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Abstract. For a class of uncertain nonlinear multivariable discrete time dynamic sys-
tems, an adaptive decoupling controller (ADC) is presented, which can deal with the case
that the zero dynamics (ZD) of the system is not asymptotically stable. The ADC de-
veloped is composed of a linear robust ADC, a neural network (NN) nonlinear ADC and
a switching mechanism. The linear robust ADC can assure the bounded-input-bounded-
output (BIBO) stability of the closed-loop system. The nonlinear NN ADC can improve
the system performance. The switching mechanism is utilized to obtain the improved
system performance and stability simultaneously. Theory analysis and simulation results
are presented to show the effectiveness of the proposed method.
Keywords: Adaptive decoupling control, Multiple models, Stability

1. Introduction. Multiple-input-multiple-output (MIMO) systems usually possess com-
plicated dynamic coupling behaviors. The control schemes for single-input-single-output
(SISO) systems, such as those reported in [1,2], are not easy to implement on complicated
MIMO systems. Hence, how to achieve decoupling control of MIMO systems has become
a topic of considerable research. Decoupling control is initially developed for determin-
istic linear systems, while, for uncertain linear systems, adaptive or active decoupling
schemes are usually adopted [3-5]. In recent years, along with the introduction of neu-
ral networks (NNs), attempts have been made toward adaptive decoupling of uncertain
nonlinear systems and NNs based nonlinear adaptive decoupling control has become the
hotspot.

In [6,7], the nonlinear MIMO system is first decomposed into a linear model incorpo-
rating with an unmodelled dynamics. Then, by combining the one-step-ahead optimal
weighting decoupling control law with a neural network (NN) compensator, an adaptive
decoupling controller (ADC) based on NNs is proposed. However, due to the complexity
of the NN structure and the nonlinear dependence of its map on the parameter values,
stability and performance analysis of the closed-loop system are not provided. Although
some relevant results for adaptive decoupling control using NNs have been presented in
[8-10], some problems remain unsolved, and most of them suffer from one or more of the
following drawbacks: (i) The zero dynamics (ZD) of the system is asymptotically stable.
(ii) The linearized parameters of the system are known a priori. (iii) The NNs used are
linearly parameterized.

To overcome the drawbacks mentioned above, this paper proposes an ADC for a class of
nonlinear MIMO discrete time dynamic systems which are described by a nonlinear auto-
regressive moving average (NARMA) model. The proposed ADC is composed of a linear
robust ADC, a nonlinear NN ADC and a switching mechanism. The controller structure
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is similar to that in [10,11]. However, in [10,11], it is assumed that the ZD of the system to
be controlled is asymptotically stable. This paper relaxes the above assumption, realizes
the adaptive decoupling control of uncertain nonlinear multivariable systems and shows
that the proposed ADC can not only assure the bounded-input-bounded-output (BIBO)
stability of the closed-loop system, but also improve the system performance.
The rest of the paper is organized as follows. The system under consideration is rep-

resented and the control problem is stated in Section 2. Section 3 develops the proposed
ADC which is composed of a linear robust ADC, a nonlinear NN ADC and a switching
mechanism. Global stability of the closed-loop system is analyzed in Section 4. Section 5
gives simulation results showing the effectiveness of the proposed method. Finally, some
conclusions are drawn in Section 6.

2. Nonlinear Decoupling Control for Known Systems.

2.1. Statement of the problem. The system to be controlled is an n-input-n-output
nonlinear discrete time dynamic system which is described by the following NARMA
model with unit delay:

y(t+ 1) = f [y(t), · · · , y(t− na + 1), u(t), · · · , u(t− nb)] (1)

where u(t) ∈ Rn and y(t) ∈ Rn are the system input and output respectively; f [·] ∈ Rn is
a smooth nonlinear vector function; na, nb > 1 are the system orders and the origin is an
equilibrium point.
To control the nonlinear system (1) in a neighbourhood of the origin, the following

Equation (2) is usually used as its equivalent system, which can be obtained by lineariza-
tion using Taylor’s formula around the origin.

