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Abstract. Manufacturing industries are facing a rapidly changing market environment
characterized by product competitiveness, short product life cycles, and increased product
varieties. This scenario has given rise to the demand for improved capacity planning effi-
ciency while maintaining their flexibilities. One important aspect of capacity planning is
machine loading, which is known for its complexity encompassing various types of flexibil-
ity aspects that pertain to part selection and operation assignment along with constraint.
The main objective of flexible manufacturing system (FMS) is to balance the productivity
and flexibility of the production shop floor. From the literature, researchers have proposed
many methods and approaches to attain a balance in exploring (global improvement) and
exploiting (local improvement). We propose a constraint-chromosome genetic algorithm
to solve this problem, which aims at mapping the right chromosome representation to the
domain problem as well as helps avoid getting trapped in local minima. The objective
functions are to minimize the system unbalance and increase throughput while satisfying
the technological constraints. The performance of the proposed algorithm is tested on
10 sample problems available in the FMS literature and compared with existing solution
methods Based on the results, the overall combined objective function increased by 3.60%
from the previous best result.
Keywords: Flexible manufacturing system, Machine loading, System unbalance, Through-
put, Genetic algorithm

1. Introduction. Flexible manufacturing systems (FMSs) have been developed to inte-
grate computer-controlled configurations of numerical control machine tools, along with
other auxiliary production equipment, and a material handling system to simultaneously
manufacture low to medium volumes of various high-quality products at a competitive
cost [1]. Given that FMSs are very expensive, it is crucial to manage them effectively
to achieve optimum results with least investment risk; this largely depends on how the
decision is being made to tackle the problems in FMS. One of the main objectives of FMS
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is to achieve efficiency of a well-balanced transfer line while retaining the flexibility of the
job shop [2].
One of the important aspects of capacity planning in FMS is specific to the tasks

of assigning the machines, operations for selected part types, and the necessary tools
to perform these operations within the technological constraints in order to maximize
throughput and minimize system unbalance [2, 3]. In studying the production-planning
problem, [4] concluded that there are two crucial sub-problems, namely, part selection and
machine loading. The inputs to the decision pertaining to loading problems are received
from the preceding decision levels, such as grouping of resources, selection of part mixes,
and aggregate planning. These outputs can generate inputs to the next decision related
to scheduling resources, dynamic operations, and control. Therefore, it is clear that the
loading decision acts as an important link between strategic and operational level decisions
in manufacturing.
Although part sequence selection, machine loading and tool configuration are different,

they are very closely interlinked. The shared problems, such as part-tool machine com-
patibility, machine time availability and tool magazine capability are actually interrelated
constraints. Nevertheless, primarily because of the complexity of solving the problems si-
multaneously, many previous studies have treated these components separately or rather
sequentially. Nevertheless, [5] recommended an integrated approach to resolve the part
selection and machine-loading problem. They concluded that an integrated approach pro-
vides good results compared with de-contextualized solutions, in which the objectives are
conflicting in nature, thus leading to infeasible or non-optimal solutions.
In the present work, we consider a machine-loading problem in an FMS environment.

The machine-loading problem refers to how different components and tools can be assigned
and allocated, respectively, so that some measure of productivity is optimized given a set
of part types to be produced, a set of tools required for processing the parts on a set of
machines, and a set of resources, including material handling systems, pallets and fixtures
[6]. The main objectives are maximization of throughput and minimization of system
unbalance; these are treated as functions to solve the machine-loading problem while
simultaneously considering the technological constraints, such as available machining time
and tool slots for each machine. The functions are able to minimize the idle time of the
machine, thus leading to maximal machine utilization and improvement of the overall
system output. We propose a constraint-chromosome Genetic Algorithm (CCGA) to
create a robust and effective algorithm that is able to find a feasible solution, with a
better and more accurate result. Additionally, this algorithm is also able to achieve fast
convergence and helps avoid being trapped in local optima.
The remainder of the paper is organized into the following sections. Section 2 discusses

related works on the issue being discussed. Section 3 describes the problem and model
formulation. Section 4 discusses the solution proposed to solve the problem. Section 5
discusses the experimental results of the proposed solution and compares it with those in
previous literature. The last section concludes the paper.

2. Related Work. There are many objectives related to machine-loading problems.
Stecke [2] outlined machine-loading problems in detail and concluded its six main objec-
tives. Due to the number of objectives covered involving the simultaneous determination
of various factors (e.g., sequence, throughput and workload balancing) and the require-
ment to satisfy various technological constraints, machine-loading problem lies under the
broad category of NP-hard problem [7]. The literature concludes that the problems per-
taining to machine loading cover many objectives [2, 8, 9, 10, 11].
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Basically, the machine-loading problem can be solved using two approaches: (a) optimi-
zation-based methods and (b) heuristic-oriented method. Studies on optimization-based
methods include those of Stecke [2], Shanker and Tzen [9], Sarin and Chen [12], Nayak and
Acharya [13], whose approaches involved integer programming, dynamic programming,
branch, and bound. The researchers who proposed the heuristic-oriented approach are
Mukhopadhyay et al. [10] who developed the concept of essentially ratio for minimizing
the system unbalance that, in turn, can maximize the throughput. Mukhopadhyay et
al. [14] developed the “modified insertion scheme” using simulated annealing, whereas
Shanker and Srinivasulu [15] used heuristic approach to develop a two-stage branch and
backtrack procedure. Tiwari et al. [11] proposed a heuristic approach and the Petri net
model to delineate its graphical representation and validation. Sarma et al. [16] proposed
the Tabu search-based algorithm with constraints of tool slots and machine time, while
Swarnkar and Tiwari [17] worked on a hybrid Tabu search and simulated annealing.
Finally, Nagarjuna et al. [18] suggested a heuristic-based multistage programming.

