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Abstract. In this paper, a new data-driven methodology for the Internal Model Control
controller tuning based on the Virtual Reference Feedback Tuning method is presented.
Taking advantage of the characteristics of the Internal Model Control structure, a robust-
ness test is presented and analyzed using only the available data taken in an open-loop
experiment. Examples are provided to show the application of this technique using a
non-linear plant.
Keywords: Data driven control, Internal model control, Polymerization reaction, Vir-
tual reference feedback tuning

1. Introduction. New control methodologies based only on experimental data have re-
cently appeared in literature. These methodologies skip the modeling step and find the
controller directly from one or more experiments on the plant. The Iterative Feedback
Tuning (IFT) [1, 2] computes an unbiased gradient of a performance index to improve
iteratively the tuning of the parameters of a reduced order discrete time controller. The
Correlation-based Tuning (CbT) [3] is a one-shot methodology that attempts to find the
values of a restricted order controller that minimizes the correlation between the closed-
loop error of the system (based in a desired closed-loop behavior) and the reference signal.
The Virtual Reference Feedback Tuning (VRFT) [4] translates the model reference con-
trol problem into an identification problem, being the controller the transfer function to
identify. The optimization used to find the parameters of the controllers is based on
some “virtual signals” computed from a batch of data taken directly from an open-loop
experiment. The Fictitious Reference Iterative Tuning (FRIT) is a method similar to the
VRFT, but, instead of an open-loop experiment, it deals with closed-loop data, taking
into account the original controller [5, 6, 7]. These methodologies are good examples of
this new trend in control that attempts to find the restricted order controller using an
experimental data based optimization problem.

One of the drawbacks of data-driven control is that the “classical” stability analysis
cannot be performed, since a model of the process is needed. Concepts of robustness
like “phase margin” and “gain margin” [8] are not directly applicable in data-driven
design. Recently, some results have appeared in the literature which include some stability
constraints in the optimization problem for the CbT [9]. This stability condition is based
on the infinity norm of an error function and depends on the frequency content and the
number of samples of the data. Added to the stability conditions, a way to measure
the robustness on data-driven controllers is desirable. One of the model-based control
methods that introduces the idea of robustness in the design of controllers is Internal
Model Control (IMC) [10, 11]. In this paper, the conjunction of the VRFT methodology
with the robustness condition of IMC is presented, unifying the best of two worlds.
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IMC is a very popular and well known method [12] that explicitly uses a model of
the plant as integral part of the control structure. The literature on IMC is broad and
many extensions to the original framework have been presented. For example, in [13], the
internal model of the controller is adaptively updated on-line with provable guarantee of
stability. One of the interesting characteristics of IMC control is that the controller can be
expressed as a PID-like controller if the model of the plant has certain characteristics. A
complete presentation of the relationship between IMC and PID control can be found in
[14] while in [15] IMC is applied to PI/PID controllers to study the interactions between
loops for a MIMO plant. In [16], neural networks are used to approximate both the model
of the plant as well as the controller.
IMC has been recognized as an appropriate paradigm to face a robust design. Therefore,

it is technically sound to adopt such framework and embed it in a data-driven design
approach. This is a novel feature and the main contribution of this paper is to show how
two conceptually opposite approaches can combine together in order to face a model-free
based robust design. An overview of the IMC and the IMC-VRFT method are presented
in Section 2. A robust stability test is introduced and a design procedure is proposed
in Sections 3 and 4. The methodology is tested in an academic example as well as in a
non-linear plant in Section 5. An analysis of the factors that affects the robust stability
test is presented in Section 6 to close the paper.

