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Abstract. In this paper, a new method, based on artificial neural networks (ANN),
has been introduced for recognizing pathogenic antibodies in Systemic Lupus Erythmato-
sus (SLE). dsDNA binding antibodies have been implicated in the pathogenesis of this
autoimmune disease. In order to identify these dsDNA binding antibodies, the protein
sequences of 42 dsDNA binding and 608 non-dsDNA binding antibodies were extracted
from Kabat database and coded using five different physicochemical properties of their
amino acids. Coded antibodies were used as the training patterns for five parallel general
regression neural networks (GRNNs). Comparing the results obtained by the proposed
method with other published results shows the efficacy of proposed approach.
Keywords: Anti-dsDNA, Antibody, General regression neural network, Systemic lupus
erythematosus, Physicochemical properties

1. Introduction. Systemic Lupus Erythematosus (SLE or ‘lupus’) is a major autoim-
mune rheumatic disease where autoantibodies are frequently targeted against intracellular
antigens of the cell nucleus (double and single stranded DNA) [1]. Unfortunately, the cause
of lupus is unknown. The Lupus Foundation of America estimates that approximately one
million Americans have SLE [2]. Lupus can occur at any age and in either sex, although
it is more common in women of childbearing ages [3]. SLE can affect almost any organ
or system of the body. In most cases, the disease affects the kidneys, lungs and cen-
tral nervous system. Infection, lupus flares and cardiovascular disease are cause of most
deaths [1,4]. In general, people suffering from SLE have periods of illness and wellness
with varying signs. Some have just a few signs of the disease while others have more. This
variation in clinical characteristics has made diagnosis of SLE very challenging. According
to the result of an experiment on more than five million U.S. Armed Forces personnel, in
115 of the 130 patients with SLE (88 percent), at least one SLE autoantibody tested was
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present 3.3 years before the diagnosis [5]. This fact suggests that SLE can be predicted
several years before the diagnosis.
In patients with SLE, a wide variety of antibodies against nuclear antigens can be found,

including antibodies to nucleic acids, histones and non-histone nuclear proteins. However,
our interest is in anti-dsDNA. These antibodies were identified, for the first time, nearly
forty years ago in the serum of patients with SLE [6]. Based on similar findings, many
researchers have concluded that there is a close relationship between disease activity and
levels of anti-dsDNA antibodies. In other words, dsDNA binding antibodies have been
implicated in the pathogenesis of this autoimmune disease [7].
Anti-dsDNA antibodies seem highly likely to cause tissue damage in patients with

SLE and they are present in the serum of patients several years before their diagnosis.
Therefore, their identification and analysis may be useful in the identification of patients
who would benefit from early diagnosis, as well as patients who do not require further
evaluation. In addition, a powerful method of their analysis may lead us to the design of
new drugs that interfere with antibody-DNA interactions, which might have therapeutic
applications.
Recently, bioinformatics, including machine learning and statistical techniques, have

been successfully applied to various problems about protein structures [8-10], protein fam-
ilies’ classification [11], predictions of secondary structure [12], tertiary structure [13], rela-
tive solvent accessibility [14] and number of contacts between amino acids [15]. Moreover,
techniques using computer-based analysis of autoantibody have received some attention
[16-19]. Among those, artificial neural networks (ANNs) have received special attention
due to their interesting features including ability to deal with ill-defined and noisy real
signals and providing a robust and accurate pattern recognition scheme [20-25,28].
These new approaches, by analyzing a huge number of data, have tried to obtain a

better grasp of the DNA-binding structures and utilize them in an early prediction of
autoimmune diseases such as SLE. Although these kinds of works have been able to
explain many biological phenomenons leading to the development of mathematical models
for prediction and reduction in the cost of experimental research, there is still no accurate
mathematical method for identifying dsDNA binding antibodies [26]. We can trace the
roots of this difficulty to such problems as the long amino acid sequence of antibodies, lack
of suitable mathematical tools, and more importantly the vast diversity of antibodies.
In this paper, we extend the computer-assisted autoantibody analysis methods by