Most of the mathematical programming-based approaches and heuristic techniques are
unable to produce good-quality optimal or near-optimal solutions to machine-loading
problems because of their limitations. Although optimization-based methods are robust
in their applicability, they tend to become impractical when the problem size increases.
On the other hand, heuristic approaches are mainly dependent on rules and constraints
of individual problems. For this reason, the heuristic approach has always faced difficulty
in estimating results in a changed problem or environment. These limitations have mo-
tivated researchers to enhance the method and look for innovative searching techniques.
One of the popular approaches is genetic algorithm (GA), which is famous for its ability to
perform intelligent probabilistic searching. Li et al. [19] proposed GA to handle problems
with multi-period and multilevel capability balancing issues, whereas Tiwari and Vid-
yarthi [20] used GA to allocate resources in ordering and increasing equipment utilization
and throughput. Ip et al. [21] used GA in proposing a model to solve the planning and
scheduling problem within a multiproduct production environment. Pongcharoen et al.
[22] suggested the use of GA-based scheduling tool to handle multiple resource constraints
and multiple level product structure. Kumar et al. [6] proposed constraint-chromosome
GA in handling complex constraints in the FMS-loading problem.

GA is also being studied and applied to many other areas. For instance, Lin and Tsai
[23] used two-stage GA to solve transportation problem. Maeda and Li [24] studied ways
to optimize the GA search capability tuned with fuzzy adaptive search method, whereas
Lin [25] proposed GA to solve fuzzy equations with constraints. Okuhara et al. [26] used
GA to control worker and workload assignment in project management. Kim and Kim [27]
suggested the use of GA to minimize the inter-cell interference in wireless communication
systems. Suryoatmojo et al. [28] proposed GA to determine the optimal capacities of
a PV system, battery bank, and diesel generator. Tan et al. [29] suggested a GA with
redundancy-saving strategy for synchronous direct-sequence code division multiple access
system.

Integrating GA into other algorithms or approaches has also been proposed in previous
studies. Che [30] used hybrid GA to enhance productivity while considering product con-
figuration change. Ono et al. [31] proposed a hybrid multi-objective GA and quasi-Newton
method to find robust optimal solutions to enhance the local search facility and reduce
search cost. Chen et al. [32] proposed a guided mimetic algorithm to solve scheduling
problems.

The literature clearly shows that GA has proven to be robust in handling many types of
manufacturing optimization problems. For the present research, we propose to construct
the chromosome using a sequence of genes that have been created based on the constraint
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of the machines and operations. Our objective functions focus on the maximization of
throughput and the minimization of system unbalance. These objective functions will
lead to the minimization of system idle time that, in turn, promotes higher machine
utilization. In addition, machine-loading policy aims to maximize total system output,
which is interpreted as throughput.

3. FMS Machine-Loading Problem.

3.1. Problem description. The machine-loading problem in FMS can be represented as
part type allocation with multiple machines and fixed number of slots. Given a planning
horizon, part types may be scheduled randomly. The respective operation times and tool
slot requirements for each machine are well known [9, 10, 11, 20]. A part type selection
and machine-loading arrangement constitute two major components of strategic planning
problem of FMS. Part type selection deals with the selection of a set of part types to
be manufactured during the upcoming planning horizon, whereas the loading problem is
concerned about the allocation of operations and the required machine and tools for the
selected part types. Most of the earlier studies have proposed these problems separately
because of their complexity; hence, the solution of part type selection problem may lead
to an infeasible result for loading problem. In practice, part type selection is carried out
at the beginning of the planning period, whereas allocation of operation and machine
tools is done at a later stage. A part type requires one or more operations, with each
operation performed by one or more corresponding machines. These parameters are set by
the production requirement, which includes part type, number of operations for each part
type and respective machining time, and number of tool slots required for each operation
of each part type. The details of such information are planned and set in advance.
There are two types of operations complementary to each part type. Essential oper-

ations of a part type mean that these operations can be performed only on a particular
machine using a certain number of tool slots, whereas optional operations imply that they
can be carried out on a number of machines with the same or varying processing time
and tool slots. Given that essential operation requirements can only be performed at spe-
cific machine(s), the flexibility lies in the selection of machines that are set for optional
operations, in which there are more rooms for improving the machine allocation to yield
better results. During planning horizon, machine-loading problem deals with a given part
type and respective operations to appropriate machines, during which technological and
capacity constraints must be considered. Therefore, it is logical to ensure that optional
operations consider all possible routes. To understand the complexities of the machine-
loading problem for a random FMS, we take an example of eight part types, which are
scheduled for processing on four machines. Each machine has five tool slots with different
processing times for different operations as well as different processing times when run
on different part types. Each part type consists of four operations that are performed
on any machine while maintaining the sequence of the operations. The flexibility of each
machine to perform many different operations while allowing several operation assignment
possibilities can then generate alternative part routes.
To summarize the machine-loading problem requirements, Shanker and Tzen [9] and