A(z−1)y(t+ 1) = B(z−1)u(t) + v[y(t), · · · , y(t− na + 1), u(t), · · · , u(t− nb)] (2)

where A(z−1) and B(z−1) are n × n matrix polynomials in the backward shift operator
z−1 with the orders na and nb respectively; v[·] ∈ Rn is the remained high order nonlinear
term. Without loss of generality, the matrix polynomial A(z−1) is assumed to be monic
and diagonal. In addition, B(0) is assumed to be nonsingular. In the following, we will
consider the system (2) and also make the following assumptions.

Assumption 2.1. (i) The system orders na and nb are known; (ii) The system parameter
matrices forming A(z−1) and B(z−1) are unknown, but lie in a compact region

∑
; (iii)

The high order nonlinear term v[·] is globally bounded.

Assumption 2.2. For a nonlinear equations with the form

C0


x1

x2
...
xn

+


g1(x1, x2, · · · , xn, X0)
g2(x1, x2, · · · , xn, X0)

...
gn(x1, x2, · · · , xn, X0)

 =


r1
r2
...
rn

 (3)

where x1, x2, · · · , xn are unknown variables; X0 ∈ Rm is an arbitrary given vector; gi|i =
1, · · · , n : Rn × Rm → R are continuous bounded nonlinear functions and C0 ∈ Rn×n

is a nonsingular matrix, there exist x∗
1, x

∗
2, · · · , x∗

n satisfying (3) for arbitrary constants
r1, r2, · · · , rn.

Remark 2.1. The contents in Assumption 2.1 are usually made in literature on adaptive
control, such as [10,11]. Assumption 2.2 is made to assure the existence of the control
input in the designed nonlinear NN ADC in the sequel.
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Remark 2.2. Since the delay of the system (2) is unit, the ZD exists [12,13]. In [10,11],
the ZD of the controlled system is assumed to be asymptotically stable, so that the condition
that an input sequence never grows faster than the output sequence is used when proceeding
with stability analysis. In this paper, the stability can be guaranteed without the above
condition, and then the ZD need not be asymptotically stable.

2.2. One-step-ahead optimal weighting decoupling control. To realize decoupling
control, the interaction between the input uj and output yi (j ̸= i) is viewed as measurable
disturbance. The matrix polynomial B(z−1) is split into two terms: B(z−1) = B̄(z−1) +
¯̄B(z−1) with B̄(z−1) being a diagonal matrix polynomial that contains the direct coupling

terms of input-output pairs and ¯̄B(z−1) being a matrix polynomial with zeros on the
diagonal containing the cross coupling terms. Then, the system (2) can be rewritten as

A(z−1)y(t+ 1) = B̄(z−1)u(t) + ¯̄B(z−1)u(t) + v[·] (4)

Introduce the following modified Clarke performance index [6-8]:

J(t) = ∥ē(t+ 1)∥2 (5)

where

ē(t+ 1) = P (z−1)y(t+ 1)−R(z−1)w(t+ 1) +Q(z−1)u(t) + S(z−1)u(t) +K(z−1)v[·]
(6)

is defined as the generalized tracking error of the system; w(t) ∈ Rn is the known ref-
erence input; P (z−1), Q(z−1), R(z−1) and K(z−1) are n × n diagonal weighting matrix
polynomials; S(z−1) is an n×n weighting matrix polynomial with zero diagonal elements.
Introduce the following Diophantine equation:

P (z−1) = FA(z−1) + z−1G(z−1) (7)

where F and G(z−1) are respectively an n × n diagonal constant matrix and diagonal
matrix polynomial with the order ng = max{na−1, np−1}, which are uniquely determined
by (7) [14]. From (7), it is easy to known F = P (0). By left-multiplying both sides of (4)
using F , the one-step-ahead optimal weighting decoupling control law making the index
(5) to be zero is obtained as

[FB(z−1) +Q(z−1) + S(z−1)]u(t) = R(z−1)w(t+ 1)−G(z−1)y(t)− [F +K(z−1)]v[·]
(8)

If v[·] is small, it can be treated as a bounded disturbance and the following linear decou-
pling controller is adopted:

[FB(z−1) +Q(z−1) + S(z−1)]u(t) = R(z−1)w(t+ 1)−G(z−1)y(t) (9)

In the following, a possible choice of the weighting matrix polynomials P (z−1), Q(z−1),
R(z−1), S(z−1) and K(z−1) is given, which is presented as:

P (z−1) = I; Q(z−1) = Λ̄ · (1− z−1); S(z−1) = ¯̄Λ · (1− z−1) (10)

R(z−1) = I; K(z−1) = Γ · (1− z−1) (11)

where I is the identity matrix; Λ̄ is a diagonal constant matrix; ¯̄Λ is a constant matrix
whose diagonal elements are all zero and Γ = B̄−1(1)Λ̄. To this end, to guarantee the
stability of the closed-loop system and the existence of the current input u(t), the constant
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matrices Λ̄ and ¯̄Λ should be selected by a trial and error method to satisfy the following
inequalities:

det{B(z−1) + (1− z−1)A(z−1)(Λ̄ + ¯̄Λ)} ≠ 0, |z| ≥ 1 (12)

det[B(0) + Λ̄ + ¯̄Λ] ̸= 0 (13)

3. ADC Based on Neural Networks and Multiple Models. In this section, we
consider the case that the system orders na and nb are known, but Θ or the linearized
parameter matrices forming A(z−1), B(z−1) and the nonlinear term v[·] are unknown.
As preparation, the weighting matrix polynomials P (z−1), Q(z−1), R(z−1), S(z−1) and
K(z−1) are first off-line chosen possibly by (10) and (11). Left-multiplying both sides of
(2) by F and using (7), the following equation is obtained:

φ(t+ 1) = ΘTX(t) + ζ[X(t)] (14)

where φ(t+1) = P (z−1)y(t+1); Θ = [G0, · · · , Gng ;H0, · · · , Hnb
]T with G0+G1z

−1+ · · ·+
Gngz

−ng := G(z−1) and H0 +H1z
−1 + · · ·+Hnb

z−nb := H(z−1); X(t) = [y(t)T , · · · , y(t−
ng)

T , u(t)T , · · · , u(t− nb)
T ]T ; ζ[X(t)] = Fv[X(t)] with v[X(t)] := v[·]. Consequently, the

linear decoupling controller (9) and the nonlinear optimal decoupling controller (8) can
be rewritten respectively as

ΘTX(t) = R(z−1)w(t+ 1)− [Q(z−1) + S(z−1)]u(t) (15)

ΘTX(t) + ζ[X(t)] = R(z−1)w(t+ 1)− [Q(z−1) + S(z−1)]u(t)−K(z−1)v[X(t)] (16)

3.1. Linear robust ADC. A linear estimate model of (14) is first defined as

φ1(t+ 1) = Θ̂1(t)
TX(t) (17)

where Θ̂1(t) = [· · · , Ĥ1,0(t), · · · ]T is an estimate of Θ at instant t and is updated as

Θ̂1(t) = proj{Θ̂′
1(t)} (18)

Θ̂′
1(t) = Θ̂1(t− 1) +

a1(t)X(t− 1)e1(t)
T

1 +X(t− 1)TX(t− 1)
(19)

a1(t) =

{
1, if ∥e1(t)∥ > 2M
0, otherwise

(20)

e1(t) = φ(t)− φ̂1(t) (21)

where M is a known upper bound of ∥ζ[X(t)]∥; Θ̂′
1(t) = [· · · , Ĥ ′

1,0(t), · · · ]T ; proj{·} is a
projection operator satisfying

proj{Θ̂′
1(t)} =

{
Θ̂′

1(t); Ĥ ′
1,0(t) +Q(0) + S(0) is nonsingular

[· · · , Ĥ ′
1,0(t− 1), · · · ]; otherwise

(22)

Then, according to (15) and the certainty equivalent principle, the linear robust ADC
u1(t) can be calculated from

Θ̂1(t)
TX1(t) = R(z−1)w(t+ 1)− [Q(0) + S(0)]u1(t)

− z[Q(z−1) + S(z−1)−Q(0)− S(0)]u(t− 1)
(23)

where X1(t) = [· · · , u1(t), · · · ]T .
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3.2. Nonlinear NN ADC. The nonlinear estimate model of (14) based on an NN is
defined as