2. Using Data for the Internal Model Control Methodology.

2.1. Overview of the internal model control. The standard control structure is de-
picted in Figure 1. P (z) represents the Plant, while P̄ (z) is its model. Q(z) is the IMC
controller. In the absence of disturbances, the control acts as if it was open-loop control for
the reference tracking, but when a disturbance enters to the system, the same controller
acts as closed-loop for the disturbance rejection. If Q(z) is designed as Q(z) = P (z)−1f(z)
and P̄ (z) = P (z), the output becomes

y = f(z)r + (1− f(z))d (1)

It is clear that, to have perfect model matching control (in closed-loop, the desired
dynamics are given by f(z)), Q(z) must try to cancel the dynamics of the plant. This
characteristics leads to the well know property that an IMC system would be nominally
internally stable if Q(z) is stable, in case the model is equal to the plant. Finding a perfect
model is rarely achievable and if it were, Q(z) may not be possible to contain the inverse
of this model due to physical limitations or because the inverse of the plant may lead to
an unstable controller. In [11], a two-step design is proposed for this kind of controller:

1. Solve the nominal performance criterion given, for example, by

min
Q̄(z)

∥∥(1− P̄ (z)Q̄(z)
)
W (z)

∥∥
p

(2)

where W (z) is a filter chosen to give more importance in certain frequencies and
∥·∥p is a given norm that defines the performance criterion. The optimal solution

of this problem yields to a sensitivity function given by S∗(z) = 1 − P̄ (z)Q̄(z) and
the complementary sensitivity function given by M∗(z) = P̄ (z)Q̄(z), that is, the
response to a change in the reference is as if it were in open loop, while the response
to a disturbance is in closed-loop.

2. To introduce robustness considerations, the complementary sensitivity has to be
rolled off at high frequencies, therefore, it is necessary to add a low pass filter f(z)
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Figure 1. Standard structure of the IMC. P̄ (z) represents the plant model
andQ(z) is the IMC controller. The dashed line represents the virtual signal
for the VRFT procedure.

to the controller Q̄(z), to obtain the final controller Q(z) = Q̄(z)f(z). Suppose that
the multiplicative uncertainty is bounded by a frequency dependent function l̄m(ω),∣∣∣∣P (eȷω)− P̄ (eȷω)

P̄ (eȷω)

∣∣∣∣ ≤ l̄m(ω)

The closed-loop system is robustly stable if and only if

|f(eȷω)| < 1∣∣P̄ (eȷω)Q̄(eȷω)l̄m(ω)
∣∣ ∀ω (3)

IMC control has become very popular because, finding the controller and the conditions
for robust stability can be cast in a very simple form. As seen in (1), the Q(z) controller
just need to be set as the best approximation of the inverse of the model multiplied by a
filter that defines the desired behavior in closed-loop. In addition to this, under certain
conditions on the model of the plant, the final controller (the combination of Q(z) and
P̄ (z)) can be rewritten as a PID controller, allowing to use the IMC method directly to
tune this kind of controllers, which are widely used in industry [17].

Having a good model and an approximation of the uncertainty is vital for IMC. Since
the model is an integral part of the controller, in this paper the use of data-driven control is
proposed to jump from the data to the controller directly and to use the same information
to find an approximation of the uncertainty. The VRFT is the selected framework for
this task, given its flexibility to apply the “virtual signal” idea into different structures.

2.2. The IMC-VRFT. VRFT is a data driven, one shot control methodology that
translates a control problem into an identification problem using only data taken from
the plant itself [4, 18]. Starting from a batch of open-loop input-output data {u(t), y(t)},
a “virtual” signal is computed in such a way that, if the closed-loop system is feed with
this virtual signal and the controllers in the loop were the ideal controllers that would
achieve a predefined target transfer function, then the input and output signals of the
plant in closed-loop would be the same than the batch of open-loop data.

Several extension to the original VRFT have appeared in the literature. In [19], the
tuning of the feedback controller to match a defined sensitivity function is presented; in
[20], the two degrees of freedom controller case is tackled; in [21], a feedforward controller
is added to decouple the tuning of the reference tracking and the disturbance rejection
problem; in [22], some extension and stability test are presented for the single controller
case.