Shanker and Srinivasulu [15] summed up the above features of FMS machine-loading
problem and developed nine more similar problems describing several features related to
batch size of part type, number of operations, machine, tool slot requirement and unit
processing time for proper machine allocation. The assumptions made before proceeding
with the modeling of the machine-loading problem are as follows [11]:
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• Non-splitting of part type-this implies that a part type undertaken for processing is
to be completed for all its operations before considering a new part type;

• Unique part type routing-although flexibility exists in the selection of a machine for
optional operation, the operation must be completed on the same machine once a
machine is selected;

• Sharing of tool slots is not considered; and
• Parts are readily available.

3.2. Model formulation. The objective functions for the present research are the maxi-
mization of throughput and minimization of system unbalance. These are to be combined
in order to attain the overall function for machine-loading problem. It is crucial to combine
both objective functions in a logical manner that also considers the technical constraints.
The problem described in the previous section is mathematically described in this section.
The notations used to demonstrate the objective functions are shown below.

Subscripts
i part type, i = 1, . . . , N
m machine, m = 1, . . . ,M
t tool type, t = 1, . . . , T
j operation type, j = 1, . . . , J

Parameters
H total planning horizon (480 minutes in the example)
UTm underutilized time on machine m
OTm overutilized time on machine m
βi batch size of part type i
αi = 1 if part type i is selected, otherwise 0
taim time available on machine type m after allocation of operation j of part type i
timj time required by machine type m for operation j of part type i
T r
im number of machines for each machine type remaining on machine m

after allocation of operation j of part type i
T a
im number of machines for each machine type available on machine m

after allocation of operation j of part type i
Timj number of machines for each machine type required by machine m

for operation j of part type i
Yij set of machine type on which operation j of part type i can be performed

3.3. Formulation of objective function and constraints. The objective functions
for the present research can be formulated as listed below.

(i) The first objective is to minimize the system unbalance in order to maximize system
utilization. Thus, the first objective function can be formulated as follows:

Minimize
M∑

m=1

(UTm −OTm), (1)

which is equivalent to

Maximize−
M∑

m=1

(UTm −OTm). (2)
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The above is also equivalent to:

F1 =
M ∗H −

∑M
m=1(UTm −OTm)

M ∗H
. (3)

(ii) The second objective function is to maximize throughput in order to maximize sys-
tem efficiency. Thus, the second objective function can be stated as follows:

F2 =

∑N
i=1 βi ∗ αi∑N

i=1 βi

. (4)

(iii) The third objective function is a combination of both of the above objective functions
and is given by:

F =
M ∗H −

∑M
m=1(UTm −OTm)

M ∗H
+

∑N
i=1 βi ∗ αi∑N

i=1 βi

. (5)

These two objective functions may be assigned to the weights accordingly, after which
the researcher decides which objective should carry more weight. In the present study,
to simplify the computation, we equally assigned the weight for each objective function,
such that both carry a value of 1.
The above objective functions are subjected to the following constraints:

(i) System unbalance: This is equivalent to the sum of the idle time remaining on
machines after allocation of all feasible part types. The value of machine utilization
must be either zero (100% utilization of system) or a positive value. The constraint
may be expressed as follows:

M∑
m=1

UTm −OTm ≥ 0. (6)

(ii) Non-splitting of part type: This constraint is to ensure that once a part type is
considered for processing, all the operations under that part type must be completed
first before undertaking a new part type. The constraint may be expressed as follows:

M∑
m=1

J∑
j=1

αimj = αi ∗ J, i = 1, 2, . . . , N. (7)

(iii) The available time on machines: This should be greater than or equal to the time
required by the next part type to be assigned to this machine and is expressed as
follows:

P∑
j=1

timjαimj ≤ taim, i = 1, 2, . . . , N. (8)

(iv) Unique part type routing: Although flexibility exists in the selection of a machine
for an optional operation, the operation must be completed on the same machine
and expressed once a machine is selected; this is expressed as follows:∑

m∈Yij

αimj ≤ 1, i = 1, 2, . . . , N ; j = 1, 2, . . . , J. (9)

(v) The number of machines for each machine type and the remaining time on any
machine after any assignment of part type should always be positive or zero.