φ̂2(t+ 1) = Θ̂2(t)
TX(t) + ζ̂[X(t)] (24)

where Θ̂2(t) = [· · · , Ĥ2,0(t), · · · ]T is an another estimate of Θ at instant t, whose identifi-

cation algorithm is similar as Θ̂1(t), i.e.,

Θ̂2(t) = proj{Θ̂′
2(t)} (25)

Θ̂2(t) = Θ̂2(t− 1) +
µ(t)X(t− 1)e2(t)

T

1 +X(t− 1)TX(t− 1)
(26)

µ(t) =

{
1, if ∥e2(t)∥ > 2d0
0, otherwise

(27)

e2(t) = φ(t)− φ̂2(t) (28)

where Θ̂′
2(t) = [· · · , Ĥ ′

2,0(t), · · · ]T ; proj{·} is another projection operator satisfying

proj{Θ̂′
2(t)} =

{
Θ̂′

2(t); Ĥ ′
2,0(t) +Q(0) + S(0) is nonsingular

[· · · , Ĥ ′
2,0(t− 1), · · · ]; otherwise

(29)

d0 is a known upper bound of ∥ζ[X(t − 1)] − ζ̂[X(t − 1)]∥; ζ̂[X(t − 1)] is a bounded
continuous nonlinear function, whose output is calculated according to

ζ̂[X(t− 1)] = Ŵ2(t− 1)T · {sigm[Ŵ1(t− 1)T ·X(t− 1) + ρ1]}+ ρ2 (30)

where X(t− 1) ∈ Rn(na+nb+1) is the input of the NN; Ŵ1(t− 1)T ∈ Rn(na+nb+1)×p, Ŵ2(t−
1)T ∈ Rp×n are respectively the estimates of the optimal connection weight matrices
between the input and hidden nodes, and the hidden and output nodes; ρ1 ∈ Rp×1 and
ρ2 ∈ Rn×1 are the biases from the hidden layer and output layer respectively; p is the
number of the hidden nodes; sigm[·] is a sigmoidal operator. It is worthy to emphasis
that similar as in [10,11], no restriction is made on how the estimated weight matrix

Ŵ1(t− 1), Ŵ2(t− 1) are updated except they always lie inside some predefined compact
region.

According to (16) and the certainty equivalent principle, the nonlinear NN ADC u2(t)
can be calculated from

Θ̂2(t)
TX2(t) + ζ̂[X2(t)] = R(z−1)w(t+ 1)− [Q(0) + S(0)]u2(t)

− z[Q(z−1) + S(z−1)−Q(0)− S(0)]u(t− 1)

−K(0)v̂[X2(t)]− z[K(z−1)−K(0)]v̂[X(t− 1)]

(31)

where X2(t) = [· · · , u2(t), · · · ]T ; v̂[X(t)] = F−1 · ζ̂[X(t)].

Remark 3.1. From (29) and Assumption 2.2, it is easy to know the current control input
u2(t) in the nonlinear adaptive controller Equation (31) exists. However, since u2(t) is
nonlinearly parameterized, the compact analytic solution for u2(t) is difficult to obtained.
However, in practice, u2(t) can be generally calculated using an recursive procedure such
as the Newton numerical method etc. Due to the uncertainty of the training of the NN,
the performance or even stability of the closed-loop system can hardly be guaranteed when
the nonlinear ADC (31) is used alone. Therefore, the switching mechanism in the sequel
is indispensable.
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3.3. Switching mechanism. In this section, the problem of adaptive decoupling control
by switching between the linear robust ADC u1(t) and the nonlinear NN ADC u2(t) is
considered. At every instant t, by comparing J1(t) and J2(t), the ADC u∗(t) corresponding
to the smaller J∗(t) is chosen to be applied to the system, i.e.,

u(t) =

{
u1(t), if J1(t) ≤ J2(t)
u2(t), otherwise

(32)

The switching rule function Jj(t), j = 1, 2 is described by

Jj(t) =
t∑

l=1

aj(l)(∥ ej(l) ∥2 −4M2)

2(1 +X(l − 1)TX(l − 1))
+ c

t∑
l=t−N+1

(1− aj(l)) ∥ ej(l) ∥2 (33)

where aj(t) = 1 if ∥ej(t)∥ > 2M , otherwise aj(t) = 0; the identification errors ej(t),
j = 1, 2 are calculated by (21) and (28) respectively; j = 1 denotes linear, j = 2 denotes
nonlinear; N is an integer and c ≥ 0 is a predefined constant.