proposing a new approach with the capability of identifying dsDNA binding antibodies.
The proposed identification system is constructed using the General Regression Neural
Networks (GRNNs) [27]. The results are compared with analysis using the Multi Layer
Perceptron (MLP) neural network and Radial Basis Function (RBF) neural network,
instead of GRNN.
In the proposed method, we first encode the amino acid sequence of antibodies using

physiochemical properties of amino acids. Next, to obtain better accuracy, each antibody
is coded into five discrete signals using five different physicochemical properties of amino
acids. Finally, these five signals are fed to five parallel GRNNs. In order to better identify
the role of different parts of the anti-dsDNA antibodies, we have investigated the roles
of light and heavy chains and their bindings to DNA. The proposed method not only
provides an efficient and accurate method to identify the dsDNA binding to antibodies,
but also gives insight to the importance of different physiochemical properties in regard
to the identification process. This will be shown in the simulation section.
The remainder of this paper is organized as follows. Section 2 includes a brief overview

of the coding scheme, which is used in the identification process. Section 3 presents the
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proposed method. In Section 4, we compare our results with similar neural networks. The
paper ends with conclusions in Section 5.

2. Coding. An antibody or immunoglobulin is a large Y-shaped protein used by the
immune system to identify and neutralize foreign objects like bacteria and viruses. Each
antibody recognizes a specific antigen unique to its target [29]. The basic Y-shaped body
of an antibody consists of four polypeptide chains; two identical heavy chains and two
identical light chains connected by disulfide bonds [30,31]. Schematic of an antibody is
shown in Figure 1.

Figure 1. Structure of an antibody

Immunoglobulins are heavy plasma proteins, where proteins are complex molecules
assembled from amino acids. There are over 300 naturally occurring amino acids on
earth, but the number of different amino acids in proteins is only 20 [32-35]. From a one-
dimensional point of view, a protein sequence contains characters from these 20 amino
acids. In another words, a protein’s function depends on its specific amino acid sequence
called the primary sequence structure [36-38].

In order to use ANN to identify dsDNA binding antibodies the training set needs to
include a set of anti-dsDNA, as the positive set, and a set of other antibodies, as the
negative set. Our training data set was constructed using the Kabat database. Kabat
antibody sequence database contains primary structure and sequence information on an-
tibodies and other proteins of immunological interest [39]. There are 42 sequences of
anti-dsDNA (both heavy and light chains) available in the Kabat database, which we
used as positive patterns, and we took 608 of the other antibody sequences (both heavy
and light chains) as negative patterns. It is important while there are many antibodies
in Kabat database, only 42 anti-dsDNA were available.

An important issue in applying computer-based systems to identify dsDNA binding an-
tibodies is how to encode protein sequences; i.e., how to represent the protein sequences
as the input of a system. This is crucial to the success of neural network learning process
[40]. Several different methods have been used for encoding proteins. For example, Wu
[41] has utilized the 2-gram encoding method, which extracts various patterns of two con-
secutive amino acid residues in a protein sequence and counts the number of occurrences
of the extracted residue pairs. Huang [42] has employed another encoding technique using
six physiochemical properties (attributes) of amino acids, namely, composition, predicted
secondary structure, hydrophobicity, normalized Van Der Waals volume, polarity, and
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polarizability. It should be mentioned that we have used similar coding method as [40],
but with very different implementation scheme.
In this work, we have used five different physiochemical properties of amino acids for

encoding the protein sequence, resulting in five different coding for each one. The five
physiochemical properties namely, isoelectric pH, surface area, hydrophilicity, polarity
and the ability of reaction between the ion and the electron (EIIP) were chosen based on
the previous studies [43-47].
For simulation, a protein sequence was represented by normalizing the corresponding

numbers for each of its amino acids properties. For example, in coding using the first
property, the normalized number of isoelectric pH of the amino acid is used instead of
each amino acid in the protein sequence. Likewise, in coding using the second property,
the normalized number of the surface area of the amino acid is used instead of each amino
acid in the protein sequence. Finally, each antibody was transformed into five independent
arrays, which are used as the inputs of five parallel GRNNs. An antibody that is coded
into an isolated signal, using the hydrophilicity property, is shown in Figure 2. In this
figure the horizontal axis shows the number of the amino acids in the protein sequence
and the vertical axis shows the normalized amount of hydrophilicity for each amino acid.