Timjαimj ≥ 0, i = 1, 2, . . . , m = 1, 2, . . . ,M, (10)

timjαimj ≥ 0, i = 1, 2, . . . , m = 1, 2, . . . ,M. (11)
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(vi) The integrity of decision variables: The decision variables possessing a value of 0
and 1 integers are as follows:

αi =

{
1 if part type i is selected
0 otherwise,

(12)

i = 1, 2, . . . , N

αim =

{
1 if part type i is assigned to machine m
0 otherwise,

(13)

i = 1, 2, . . . , N ; m = 1, 2, . . . ,M

αimj =

{
1 if operation j of part type i is assigned to machine m
0 otherwise,

(14)

i = 1, 2, . . . , N ; m = 1, 2, . . . ,M ; j = 1, 2, . . . , J

4. The Proposed CCGA. GA is a population-based method, which is inspired by
the principle of natural evolution [33]. GA is motivated by the mechanism of natural
selection, the biological process in which selection is done based on the fittest individuals
represented as strings of bits that are analogous to chromosomes and genes. Using the
iteration process, GA produces good genes by eliminating the bad ones. The crossover
operator aims to combine the best traits of parents to produce better offspring, whereas in
another operator, mutation is used to introduce random modifications of the chromosome
to add diversity of the population as well as to prevent GA from becoming trapped in
finding good but non-optimal solutions. GA works with the idea that stronger individuals
are likely to be winners who can survive in a competitive environment. It uses the direct
analogy of the natural evolution, in which, starting from a population of chromosomes,
fitter chromosomes tend to yield good-quality offspring, indicating that they create better
solutions.

GA is capable of handling many types of manufacturing optimization problems, whereas
other techniques are able to solve certain types of problems only. For example, Saravanan
[34] presented many extensive examples and comparisons of AI-based techniques (i.e.,
GAs, Tabu search, simulated annealing, particle swarm optimization, and ant colony op-
timization) that are applied to handle several manufacturing optimization problems. In
addition, it also offers a good potential of developing a strategy to handle problem con-
straints within the GA framework that enhances the solution of machine-loading problems
for FMS. Although GA is known as a global search technique (exploitative), it has the
tendency to converge toward local optima and often fails in finding the global optimum of
the problem [35]. In other words, it has a tendency to focus on the local optimum rather
than explore new solutions to achieve global optimum. Due to this tendency, a good
strategy has to be adopted to transform GA into an exploitative as well as an explorative
algorithm.

The effectiveness of GA highly depends on how well it can handle problem constraints.
There are numerous techniques that have been developed to handle constraints. Michalew-
icz and Nazhiyath [36] surveyed several constraint methods for GA, whereby the most
common approach is to add a penalty function to the objective function to transform
a non-constraint problem into a constraint one. In this penalty function, the basic rule
is to add no penalty when all the constraints have been satisfied, and non-zero penalty
otherwise. Nevertheless, quantifying constraint violation is not always practical, especially
when we are dealing with nonnumeric variables. Therefore, applying penalty functions
directly onto the FMS framework can be a tedious task. Cormier et al. [37] proposed
constraint-based GA to solve problems in concurrent engineering. This concept is adopted
in our current work to solve FMS problem, with some modifications. In our work, we
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consider constraints during the formation of chromosome, which we call CCGA. The
model formulation we used is based on Yusof and Deris [38]; however, owing to the
different problem domains, the gene construction within the chromosome differed. In
Yusof and Deris [38], the gene is set as a sequence of machine for individual part type,
where more than one machine type may be allocated to each part type. The allocation of
the machines is denoted as bit value 1 and 0 otherwise. On the other hand, for the present
work domain problem, each gene was based on the operation and machine number that
was assigned to the part type.
For our proposed work, the machine pool is created first to store all possible genes to

be seeded for the formation of the chromosome. The machine pool for each part type is
generated based on the part type schedule, along with the operations to be performed
with the potential machines for that particular operation. Each part type is assigned the
gene(s) that consisted of part type with the respective operation and possible machines.
For example, part type 1 only has one operation with only one possible machine (essential
operation); thus, the gene is labeled 113; in comparison, for part type 6, operation 2 has
possible genes of 624, 622 and 623 because this operation is allowed to be processed
on three machines (machines 4, 2 and 3). Machine pool provides the gene selection,
which creates feasible allocation for each part type. The chromosome representation is
constructed based on the genes generated in this machine pool. This approach ensures that
a feasible solution can achieve fast convergence, with more accurate and better results.
The example of machine pool for problem set 1 is shown in Table 1.

Table 1. Machine pool for problem set 1

Part Type Operation Number Possible Machines Possible Gene
1 1 3 113
2 1 1,4 211 214

2 4 224
3 2 232

3 1 4,1 314 311
2 3 323

4 1 3 413
2 4 424

5 1 2,3 512 513
2 2 522

6 1 4 614
2 4,2,3 624 622 623
3 2,1 632 631

7 1 3,2,4 713 712 714
2 2,3,1 722 723 721
3 4 734

8 1 1,2,3 811 812 813
2 2,1 822 821
3 1 831

Initial GA populations are generated using a random function, in which the sequence
of part type, called part sequence, is randomly generated from the part type scheduled for
the processing. The sequence determined the arrangement of the part type processing, and
as part of the constraint, the same part type cannot exist twice in the chromosome string
(i.e., no duplication of part types). On the basis of the part sequence, the chromosome,
called part-operation chromosome, is generated. The genes are randomly selected from
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the machine pool for each part type. Although the genes are randomly selected, the
characteristic values of the constraints are applied to the genes in the machine pool, in
which each chromosome created produced a feasible solution.