4. Stability and Performance Analysis. We now present the results on system sta-
bility and performance analysis in the following Theorem 4.2 which is analyzed based on
the following Lemma 4.1, Lemma 4.2 and Theorem 4.1.

Lemma 4.1. Consider the following n-dimension time-invariant system:

x(t+ 1) = Ax(t) + B1(t)u(t) + B2f1[x(t), u(t)] + B3f2(t), x(0) = x0

y(t) = Cx(t) +D1u(t) +D2f1[x(t), u(t)] +D3f2(t)
(34)

where the origin is an equilibrium point; y(t), u(t) are respectively the p-dimension output
and m-dimension input; x(t) is the n-dimension state; f1[·] and f2(t) are n-dimension
bounded nonlinear functions satisfying ∥f1[·]∥ ≤ ∆ with ∆ > 0 being known and ∥f2(t)∥ ≤
∆1 with ∆1 > 0. If the system (34) is asymptotically stable, there exist constants c1 and
c2 such that ∥y(t)∥ ≤ c1 + c2 max

0≤τ≤t
∥u(τ)∥.

Proof: From (34), we have

y(t) = CAtx0 +D1u(t) +
t∑

j=1

CAj−1B1u(t− j) +
t∑

j=1

CAj−1B2f1[x(t− j), u(t− j)]

+
t∑

j=1

CAj−1B3f2(t− j) +D2f1[x(t), u(t)] +D3f2(t)

(35)

Since the system (34) is asymptotically stable, for any j (j = 1, · · · , t), we also have

∥Aj∥ ≤ c0λ
j, 0 ≤ λ < 1 with 0 ≤ c0 < ∞ (36)

Therefore, from (35) and (36), it can be shown that

∥y(t)∥ ≤∥Cx0∥c0λt + ∥D1∥ · ∥u(t)∥+ c0

t∑
j=1

∥Cλj−1B1∥ · ∥u(t− j)∥

+∆ · c0
t∑

j=1

∥Cλj−1B2∥+∆1 · c0
t∑

j=1

∥Cλj−1B3∥+∆ · ∥D2∥+∆1∥D3∥
(37)
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≤∥Cx0∥c0λt + ∥D1∥ max
0≤τ≤t

∥u(τ)∥+ max
0≤τ≤t

∥u(τ)∥ · c0
t∑

j=1

∥Cλj−1B1∥

+∆ · c0
t∑

j=1

∥Cλj−1B2∥+∆1 · c0
t∑

j=1

∥Cλj−1B3∥+∆ · ∥D2∥+∆1 · ∥D3∥

Denote c1 = ∥Cx0∥ · c0 +∆ · c0∥CB2∥/(1− λ) + ∆1 · c0∥CB3∥/(1− λ) + ∆∥D2 +∆1∥D3∥,
c2 = ∥D1∥+ c0∥CB1∥/(1− λ), then from (37), the result is obtained.

Lemma 4.2. For the specified matrix polynomials P (z−1), Q(z−1) and S(z−1) chosen by
(10), provided (12) is satisfied, there exist positive constants d1 and d2, such that

∥X(t)∥ ≤ d1 + d2 max
0≤τ≤t

∥ē(τ + 1)∥ (38)

Proof: Combining (2) with (6) and eliminating u(t) and y(t+ 1) respectively, we can
obtain

{P (z−1)B(z−1) + A(z−1)[Q(z−1) + S(z−1)]}u(t)
=A(z−1)ē(t+ 1) + A(z−1)R(z−1)w(t+ 1)− [P (z−1) + A(z−1)K(z−1)]v[X(t)]

(39)

[B̃(z−1)P (z−1) + Q̃(z−1)A(z−1)]y(t+ 1)

=B̃(z−1)ē(t+ 1) + B̃(z−1)R(z−1)w(t+ 1) + [Q̃(z−1)− B̃(z−1)K(z−1)]v[X(t)]
(40)

where B̃(z−1), Q̃(z−1) are determined by

B̃(z−1)[Q(z−1) + S(z−1)] = Q̃(z−1)B(z−1) (41)

det B̃(z−1) = detB(z−1) (42)