In the case of IMC, in Figure 1, the experimental setup is depicted. If the target
complementary sensitivity function is given by M(z), then the virtual reference r̄(t) is
computed as

r̄(t) = M−1(z)y(t) (4)
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From Figure 1, it can be found that the ideal controller would be given by

Q0(z) = M(z)P−1(z)

P̄0(z) = M(z)Q−1
0 (z)

(5)

where P0(z) is the ideal plant model that is derived from the ideal controller. This basic
idea leads to the following optimization problem which gives the set of optimal parameters
θ∗ (in a least square sense):

min
θ

J(θ) = min
θ

N∑
i=1

(u(i)−Q(z, θ)r̄(i))2 (6)

Once Q(z, θ∗) has been determined, it is easy to compute the approximation of the process
model of the plant from (5):

P̄ (z, θ∗) = M(z)Q−1(z, θ∗) (7)

It is important to note that P̄ (z, θ) is seen just as an “instrumental model”, that results
from the determination of the optimal controller. This instrumental model is used as part
of the control loop and, as presented in the next section, as the manner to describe a
“nominal plant”. In data-driven control, there is no nominal model of the plant, therefore,
to define a test to check if the controller is robustly stable, it is necessary to approximate
the plant by this “instrumental model”. The filter for robust operation presented in (3),
is already included in Q(z, θ∗) since the closed-loop behavior is expected to be M(z), but
it is not possible to know if condition (3) is fulfilled just by solving this optimization
problem. It is, therefore, desirable to have a data-based test to check if this condition
holds.

3. Robust Stability for the IMC-VRFT. When the closed-loop system is stable for
all perturbed plants about the nominal model up to the worst-case model uncertainty, it
is said that the system has robust stability [23]. In data-driven control, it is difficult to
find a controller that assures robust stability of the plant since not even a nominal model
is available (in [24], the stability problem is addressed by adding some constraints in the
frequency domain directly into the optimization problem). However, it is possible to use
(3) and the batch of input-output data, to test if the controller is robustly stabilizing
the plant, before the actual controller is implemented, by approximating the uncertainty
function l̄m(ω).
Using the results on Empirical Transfer Function Estimate (ETFE) from [25], given

an input-output set of N points of data {u(t), y(t)}N from a plant G(z) which transfer

function is suppose to be unknown, the estimate of the frequency response ĜN (eȷω) is
given by

ĜN (eȷω) =
YN(ω)

UN(ω)
(8)

where UN(ω) and YN(ω) are given by

UN(ω) =
1√
N

N∑
t=1

(
u(t)e−ȷωt

)
YN(ω) =

1√
N

N∑
t=1

(
y(t)e−ȷωt

) (9)

The essential points are given in ω = 2πk/N , k = 0, 1, . . . , N − 1. Other points are
obtained by interpolation. For example, in Figure 2, the comparison between the real
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Figure 2. Approximation of the transfer function using open-loop data

frequency response and the empirical approximation is presented using a set of 1024
point of a PRBS signal on the plant given in [4],

P (z) =
A(z)

B(z)

A(z) =0.2826z−3 + 0.5067z−4

B(z) =1− 1.418z−1 + 1.589z−2

− 1.316z−3 + 0.8864z−4

(10)

with sampling time ts = 0.05 s. As it can be seen the approximation is fairly good even
for the resonant peaks.

According to [25], the ETFE is an asymptotically unbiased estimate of the transfer
function at increasingly (with N) many frequencies, but the variance of the ETFE do not
decrease as N increases. That is why, in Figure 2, the ETFE seems to be “noisy”.