To enhance the possibility of creating more solutions, we create new populations based
on the selection criteria. Genetic operations, crossover and mutation, are applied to
these populations, after which the fitness function is calculated. The constraint is also
imposed for crossover and mutation operations in generating new population in order to
make the search space wider while maintaining the solution feasibility. Afterwards, these
populations are assigned a fitness value based on the fitness function. These steps (i.e.,
the formation of new solution until fitness calculation) are repeated until the satisfactory
result is achieved. The flowchart of the proposed model is described in Figure 1.

4.1. Chromosome representation and initialization. Chromosome representation is
a way of representing how a domain problem being mapped and significantly affects the
GA performance. Each individual represents a solution to the problem, and an improper
or wrong representation of the chromosome structure often leads to poor performance
[39]. It may also lead to the inability to find the right solution. Basic GA has a tendency
to produce a number of infeasible chromosomes in each generation because of randomized
crossover and mutation [33]. Thus, the chromosomes must be ”repaired” to ensure feasible
solution. This process lengthens the computational time as well as produces poor per-
formance. Thus, it is crucial to come up with a good chromosome representation design.
The main objective is to generate chromosomes that can produce feasible solutions after
each crossover and mutation. Ho and Tay [40] focused on good feasible chromosomes that
can reduce the search space as well as make the algorithm more efficient, hence reducing
computational time.

An individual population can consist of one or more chromosomes and may be repre-
sented by strings. The selection of a string format for the individual is the first and a very
important step to achieving successful implementation of GA. For this reason, we strive
to find an efficient coding of each individual while considering all the constraints of the
machine-loading problem. In our coding, each individual consists of part-sequence and
part-operation chromosome. The part sequence defines the sequence of the part type to
be allocated, and the part-operation chromosome is the respective sequence of part type
with each operation to be performed on a selected machine. The genes of the respective
chromosome describe a concrete allocation of machines to each operation as well as the
sequence of machines to be run on each operation.

A sample of part sequence for Table 2 (problem set 1) is shown in Figure 2. The part
types are arranged based on random selection from the scheduled part types, where each
part type is checked against its existence to ensure that no same part type is generated
in the sequence. The part-operation chromosome is then created based on this sequence.
To ensure the feasibility of the solution, each part type in the sequence retrieves the
respective operations that are assigned to it. Given that the operation sequence for each
part type has to follow the sequence (i.e., the first operation needs to be allocated first
before the second one), there is a requirement to maintain such a sequence.

The convergence speed of a GA is crucial in finding a global optimum or an acceptable
solution. The reproduction strategy is in a position to influence the convergence speed of
the algorithm. With these criteria in mind, we assigned each unit a combination number
of part type, operation, and machine. Afterwards, we set the chromosome to a sequence
of these combinations. Part-operation chromosome is created based on the number of
operations required for each part type. The feasible machines for each operation are
randomly retrieved from machine pool based on the machine pool index; this index kept
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Figure 1. Flow chart of the proposed model

Figure 2. A sample of part sequence

track of the values for the respective part and operation. For example, for a part type with
two operations, two genes are created for that particular part type, three genes for three
operations, and so on. Figure 3 shows two examples of a possible value of part-operation
chromosome based on the part sequence (4 2 1 3 6 5 8 7). Since the operation of part
type 4 is considered as an essential operation (both on operations 1 and 2), whereby the
operation can be performed on a particular machine only, there is no change in the gene
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Table 2. Description of the problem (adapted from [10])

Part Batch Size Number of Operation Machine Unit Proc Tool Slot Total
Operation Number Number Time (minutes) Proc Time

1 8 1 1 3 18 1 144
2 9 3 1 1,4 25 1 225

2 4 24 1 216
3 2 22 1 198

3 13 2 1 4,1 26 2 338
2 3 11 3 143

4 6 2 1 3 14 1 84
2 4 19 1 114

5 9 2 1 2,3 22 2 198
2 2 25 1 225

6 10 3 1 4 16 1 160
2 4,2,3 7 1 70
3 2,1 21 1 210

7 12 3 1 3,2,4 19 1 228
2 2,3,1 13 1 156
3 4 23 3 276

8 13 3 1 1,2,3 25 1 325
2 2,1 7 1 91
3 1 24 3 312

Figure 3. (a) Possible value of part-operation chromosome, (b) Another
possible value of part-operation chromosome

that generated the part-operation chromosomes, as shown in Figures 3(a) and 3(b). On
the other hand, operation 1 of part type 2 is optional operation performed on a number
of machines with the same or varying process times and tool slots. In this example,
operation 1 may be performed on machine 1 or 4; thus, total processing time for both
may vary, leading to different results.

4.2. Fitness evaluation. After chromosome initialization, each sequence of the popula-
tion is evaluated according to the objective functions set for the problem. The evaluation
of the chromosome is a crucial part of GA, because the chromosomes selected for mating
are based on their fitness. The fitness function then decides whether or not the machine
allocation is good for the machine-loading problem. Machine-loading problem in FMS
involves multiple objective functions, and as such, the model should be robust for the
user to specify several objectives.