Figure 2. A sample of encoded antibody

3. Simulation. For the simulation, five parallel GRNNs were used. For training and
testing of the proposed system, we have formed a database, from the KABAT database,
consisting of 42 anti-dsDNAs, as the positive data set, and 608 other antibodies, as the
negative data set.

3.1. Training phase. Figure 3 illustrates the general architecture of the system in train-
ing phase. The following steps were carried out for the training phase:
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1) A training set is formed by randomly choosing 33 positive and 99 negative samples
from our database.

2) In the first layer, each antibody is coded into five arrays, based on normalized quantities
of the amino acids, physiochemical properties, as illustrated in Figure 3.

3) In the second layer, each neural network is trained separately by one of the arrays
obtained from the previous layer so that +1 is assigned as the output for positive
samples and −1 is assigned as the output for negative samples.

Figure 3. Architecture of dsDNA binding antibodies identification system
in training phase

3.2. Testing phase. Architecture of dsDNA binding antibodies identification system in
testing phase is illustrated in Figure 4. The following steps are performed during the
testing phase:

1) A testing set is formed by randomly choosing 9 positive and 27 negative samples from
the part of our database that was not used in the training set.

2) Like the training phase, each antibody is coded into five discrete signals, based on
normalized quantities of the amino acids physiochemical properties, as illustrated in
Figure 4.

3) Signals from the previous step are fed separately to one of the five neural networks.
The output of each network will be a number between −1 and +1. By considering a
threshold number between −1 and +1, we can separate the anti-dsDNA’s from other
antibodies.

The final decision about an antibody is made by using the output of the third layer.
The third layer calculates the mean value of the outputs of each neural network in the
second layer, and the binding or not binding decision is made by considering a threshold
value in the output. The best value for the threshold, which was found by trial and error,
was −0.9.

4. Results. In order to assure the validity of the results, the training, and testing op-
erations of the proposed system were repeated 1000 times. The efficacy of the proposed
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Figure 4. Architecture of dsDNA binding antibodies identification system

method is evaluated by calculating the following three parameters: positive accuracy,
negative accuracy, and general accuracy.

Positive Accuracy =
TP

P
× 100 (1)

Negative Accuracy =
TN

N
× 100 (2)

General Accuracy =
N

N + P
× Negative Accuracy +

P

N + P
× Negative Accuracy (3)

where P is the number of positive members of the test set and TP is the number of
positive samples which are correctly found. N is the number of negative members of the
test set and TN is the number of negative samples that are recognized correctly.
The results obtained from each of the five neural networks, along with the associated

physiochemical properties of the antibodies, are shown in Table 1. The results obtained
from the proposed method are shown on the last line of this table for comparison. As
indicated in Table 1, the general accuracy is higher for the proposed method than the
other networks. Moreover, the general accuracy associated with surface area only, has
the highest number compared with the other physiochemical properties. This suggests
that the amino acids surface area of anti-dsDNA antibodies plays a significant role in
determining the binding to DNA.
Results of Table 1 also indicate higher numbers for negative accuracies. This is because

we have more negative (non anti-dsDNA) samples and in practice, we are more interested
in non anti-dsDNA cases.
For investigating the roles of light and heavy chains of anti-dsDNA antibodies in binding

to DNA, an experiment was set up. Heavy chain and light chain of antibodies were
extracted from the Kabat database. Next, we repeated the last simulation using heavy
and light chains. Table 2 contains these results.
As illustrated in Table 2, the heavy chain of anti-dsDNA is more important than the

light chain in binding to DNA. Our simulation results confirm the experimental studies
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Table 1. Accuracy of each GRNN and the proposed method