To tackle this problem, the use of filtering windows is recommended to smooth the
ETFE. Other techniques can be use to find the approximation of the transfer function.
For example, in [26], a time-frequency analysis is applied to estimate the dynamics of
an F-18 system research aircraft. The data is cleaned manually using a time-frequency
plot and then the Fourier transform is applied to find the transfer function. In [27,
28], an adaptive algorithm is proposed to use variable bandwidth windowing centered at
different frequencies in order to smooth the ETFE. The computational effort is bigger than
with standard ETFE, but the compromise between bias and variance is solved. In [29]
and references therein, neural networks are used to approximate the Geophysical Model
Function (the transfer function of a scatterometer) in order to use real data to determine
the wind vectors over the ocean. In the following, the ETFE is applied to approximate the
uncertainty function of the controlled system. How to compute the ETFE, is important,
but does not change the core idea of the algorithm, which is one of the main contribution
of the paper.

3.1. Approximation of l̄m(ω) and the robust stability test. If the function l̄m(ω)
can be approximated using the ETFE, it will be possible to perform a data-based test to
check Robust Stability using (3). In the case of the IMC-VRFT, the assumption on the
instrumental model P̄ (z) is that it is close enough to the real plant transfer function, in
order to left the “nominal” stability depending on Q(z): if Q(z) is stable, the “nominal”
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Figure 3. Graphical Interpretation of the robust stability test

closed-loop system is stable given that the plant is stable. If the controller has been
found using the proposed approach, the filter is already included in Q(z) and (3) can be
rewritten as ∣∣∣ ˆ̄P (eȷω, θ∗) Q̂ (eȷω, θ∗) l̄m(ω)

∣∣∣ ≤ 1 (11)

or, if a “security” constant α ≥ 0 is added to cope with possible errors when approximating
l̄m ∣∣∣ ˆ̄P (eȷω, θ∗) Q̂ (eȷω, θ∗) l̄m(ω)

∣∣∣ ≤ 1− α (12)

A graphical interpretation of (12) can be seen in Figure 3: if at some point the dashed
line falls below the solid line (which represents the complementary sensitivity function if
the instrumental model is close enough to the transfer function of the plant) it means one
is trying to extend the system beyond the limits uncertainty allows. At this point (12)
fails, and it is not possible to assure robust stability with controller Q(z, θ∗) and given
value of α.
To approximate (12), the frequency response of Q(z, θ∗) and P̄ (z, θ∗) can be calculated

using the results of the optimization. l̄m(ω) is approximated using the definition of the
multiplicative uncertainty and the ETFE approximation. The test can be stated as in
Table 1. If the test failed, the designer has two options: it is possible to increase the
number of parameters of the controller or to relax the closed-loop specification M(z).
Once the new controller is found, the test can be performed again to check if the robust
condition holds for the new setting.

4. Controller Design Procedure. Using the tuning method of Section 2 and the robust
test of Section 3, it is possible to derive a design procedure for the VRFT-IMC controller:

1. Collect a set of open-loop input-output data {u(t), y(t)}N .
2. Define a desired closed-loop transfer function M(z). It is a common practice to

define M(z) as first order and use the settling time as a design parameter. If it is
possible to determine the settling time of the system from the data (for example if
the experimental data contains a step change in the input), a rule of thumb is to set
the closed-loop settling time to be less than 10 times faster the open-loop settling
time. Also select the parameterization of Q(z, θ).

3. Find the controller Q(z, θ) and the instrumental model P̄ (z, θ) according to the
methodology presented in Section 2.2 and solving (6) and (7).



DATA-DRIVEN BASED IMC CONTROL 1563

Table 1. Robust stability test algorithm

Require: Find N points of input-output open-loop data from the plant: {u(t), y(t)}N
Require: Define a value for α such as α ≥ 0
Require: Find Q(z, θ∗) and P̄ (z, θ∗), Q(z, θ∗) and P̄ (z, θ∗) have to be stable
Require: Define a set of frequencies ω
1: Compute ydiff (t) as ydiff (t) = y(t)− P̄ u(t)
2: Compute ymodel(t) as ymodel(t) = P̄ u(t)

3: Compute ĜdiffN (eȷω) using ydiff (t) as the output and u(t) as the input with (8)

4: Compute ˆ̄PN (eȷω) using ymodel(t) as the output and u(t) as the input with (8)