For the fitness calculation, the part-operation chromosome is generally used. This
chromosome carries all relevant information to calculate the fitness value, including the
operations required for each part type and the machine in which the operation is to be
performed. From this information, the total processing time and machine slots for each
chromosome can be determined and the fitness value can also be calculated. Using this
information, we can also determine which part type in the string can be assigned. After-
wards, the fitness function determines the throughput and system unbalance. Throughput
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is defined as units of part types produced for all selected part types during the planning
horizon; here, the units are the sum of the batch sizes. System unbalance refers to the
sum of the over- or underutilized time on all the machines after the allocation of all part
types. The aim of the fitness function is to find the highest value of throughput and the
lowest value of system unbalance. Both fitness functions are combined to create the com-
bined objective function (COF). The higher the value of COF, the fitter the chromosome
would be. In addition, because the chromosomes are constructed from valid genes from
the machine pool, the result is expected to be valid.

4.3. Selection. The selection process is the driving force allowing the GA to determine
the continuation of the evolutionary process flow. Previous studies have proposed, tested,
and compared many selection methods. The present research proposes the use of a simple
roulette wheel selection method, in which the parents for the next mating are chosen
based on the fitness proportionate selection principle. In the proportionate selection,
the fitness function assigns a fitness value to each chromosome in order to associate a
probability of selection with each individual chromosome; thus, a higher fitness leads to
improved chances of being selected. If fi is the fitness of individual i in the population,
its probability P of being selected is represented as follows:

Pi =
fi∑N
j=1 fj

(15)

where N is the number of individuals in the population.

4.4. Crossover. Constructing genetic operators requires careful consideration in order to
ensure that the crossover and mutation work proceed as expected. The chromosome has
to be broken up to give the result, which is appropriate for our problem. Three crossovers
are usually applied: partially mapped, order, and cycle crossover. Depending on how the
chromosome represents the solution, sometimes a direct swap may not be possible or can
create infeasible result. One such case is when the chromosome is an ordered list (e.g.,
the ordered list for the cities to be travelled in a travelling salesman problem), in which
the same city should not be visited more than once.
Our chromosome, called part-operation chromosome, also falls into this category. With-

in such a category, the same gene cannot appear more than once, and direct swap between
parents can lead to the duplication or deletion of certain genes, thus creating infeasible
result. For this reason, we apply ordered chromosomes with two-point crossover. Two
crossover points of the first parent are randomly generated to determine the first portion
of the first offspring. The remaining genes of chromosome in the first offspring are then
taken from the second parent, under the consideration that the same gene is not to be
taken again.
Furthermore, the crossover application should consider genes that belong to the same

part. The crossover point should consider taking the right portion, in which the whole
part type can be moved together. Failure to do so can cause infeasible result and violate
the condition that the part type operation should be finished first before allocating the
next one. The two selected points consider the same number of part type for both parents.
Due to the different number of operations per part types, the length of these two points
differs from parents 1 and 2. The example in Figure 4 shows the crossover application.
The first portion of offspring is taken from the randomly selected two points of the first
parent, as denoted by the vertical line (part types 2, 1 and 3). The information after the
crossover point is ordered because it is in the other parent. The second offspring (part
types 4, 2 and 1) repeats the same process while creating the second offspring with a
second parent. Then, the newly selected part types are randomly reassigned with the
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Figure 4. Ordered chromosome crossover

Figure 5. Mutation by reciprocal exchange

value from machine pool while maintaining the operation sequence for each part type
so as to ensure diversity. Genes 713 and 722 can change to 712 and 723 (offspring 1),
respectively, because the operations are optional operations; in comparison, gene 614
(offspring 2) remains the same because the operation is an essential operation.

4.5. Mutation. The purpose of mutation in GA is to ensure that the algorithm avoids the
potential of being trapped in local minima by preventing the population of chromosomes
from becoming too similar to each other. This phenomenon can eventually slow down the
evolution process and prevent the ability of the algorithm to achieve good results. The
same reason also explains why most of the GA algorithms avoid taking only the fittest of
the population during selection for the next generation, but rather making the selection
randomly (or semi-randomly) with weighing factors toward the fitter ones.

For mutation, we used reciprocal exchange mutation, in which two randomly selected
part types are swapped in the same chromosome. This operation required ensuring that
the genes of whole part type were swapped instead of the individual genes to avoid an
unfeasible result. In the example shown in Figure 5, the mutation operator randomly
selects two part types, the fourth and the eighth part types (genes 7-9 and 18-19, respec-
tively), and those genes for the two part types are swapped. Then, to create diversity, we
randomly reassign the newly selected part types with the value from machine pool while
maintaining the operation sequence for each part type. This procedure is similar to the
crossover operation.
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Table 3. Machine properties

Machine Number Processing Time (Minutes) Number of Slot
1 480 5
2 480 5
3 480 5
4 480 5

4.6. Termination condition. The present research uses the number of generations as
the termination condition. Time limit is not used because it is not the yardstick in this
problem due to a relatively small data set. In addition, the fitness limit is unknown for
the problem set; thus, it cannot be used as a termination condition as well. The number
of generation set for the present research was 75, which is based on the size of the data
sets as well as the generation number used by the previous research on the same data
sets.