Since P (z−1)B(z−1) + A(z−1)[Q(z−1) + S(z−1)] is stable, for (39), u(t) can be viewed
as the output of the following asymptotically stable system:

x(t+ 1) = Ex(t) + F1ē(t+ 1) + F2w(t+ 1) + F3v[X(t)]

u(t) = Gx(t) +H1ē(t+ 1) +H2w(t+ 1) +H3v[X(t)]
(43)

where E is stable; ē(t+1) is the input; w(t) is the known bounded disturbance; v[X(t)] is
the nonlinear disturbance. Therefore, from (iii) in Assumption 2.1 and Lemma 4.1, there
exist constants d3 and d4 such that

∥u(t)∥ ≤ d3 + d4 max
0≤τ≤t

∥ē(τ + 1)∥ (44)

Introducing matrix polynomials ˜̃A(z−1), ˜̃B(z−1) which satisfy

A(z−1) ˜̃B(z−1) = B(z−1) ˜̃A(z−1) (45)

det ˜̃B(z−1) = detB(z−1) (46)

then from (41), (42), (45) and (46), we can obtain

det[B̃(z−1)P (z−1) + Q̃(z−1)A(z−1)]

= det{P (z−1)B(z−1) + A(z−1)[Q(z−1) + S(z−1)]}
(47)

Consequently, from (40) and (47), similar as (44), it can be easily obtained that there
exist positive constants d5 and d6, such that

∥y(t)∥ ≤ d5 + d6 max
0≤τ≤t

∥ē(τ + 1)∥ (48)

Since X(t) = [y(t)T , · · · , u(t)T , · · · ]T , from (44) and (48), there exist positive constant d1
and d2, such that (38) is obtained.
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Theorem 4.1. For the specified matrix polynomials P (z−1), Q(z−1) and S(z−1) chosen
by (10), provided (12) is satisfied, the linear robust adaptive decoupling control algorithm
(17)-(23) when applied to the system (2) leads to a BIBO stable closed-loop system.

Proof: Define Θ̃1(t) = Θ̂1(t)−Θ, then by (14), (17) and (21), we have

e1(t) = −Θ̃1(t− 1)TX(t− 1) + ζ[X(t− 1)] (49)

Consequently, from (18), (19), (22) and (49), we can obtain

∥Θ̃1(t)∥2 ≤ ∥Θ̃1(t− 1)∥2 − a1(t)[∥e1(t)∥2 − 4∥ζ[X(t− 1)]∥2]
2(1 +X(t− 1)TX(t− 1))

≤ ∥Θ̃1(t− 1)∥2 − a1(t)[∥e1(t)∥2 − 4M2]

2(1 +X(t− 1)TX(t− 1))

(50)

From (18), since a1(t) = 1 for ∥e1(t)∥ > 2M and is 0 otherwise, {∥Θ̃1(t)∥2} is a nonin-

creasing sequence. Hence from (ii) in Assumption 2.1, ∥Θ̂1(t)∥ is bounded. Moreover,

lim
N→∞

N∑
t=1

a1(t+ 1)(∥e1(t+ 1)∥2 − 4M2)

2(1 +X(t)TX(t))
< ∞ (51)

lim
t→∞

a1(t+ 1)(∥e1(t+ 1)∥2 − 4M2)

2(1 +X(t)TX(t))
→ 0 (52)

From (17), (21) and (23),

e1(t+ 1) =φ(t+ 1)− φ̂1(t+ 1)

=P (z−1)y(t+ 1)− Θ̂1(t)
TX(t)

=P (z−1)y(t+ 1)−R(z−1)w(t+ 1) + [Q(z−1) + S(z−1)]u(t)

(53)

then according to (6) and (53),

ē(t+ 1) = e1(t+ 1) +K(z−1)v[X(t)] (54)

By (38) and (54), and the boundedness of v[X(t)], there exist positive constants c3, c4
such that

∥X(t)∥ ≤ c3 + c4 max
0≤τ≤t

∥e1(τ + 1)∥ (55)

Then from (52), (55) and adopting the similar line as Theorem 6.1 in [11], we obtain that
∥e1(t+ 1)∥ is bounded, therefore the closed-loop system is BIBO stable.