5: Compute l̄m(ω) =
abs(ĜdiffN (eȷω))

abs( ˆ̄PN (eȷω))
6: for each ω do

7: if
∣∣∣ ˆ̄P (eȷω, θ∗) Q̂ (eȷω, θ∗) l̄m(ω)

∣∣∣ ≤ 1− α then

8: failRobust(ω) = 0 (The system has Robust Stability for the given ω)
9: else
10: failRobust(ω) = 1 (It is not possible to assure robust stability)
11: end if
12:end for

4. Compute algorithm 1 to check if the controllers are robust. If the test fails, then
go back to 2, and relax the settling time of M(z) or change the parameterization of
Q(z, θ).

Following this procedure, it is possible to find a robust IMC controller using a single
batch of input-output data from the plant.

5. Application Examples. In this section, two examples are presented to show the
application of the IMC-VRFT and the Robust Stability Test.

5.1. Example 1: flexible transmission system. This example is used in [4] to present
the original VRFT. The plant is the same as in (10) and the target closed-loop transfer
function is given by

M(z) =
z−3(1− α)2

(1− αz−1)2
, α = e−Tsω̄, ω̄ = 10 (13)

where ω̄ = 10 rad/s is the desired bandwidth, Ts = 0.05 s. This plant has a non-minimum
phase zero which could make the optimization to yield an unstable controller. With a
PRBS input of 1024 samples, and if the number of controller parameters is left to be
enough to find the ideal controller, both the normal VRFT [4] and the IMC-VRFT find
the ideal controllers. For the normal VRFT, no filter where used. For a presentation on
how to find suitable filters for the VRFT method please refer to [4].

The response when the unstable pole of the controller is removed from both controllers
is presented in Figure 4. As expected, the response degrades since the controllers are not
equal to the ideal ones. In this case, the sum of absolute errors gives 0.94118 for the
normal VRFT while the IMC-VRFT gives 0.64193. This difference results from the fact
that, for the IMC-VRFT case, the non-minimum phase behavior of the plant is considered
in the instrumental model even when the unstable pole is subtracted from the controller,
this is not the case of the normal VRFT where this information is completely removed
from the controller.
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Figure 4. Comparison between the normal VRFT and the IMC VRFT
after the unstable pole is removed from the controller
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Figure 5. Response for ω̄ = 60 rad/s

If the desired bandwidth is extended to ω̄ = 60 rad/s, the response to a step change of
both VRFT approaches and the Robust Stability Test (α = 0) are as presented in Figure 5
and Figure 6 respectively. In Figure 5, one can see that the normal VRFT is very sensitive
to the change in the desired bandwidth while in the IMC case, since the ideal model is
achieved with the parameterization, the response continues to show good performance
and, according to the Stability Test, stability is achieved (Figure 6). If for example,
there is a mismatch between the model and the plant (in this case, if the instrumental
model is computed using the Q(z) after the unstable pole has been removed), the Robust
Stability Test is as shown in Figure 7 for ω̄ = 60, the closed-loop response is equal to the
normal VRFT response in Figure 5. From this example, it is clear that the “quality” of
the instrumental model is important to achieve good results, even if controller Q is not
exactly equal to the ideal one.
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5.2. Example 2: continuous polymerization reaction. The plant for this example
is a polymerization reaction that takes place in a jacketed CSTR. This plant is a 4 states
non-linear plant used in [30] for a PID-like Adaptive VRFT control. The model for
simulation is given by

dCm

dt
= −(kP + kfm)CmP0 +

F (Cmin
− Cm)

V
dCI

dt
= −kICI +

FICIin − FCI

V
dD0

dt
= (0.5kTC

+ kTd
)P 2

0 + kfmCmP0 − FD0

dD1

dt
= Mm(kP + kfm)CmP0 −

FD1

V

(14)
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Table 2. Steady state condition of the polymerization reactor