5. Results and Discussion. The proposed approach is implemented using C# compiler.
It is tested on the benchmark problems available [2], which contains 10 data sets. Each
data set has a different number of part types, number of operations, and machines that
can be assigned to each operation. To illustrate the proposed algorithm, the problem set
number 1 generated by Mukhopadhyay et al. [2] was adopted. The data are given in
Table 2. There are eight part types to be loaded on four machines. All the machines are
assumed to have one shift (i.e., 480 minutes of available time), and all of them have five
tool slots each. The detailed information of the machines is shown in Table 3.
The number of generations required to converge largely depends on the effectiveness of

the chromosome representation and the fitness measure, which evaluates the individual
solution and the suitability of the operators. The time taken to find solutions is depen-
dent on the size of chromosomes, the tightness of the constraints, the approach used in
designing the chromosome representation, and the effectiveness of fitness function. This is
because substantial processing time is required to filter non-feasible solutions. The work
is expected to manage machine utilization and allow more part types that are capable
of scheduling in current resources. Applying a constraint-based GA with the focus of
effective chromosome representation has also been studied by Chen-Fang and Kuo-Ming
[39], who found that an improper or wrong representation of chromosome structure may
lead to poor performance as well as the inability to find the right solution.
In our present work, the chromosome representation ensures that the genes represent the

right combinations that only allowed the valid machines to be allocated to the respective
part types. Nevertheless, the fitness function still checked the chromosome to ensure
that only the right combination and the total amount of time allocated did not exceed
the remaining time available for the machine. The crossover and mutation operators
performed their tasks effectively because of the effectiveness and efficiency of chromosome
representation as well as the fitness function. The crossover operator then attempted
to find all the permutations of machine allocation, after which the mutation operator
provided the variety of parents that may include the good traits as the source of required
traits for the next generation. In addition, the proper measurement is taken to ensure
that the group of genes that belonged to the same part types are taken instead of the
individual genes in performing the genetic operation.
The various combinations of parameter values are also used to conduct a sensitivity

analysis on the sample data set to identify the optimal control parameters for the proposed
CCGA, as shown in Table 4. Exhaustive computations are carried out to assess the
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Table 4. Control parameters of the proposed algorithm

Control Parameter
Option

1 2 3
Population size 20 20 20

Number of generations 75 75 75
Selection operator Roulette wheel Roulette wheel Roulette wheel
Crossover operator Ordered chromosome Ordered chromosome Ordered chromosome
Mutation operator Reciprocal exchange Reciprocal exchange Reciprocal exchange

Probability of crossover 0.7 0.7 0.7
Probability of mutation 0.01 0.1 0.3

Overall fitness 1.7871 1.7882 1.8045

Table 5. Summary of results of the proposed CCGA

Data Set Part Types Part Types Value of Number of Generations
Assigned Unassigned the Chromosome to Converge

1 (6, 5, 7, 3, 1) (4, 8, 2) (614 622 632 512 522 712 721 734 311 323 3
113 413 424 812 822 831 214 224 232)

2 (2, 1,5,3,6) (4) (211 224 114 122 514 521 311 612 412) 3

3 (1, 3, 5, 2) (4) (112 314 323 514 523 212 411) 1

4 (5, 2, 4, 3, 1) – (511 214 223 412 423 432 314 112 121 134) 0

5 (2, 5,1, 6, 4) (3) (211 513 112 122 611 414 422 433 313 324) 1

6 (3, 2, 1, 5, 6) (4) (311 211 223 112 513 521 612 412) 3

7 (1, 6, 3, 5, 2) (4) (111 612 622 311 513 214 222 233 413 424) 1

8 (2, 5, 1, 7, 6) (4, 3) (213 514 523 112 123 714 722 413 424 613 2
621 631 314 324 332)

9 (6, 5, 7, 2, 4, 3, 1) – (614 621 514 521 712 724 213 413 424 312 0
113 121)

10 (3, 6, 2, 1, 4, 5) (2) (311 322 613 621 213 224 233 114 124 132 2
413 424 431 511 522 534)

effectiveness of the proposed algorithm. On the basis of the experiments, option 3 gives
the overall best result: here, the higher probability of mutation rate improves the result.
Higher mutation rate generally promotes higher probability of selecting a new gene and
helps avoid being trapped in local optima. Although a higher mutation rate may lead to an
unfeasible result in certain applications of mutation operator, the result becomes feasible
because the gene is retrieved from the machine pool when the constraint-chromosome
approach is used.

The best solutions for the 10 problem sets are given in Table 5. The number of part
types allocated and the number of part types that are not allocated are shown, along
with the values of the respective chromosomes and number of generations required to
converge. As an example, from data set 1, from eight part types that had to be allocated,
five part types (part types 6, 5, 7, 3 and 1) are allocated, whereas the other three part
types (part types 4, 8 and 2) are not allocated. On the basis of the value of the respective
chromosomes, the details of the allocation for the part types are given in Table 6.