Theorem 4.2. For the specified matrix polynomials P (z−1), Q(z−1), R(z−1), S(z−1) and
K(z−1) chosen by (10) and (11), provided (12) is satisfied, the proposed multiple model
adaptive decoupling control algorithm (14)-(30) when applied to the system (2) leads to a
BIBO stable closed-loop switching system. Moreover, for arbitrary small positive number
ε, the steady state generalized tracking error always satisfies ∥ē(t)∥ < 2M + ε. Especially,
if the nonlinear model is chosen eventually, ∥ē(t)∥ ≤ 3d0, at steady state.

Proof: Define Θ̃2(t) = Θ̂2(t)−Θ, then by (14), (24) and (28), we have

e2(t) = −Θ̃2(t− 1)TX(t− 1) + ζ[X(t− 1)]− ζ̂[X(t− 1)] (56)

Consequently, from (25), (26), (29) and (56), we can obtain

∥Θ̃2(t)∥2 ≤ ∥Θ̃2(t− 1)∥2 − µ(t)[∥e2(t)∥2 − 4∥ζ[X(t− 1)]− ζ̂[X(t− 1)]∥2]
2(1 +X(t− 1)TX(t− 1))

≤ ∥Θ̃2(t− 1)∥2 − µ(t)[∥e2(t)∥2 − 4d20]

2(1 +X(t− 1)TX(t− 1))

(57)
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From (27), since µ(t) = 1 for ∥e2(t)∥ > 2d0 and is 0 otherwise, {∥Θ̃2(t)∥2} is a nonin-

creasing sequence. Hence from (ii) in Assumption 2.1, ∥Θ̂2(t)∥ is bounded.
According to (24), (28), (31), (54) and the certainty equivalence principle, at every

instant t,

ē(t+ 1) = e1(t+ 1) +K(z−1)v[X(t)], or (58)

ē(t+ 1) = e2(t+ 1) +K(z−1){v[X(t)]− v̂[X(t)]} (59)

Since at every instant, the identification error of the system e(t+1) = e1(t+1) or e2(t+1),
then by (38) in Lemma 4.2, the boundedness of v̂[X(t)] and (iii) in Assumption 2.1, there
exist positive constants c5 and c6 such that

∥X(t)∥ ≤ c5 + c6 max
0≤τ≤t

∥e(τ + 1)∥ (60)

From (51), it is easy to know J1(t) is always bounded. For J2(t), there exist two cases:
(i) J2(t) is bounded. By the switching law (32), it follows that

lim
t→∞

a2(t+ 1)(∥e2(t+ 1)∥2 − 4M2)

2(1 +X(t)TX(t))
→ 0 (61)

Therefore, the identification error e(t) of the system satisfies

lim
t→∞

a(t+ 1)(∥e(t+ 1)∥2 − 4M2)

2(1 +X(t)TX(t))
→ 0 (62)

where

a(t+ 1) =

{
1, if ∥e(t+ 1)∥ > 2M
0, otherwise

(ii) J2(t) is unbounded. Since J1(t) is bounded, there exists instant t0 such that J1(t) ≤
J2(t), ∀t ≥ t0. Therefore, the identification error e(t+ 1) = e1(t+ 1) also satisfies (60) at
∀t ≥ t0 + 1.

By (60) and (62), and following the similar line as Theorem 4.1, the BIBO stability of
the closed-loop switching system is obtained. From (62) and the boundedness of X(t),
the identification error e(t) of the system satisfies

lim
t→∞

a(t+ 1)(∥e(t+ 1)∥2 − 4M2) = 0 (63)

i.e., for arbitrary small ε > 0, there exists time instant T , such that when t > T , ∥e(t)∥ ≤
2M + ε. From (58) and (59), since K(z−1)|z=1 = 0, the steady-state generalized tracking
error ē(t) = e(t), which satisfies ∥ē(t)∥ ≤ 2M + ε.