Steady state operating condition
Cm = 5.506774 kmol/m3 D1 = 49.38182 kmol/m3

CI = 0.132906 kmol/m3 u = 0.016783 m3/h
D0 = 0.0019752 kmol/m3 y = 25000.5 kg/kmol

Table 3. Model parameters of the polymerization reactor

Model parameters
kTc = 1.3281x1010 m3/(kmol h)
kTd = 1.0930x1011 m3/(kmol h)
kI = 1.0225x10−1 L/h
kp = 2.4952x106 m3/(kmol h)
kfm = 2.4522x103 m3/(kmol h)
f ∗ = 0.58

F = 1.00 m3/h
V = 0.1 m3

CIin = 8.0 kmol/m3

Mm = 100.12 kg/kmol
Cmin

= 6.0 kmol/m3
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Figure 8. Response of the polymerization reaction using the IMC-VRFT.
The negative real part of the poles were eliminated from controller Q.

where P0 =

√(
2fkICI

kTd
+ kTc

)
and y =

D1

D0

. The parameters for the plant model are pre-

sented in Table 2 and Table 3 for completeness. The control objective is to regulate the
product number average molecular weight (y) by manipulating the flow rate of the ini-
tiator (FI). The procedure followed is the same as in the previous example. However,
here an additional filter (Frip(z)) was added to Q(z) in order to eliminate the intersample
rippling, i.e. eliminating the poles with negative real part of the controller (see [11]). The
result of the application of the IMC-VRFT control in the operation point u = 0.016783
m3/h, y = 25000.5 kg/kmol is presented in Figure 8. The batch of open loop data was col-
lected using a random Gaussian signal as the input to the plant. The resulting controller
and instrumental model became
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Figure 9. Robust stability test done over the polymerization plant

Q(z) =
−1.238x10−5 + 9.593x10−6z−1

1 + 0.7578z−1

P̄ (z) =
−0.28z−1 − 0.2122z−2(

1.238x10−5 − 1.851x10−5z−1

+6.907x10−6z−2

)
Frip(z) = 0.5689 + 0.4311z−1

(15)

with a sampling time Ts = 0.03 s. In the neighborhood of y = 25000.5 kg/kmol the
response of the closed-loop system is almost equal to the specified desired response which
is given by

M(z) =
0.28z−1

1− 0.72z−1
(16)

The stability test is presented in Figure 9 for α = 0. As it can be seen, only a point
is over 1, representing that one may not be able to guarantee the robust stability. If

the desired response is made slower M(z) =
0.15z−1

1− 0.85z−1
, the test results as presented in

Figure 10, meaning that robustness is achieved. But it is important to note that since this
test is dependent on the input-output data, a single point may be misleading to say that
the result is not robustly stabilizing since it could be a false positive because of certain
approximation error, due to the inherent variance of the ETFE.

6. Analysis of the Robust Test. In this section, the analysis of the effect of different
factors over the robust test are presented. First the sensitivity of the test due to the data
is presented, as well as the effect of the choice of the closed loop transfer function and the
number of parameters of the controller Q(z). To analyze the test, a second order discrete
time plant was chosen:

P (z) =
0.01867z−1 + 0.01746z−2

1− 1.783z−1 + 0.8187z−2
(17)

The sampling time was chosen as Ts = 0.1 s.
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Figure 10. Robust stability test done over the polymerization plant with
a slower desired response
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Figure 11. Approximation of the ETFE with different inputs

6.1. Effect of the data. In Figure 11, the effect of different input-output data is pre-
sented for the approximation of l̄m(ω). In all cases, the IMC controller was selected as a
simple gain Q(z) = q0 and the closed-loop function was selected as:

M(z) =
0.9516z−1

1− 0.9048z−1
(18)

The difference between each case is the frequency content of the input signal. A 100%
bandwidth data is defined as a random gaussian input data that has frequency components
up to half the sampling frequency, with zero mean and a standard deviation of one. For low
frequencies, any of them approximates the real l̄m(ω) good enough, but, as the frequencies
are higher the approximation became poor. In this case, the approximation arround the
plant bandwidth (2.5386 rad/s) is good for all the data sets. Since the IMC-VRFT as well
as the robust test are data-based, the quality of the data is a key issue in the method. Of
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Figure 12. Effect on the robust test, for different closed-loop specifications

course, one can not expect to have good approximation of l̄m(ω) beyond the maximum
frequency component.

