;(GT) + A;(AS)) x 100 (30)

where the area determined from the ground truth is denoted by A;(GT) and the area
segmented by a computerized method is represented by A4;(AS) for each of the outlines.
The value of i depends upon number of tumors in an image (t,). In order to calculate
the total error, we used mean and standard deviation given by:

tn
w=1/t.y ER (31)
i=1

‘ 1/2
(S ) fo ) "

The TRAC multi-tumor segmentation results from three sample images are given in
Figure 2. The red contour is drawn manually from the ground truth, while the blue one is
obtained from the IRAC segmentation model. The proposed method obtains a significant
improvement in mean and standard deviation error. In each figure of Figure 2, the error
(u £ o) of the IRAC method are 3.24 +1.23, 4.20 £+ 2.10 and 1.24 4+ 0.08 when compared
with the ground truth, respectively. These results demonstrate that the IRAC model is
an effective segmentation method that mimics human visual perception.

In order to compare the IRAC segmentation method with other multi-region segmen-
tation algorithms, some parameter values should be defined. Elasticity, rigidity, viscosity,
regularization, and time step parameters were set as « = 0.5, § = 0.1, v = 1.0 and
A = 1.5 and ¢t = 0.1 respectively. After converting the RGB image to a luminance image,
a minimum-error thresholding method was performed for the initialization of the single
contour methods. For multi LS curve initialization method, the blob detection method
was performed on the J component of the JCh color space. The number of iterations for
multi LS curve initialization was set to 160, while the same parameter was set to 350 in
the single contour approach.

FIGURE 2. Multi-tumor segmentation results, where contours detected by
IRAC (blue outline), manual segmentation by expert (red outline)

The comparison of IRAC with CV, GAC and RAC models are shown in Figure 3 on
an acral melanoma. In this type of tumor, the border is highly irregular and fuzzy and
therefore very difficult to determine. However, the TRAC segmentation model effectively
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Ficure 3. Comparison of segmentation results after illumination correc-

tion, and contrast enhancement in case of acral melanomas by (a) CV (b)
GAC (¢) RAC, (d) IRAC models

TABLE 1. Segmentation performance comparisons in terms of error and

CPU time
Single contour initialization Multi-contour initialization
Methods Ti(s) pto Ts(s) pto
cv 46.10 41+07.80 32.72 8.86+£4.79
GAC  39.26 12.20£06.06 25.19 7.23£3.56
RAC 17.45 9.21£04.93 12.10 6.4043.15
IRAC  17.89 8.38+£04.10 12.63 4.10+2.42

separates the tumor area from the healthy skin. Computational cost is an important
factor that determines the practical applicability of a segmentation algorithm. Mean and
standard deviation errors and execution times for the four segmentation methods in terms
of single contour, and multi-contour initialization are summarized in Table 1. This table
demonstrates the advantage of multiple LS curves initialization technique, which has not
been addressed in the past to segment multiple objects. The IRAC method is significantly
faster when compared with CV and GAC, but similar to RAC in both cases. Despite the
fact that we have added extra steps to calculate the regularization parameters and impose
conditional function, the computational requirements of IRAC is approximately equal to
those of RAC. Consequently, we can conclude that IRAC converges faster due to the
better selection of the lambda parameter.

6. Conclusions. In this paper, a novel approach for skin tumor segmentation has been
presented. The algorithm is designed to match human perception due to the use of the
approximately uniform color space JCh based on the CIECAMO02 color appearance model.
The proposed segmentation method was tested on a set of 175 dermoscopic skin cancer
images consist of benign: 80 and malignant melanoma: 190 tumors. The experiments,
based on the ground truth contributed by an expert physician, indicate that our method
provides an effective solution for the segmentation of fuzzy multi-tumor in dermoscopy
images. Although the method has been tested on skin tumor images, it could be applied
to any kind of image that contains blob-like regions, because it is not application-specific.
In the future work, surrounding condition of the images will be investigated to determine
the best parameters for the CIECAMO02 color model. We will also compare the obtained
results with the ones given with the same technique in CIEL*a*b* approximately uniform
color space.
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