From (57), it is easy to know

lim
t→∞

µ(t+ 1)(∥e2(t+ 1)∥2 − 4d20)

2(1 +X(t)TX(t))
→ 0 (64)

From the boundedness of X(t), we can obtain that the identification error e2(t) satisfies

lim
t→∞

µ(t+ 1)(∥e2(t+ 1)∥2 − 4d20) → 0 (65)

Choose ε = d0, then when t > T , ∥e2(t)∥ ≤ 3d0. Consequently, if the nonlinear model is
chosen eventually, at steady state, the generalized tracking error satisfies ∥ē(t)∥ ≤ 3d0.
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5. Simulation. In this section, simulations are conducted and the results are presented.
Since comparing with [10,11], one of the main contributions of this paper is the relaxation
of the assumption that the ZD of the controlled system is asymptotically stable, to illus-
trate the effectiveness of the proposed method, examples should be selected such that the
ZD is not asymptotically stable. To this end, the following two-input-two-output discrete
time nonlinear system is considered:

y1(t+1) = 1.1y1(t)+0.2u1(t)+u2(t)+u1(t−1)+1.2 sin(u1(t)+y2(t))−
1.2(u1(t) + y2(t))

1 + u1(t)2 + y2(t)2

y2(t+1) = 0.2y2(t)+0.25u1(t)+0.2u2(t)+u2(t−1)+sin(u2(t)+y1(t))−
(u2(t) + y1(t))

1 + u2(t)2 + y1(t)2

The reference trajectories w1 = 0.1sign(sin(πt/100)) and w2 = 0.1 are chosen to be
followed. It is easy to know the origin is one of the equilibrium points and the ZD of the
above system is not asymptotically stable around the origin.
According to what is stated in Section 2, the weighting matrix polynomials P (z−1),

Q(z−1), R(z−1), S(z−1) and K(z−1) are offline chosen as

P (z−1) = R(z−1) =

(
1 0
0 1

)
, Q(z−1) =

(
1.2− 1.2z−1 0

0 0.2− 0.2z−1

)
S(z−1) =

(
0 0.6− 0.6z−1

−7 + 7z−1 0

)
, K(z−1) =

(
0.3− 0.3z−1 0

0 0.5− 0.5z−1

)
The architecture of the NN described in Section 3 is adopted with the sigmoidal operator

sigm[x] = [ex−e−x]/[ex+e−x]. The back-propagation with adaptive learning rate in batch
mode is chosen. In order to determine the optimum number of hidden nodes, a series of
different topologies are used. It is achieved that the square error value is least when the
number of hidden nodes is 23. So number 23 is chosen as the number of hidden nodes.
In addition the parameters of the network are chosen as follows: Learning ratio lr= 0.01
and Momentum factor mc = 0.001. It is worthy to emphasis that the nonlinear NN ADC
u2(t) is computed by the Newton iterative procedure within a given tolerance tl= 0.001.
As comparison, simulations are first conducted by using the method in [10]. The results

are illustrated in Figure 1. It can be seen that using the method in [10], the system can
not be controlled at all. Figure 2 shows the performance when the ADC proposed in this
paper is used. It is obvious that the good tracking performance of the output signals and
small amplitude of the input signals are all achieved. Figure 3 is the switching sequence
between the linear robust ADC u1(t), and the nonlinear NN ADC u2(t). From Figure 3,
in most of the time, the nonlinear NN ADC u2(t) works, and only when it degrades, in
order to guarantee the stability of the system, the linear robust ADC u1(t) begins to work
until the NN ADC u2(t) recovers.

6. Conclusion. In this paper, a nonlinear MIMO discrete time dynamic system is ex-
pressed as a linear model incorporating with a high order nonlinear term around the
origin. A linear robust ADC and a nonlinear NN ADC are designed respectively. By
the switching mechanism, without the assumption that the ZD is asymptotically stable,
the BIBO stability of the closed-loop switching system is assured and the performance is
improved.
The ADC method is proposed under the condition that the high order nonlinear term

of the controlled system is globally bounded. The problem becomes extremely challenging
when the nonlinearity is not globally bounded. Just as what is pointed out in [11], two
directions of research in this respect are possible: one is to establish some global results
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Figure 1. System performance when the method proposed in [10] is used
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Figure 2. System performance when the ADC proposed in this paper is used

for the closed-loop system by imposing more structural constraints on the system. The
other is to establish some local results using continuity arguments.
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