6.2. Effect of the selection of the closed-loop transfer function. In this section,
the effect of changing the target closed-loop time constant (τ) is addressed. In Figure 12,
the robust test is presented for different values. The input data has a bandwidth of 100%
of the Nyquist frequency and Q(z) = q0 an the desired closed-loop transfer function is
specified as:

M(z) =
(1− τ)z−1

1− τz−1
(19)

As it can be seen the larger the constant time, the value of the robust test is smaller, i.e.,
the closed loop is more robust. However, as it can be seen in Figure 14, the step response
is worst (less performance). Comparing Figure 12 and Figure 13, it is clear that there
is a direct relationship between the approximated l̄m(ω) and the difference between the
plant and models frequency response. It is obvious that the method is largely affected by
the good approximation of the instrumental model to the real plant. For example, since
the controller Q(z) is very simple, the instrumental model has the same bandwidth as the
desired closed loop, and the closer this desired bandwidth is to the plant bandwidth, the
lower is the Integral of the Squared Errors (ISE), as can be seen in Table 4. The ISE is
computed for the step response of the controlled system and is computed as:

ISE =
1

t

t∑
i=1

(targeti − obtainedi) (20)

6.3. Effect of the selection of the number of parameters of Q(z). For this section,
a FIR filter with different number of parameters is used. The target closed-loop transfer
function is given by (18). The results of this test are presented in Table 5. In this
case, as the order of Q(z) is incremented, the robustness of the closed-loop is improved,
as presented in Figure 15. In this case, as the controller became more complex, the
performance of the controller is also improved, as can be seen in Figure 17, which at the
same time, is related with the fact that the instrumental model is very close of the real
plant transfer function (see Figure 16).
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Table 4. Effect of the variation of the constant time

Time
constant

(τ)

Plant
bandwidth
(rad/s)

Instrumental
model

bandwidth
(rad/s)

Desired
bandwidth
(rad/s)

Obtained
closed-loop
bandwidth
(rad/s)

ISE

0.36788 2.5386 10.9337 10.9337 2.3687 0.041677
0.69184 2.5386 3.71749 3.71749 2.6131 0.023629
0.87309 2.5386 1.35607 1.35607 0.66615 0.01108
0.95123 2.5386 0.498846 0.498846 0.10463 0.031521
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Figure 15. Effect on the robust test, for different closed-loop specifications
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Figure 16. Effect on the robust test, for different closed-loop specifica-
tions, relationship with the frequency response
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Figure 17. Effect on the robust test, for different orders of Q, relationship
with the step response

Table 5. Effect of the variation of the number of parameters of Q(z)

Q
order

Plant
bandwidth
(rad/s)

Instrumental
model

bandwidth
(rad/s)

Desired
bandwidth
(rad/s)

Obtained
closed-loop
bandwidth
(rad/s)

ISE

0 2.5386 0.99844 0.99844 0.36689 0.015116
8 2.5386 1.4564 0.99844 0.62172 0.0029404
16 2.5386 2.3724 0.99844 0.91801 0.00064969
24 2.5386 2.4053 0.99844 1.0264 0.0001196

7. Conclusion. A new way to tune the IMC controller using a data-driven framework
was presented. Taking advantage of the robustness characteristics of the IMC, a robust
stability test was conceived to use only data, by approximating the uncertainty function
using the ETFE approximation. It was found that this methodology is largely dependent
on how good the instrumental model is. This instrumental model is obtained from the
optimization of the controller. The approximation of the uncertainty function depends,
as it was expected, on the bandwidth of the data.
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