Positive Accuracy Negative Accuracy General Accuracy
Isoelectric Point 69.96 93.41 87.55
Surface Area 72.03 95.45 89.60
Hydrophilicity 73.23 89.80 85.66
Polarity 68.43 96.24 89.29
EIIP 73.87 90.78 86.55
Proposed Method 65.79 98.93 90.64

Table 2. Associated accuracies using heavy chain, light chain and the
proposed method

Positive Negative General
Accuracy Accuracy Accuracy

Heavy chain 63.51 98.98 90.11
Light chain 40.81 99.66 84.95

Proposed method
(using both heavy and light chains)

65.79 98.93 90.64

[48,49]. Results indicated in Table 2 show that the proposed method, using heavy and
light chains, provides a more accurate identification of anti-dsDNA than the heavy chain
or light chain alone. The reason is that by considering a more inclusive model, we are
including more information and therefore, we should expect better results.

For comparison purposes, we have generated the results presented in Table 2, by using
the 2-gram coding method described in [41]. These results are shown in Table 3. A
comparison of these two tables indicates the overall superiority of our proposed scheme.
We should mention that in this work negative accuracy (non-dsDNA binding antibodies)
is more important than positive accuracy. Furthermore, the available data corresponding
to the protein sequence for non-dsDNA binding antibodies are much more than their
counterparts. Using unequal number of data points for non-dsDNA and dsDNA during
training will introduce some bias, but as it was mentioned since the negative accuracy is
more important this action is justified. Simulations using equal number of data points for
non-dsDNA and dsDNA produced much lower negative and general accuracy.

Table 3. Result obtained using the 2-gram coding method

Positive Negative General
Accuracy Accuracy Accuracy

Heavy chain 71.78 89.82 85.31
Light chain 71.27 86.76 82.88

Proposed method
(using both heavy and light chains)

71.30 90.88 85.99

Next, we replaced the GRNN with the multi-layer perceptron (MLP), radial basis
function (RBF) and probabilistic neural networks (PNN), and constructed the proposed
parallel neural networks. Table 4 shows the structures used for each of these networks.
We should mention that the MLP structure reflects the one that generated the best result
for the data set.

The results of using these networks are included in Table 5. We should mention that
PNN results, due to its inability of handling many inputs, are not included in the table.
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Table 4. Structure of the neural networks

Input Layer Hidden Layer Output Layer
MLP 258 10 10
RBF 258 132 1
GRNN 258 132 1

Table 5. Result of the four different neural networks used in the proposed architecture

Positive Negative General Simulation
Accuracy Accuracy Accuracy Time (Sec)

GRNN 65.79 98.93 90.64 2432.94
MLP 60.58 99.15 89.51 6526.50
RBF 61.87 87.84 81.35 3350.53

As the results of Table 5 indicate, GRNN is the most suitable neural network to identify
dsDNA binding antibodies. Moreover, it takes less time to set up, train, and test as
compared with the other considered networks.
In [10], a similar method for recognizing dsDNA binding antibodies is proposed. The

method used in [10] is based on a single GRNN and only one physiochemical property is
applied. The overall accuracy reported in [10] is 81.83% which is significantly lower than
the final accuracy of proposed method in this research (90.64%).

5. Conclusions. In this paper, we have introduced a new method for identifying pathoge-
nic antibodies in SLE based on a parallel implementation of GRNN. For identification of
dsDNA binding antibodies, the protein sequence of 42 dsDNA binding and 608 non-
dsDNA binding antibodies were extracted from the KABAT database. Next, they were
coded using five different physiochemical properties of their amino acids. Coded antibod-
ies were used to train five different parallel structured GRNNs. The simulation results
indicate that the proposed method is more accurate in recognizing anti-dsDNA antibodies
than MLP, RBF, or PNN networks. They also suggest that incorporating the informa-
tion related to the amino acids surface structure of anti-dsDNA antibodies can improve
the prediction process. We are further investigating this finding and the results will be
reported in the near future. We have also investigated the roles of light and heavy chains
of anti-dsDNA antibodies in binding to DNA. Our simulation results confirmed the ex-
perimental findings that the heavy chain is more important than the light chain in regard
to binding to DNA.
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