The comparative study performed between the proposed algorithm and existing litera-
ture is given in Table 7. The proposed algorithm of the current study is compared with
the CCGA with heuristics developed by Shanker and Srinivasulu [1], Mukhopadhyay et
al. [2], Nagarjuna et al. [18] and Yogeswaran et al. [41]. Based on the results, the pro-
posed algorithm performs better than most heuristics available in literature in terms of
the minimization of system unbalance as well as COFs (Table 7). The proposed algorithm
achieves the best solutions for 6 of 10 data sets tested. The average COF (1.8045) in the
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Table 6. Detailed allocation for data set 1

Part Type Operation Machine Number
6 1 4

2 2
3 2

5 1 2
2 2

7 1 2
2 1

3 1 1
2 3

1 1 3

Table 7. Comparison of the proposed CCGA with other heuristics

Data Number of Total [15] [10] [18] [41] Proposed Algorithm
Set Part Types Number of TH SU TH SU TH SU TH SU TH SU

Operations COF COF COF COF COF

1 8 19
39 253 42 122 48 14 48 14 52 0
1.3557 1.4615 1.4615 1.5927 1.6500

2 6 9
51 388 63 202 46 18 63 22 64 15
1.4965 1.7578 1.6208 1.8516 1.8689

3 5 9
63 288 79 286 69 94 73 28 73 28
1.6475 1.851 1.8245 1.9095 1.9095

4 5 10
51 819 51 819 51 819 51 819 51 819
1.5734 1.5734 1.5734 1.5734 1.5734

5 6 10
62 467 76 364 53 175 61 264 61 69
1.5726 1.8104 1.6062 1.6651 1.7667

6 6 8
51 548 62 365 64 69 64 37 64 7
1.4132 1.6592 1.8408 1.8731 1.8731

7 6 10
54 189 66 147 54 165 63 231 63 21
1.5939 1.7696 1.6064 1.6874 1.7968

8 7 15
36 459 36 459 44 13 48 63 54 56
1.2752 1.2752 1.6218 1.6529 1.7423

9 7 12
79 462 88 309 88 309 88 309 88 56
1.6571 1.8391 1.8391 1.8391 1.9708

10 6 16
44 518 56 320 54 82 56 122 67 205
1.3869 1.6692 1.7633 1.7723 1.8932

Average COF 1.4972 1.6666 1.6889 1.7417 1.8045

Abbreviations: TH, throughput; SU, system unbalance.

last row of Table 7 clearly shows that the proposed CCGA is superior in performance over
the other heuristics considered for evaluation. In addition, most of the superior results
are achieved in the data sets with high number of operations (data sets 1, 7, 8, 9 and 10).
These figures demonstrated that the proposed algorithm in the current study is capable
of handling high-operation machine-loading problems, such as those that usually occurred
in actual practice.
In addition, all data sets achieve fast convergence with good results. These figures

demonstrate the effectiveness of the chromosome representation as well as the crossover
and mutation operators that capably searches diversity for the new solution. Furthermore,
the arrangement of gene formation that carries the relevant information required by the
fitness calculation contributes to the faster processing.

6. Conclusion. The present work discusses the machine-loading problem as a part of
the very important aspect of planning horizon. It deals with the challenge of locating
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the available resources (machine) to load the part types, while considering the constraints
of the problem, such as the machine time available, the number of operations, and the
allowable machines that may be allocated for the operations.

The main contribution of the present research is an efficient heuristic approach based
on CCGA, which can solve a machine-loading problem of FMS. Whereas some of the
previous studies considered part type sequence and operation allocation as separate but
interconnected components, the present research adopts an approach of treating part type
sequencing and machine allocation problem as one main goal. Based on such a goal, the
tasks are carried out concurrently in this work. This process is repeated iteratively until
a termination condition is met, after which the optimal or near-optimal solution has been
obtained.

Exhaustive computations are been carried out to assess the effectiveness of the proposed
algorithm, and its performance has been compared with the previous studies. From the
results, the proposed CCGA offers better results for most of the test problems, in which
the COF increased by 3.60% compared with the best result of the other heuristics. The
right chromosome representation to map the machine-loading problem, which considers
constraints as well as the efficient genetic operators, leads to the good result. In addition,
the proposed algorithm achieves fast convergence, such that most of the best results
are obtained at an early number of generations. This ability is very important for the
manufacturing industry that has always prioritized the use of various methods, by which
to save processing time and cost in generating machine allocation planning. The results
also show that most of the superior results occur on the data sets containing high number
of operations, thus demonstrating the ability of the proposed algorithm to effectively and
efficiently handle high-number operation machine-loading problems that occur in actual
manufacturing scenarios.

The proposed approach can be applied to similar constraint optimization problems,
particularly in allocation and scheduling, where optimizing an objective function is sub-
jected to resource and constraints. Nevertheless, the proposed algorithm is tested on the
data sets available in literature, and the extension of this work may be tested on actual
large-scale problems. Additionally, this work covers only certain constraints with the as-
sumption of sufficient resources available, such as fixtures, jigs and pallets, in the shop
floor. The work may be extended further to cover these resources as part of additional
constraints. Finally, the proposed algorithm can be extended to solve multi-objective
machine-loading problems and offer more flexible attributes.
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