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Abstract. Since a single computationally hard problem today may possibly be solved
efficiently in the future, many researchers endeavored in recent years to base their cryp-
tosystem security on solving two or more hard problems simultaneously to enhance the
system security. However, it is found that many previously suggested signature schemes
with their (1) security based on integer factorization and discrete logarithm problems and
with (2) verification equation using exponential quadratic forms were not as secure as
claimed and gave no provable security under the random oracle model. We, therefore,
use the theory of cubic residues to present a new signature scheme with an exponential
cubic verification equation to prevent the attack from Pollard-Schnorr’s congruence so-
lutions and give a formal proof of the scheme security by random oracle modeling. We
formally prove that, based on solving the discrete logarithm problem with a composite
modulus (which has been shown by Bach in 1984 to be exactly as hard as simultaneously
solving the integer factorization and the discrete logarithm with a prime modulus), the
proposed scheme is resistant against both no-message and adaptively chosen-message at-
tacks.
Keywords: Cubic residue, Discrete logarithm problem with a composite modulus, Prov-
able security, Random oracle model

1. Introduction. In 1976, the concept of digital signatures with a public-key cryptosys-
tem (PKC) was proposed by Diffie and Hellman [1]. Although several other researchers
such as Rivest-Shamir-Adleman (RSA) [2], Rabin [3], Ong et al. [4], ElGamal [5] and
Schnorr et al. [6] followed up with alternative schemes, they all shared the same trait
of relying on only one computationally infeasible mathematical problem, e.g., the dis-
crete logarithm problem (DLP) or integer factorization problem (FAC), for their security.
Even though the assumption that the single underlying mathematical problem is compu-
tationally infeasible remains mostly valid today, it may diminish in the future because of
the possibility of great progress in efficiency of problem solving algorithms or ability of
computing systems, which is a fact that many experts fear will soon render the current
single-problem schemes inaptly insecure. This has led many authors to come up with
PKC schemes based on multiple hard problems [7-12] to avoid the increasing security
risk.

The first design that emerged from this new school of multiple-hard-problem signature
schemes was a key distribution scheme by McCurley [13] in 1988. Ever since McCurley’s
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proposal, several variants have also been suggested. In 1992, for example, Brickell and
McCurley [9] constructed an interactive identification scheme in which the security was
based on both discrete logarithm and factorization. Harn [8] did the same in his new
signature scheme that combined RSA [2] and ElGamal [5] signature schemes, which,
unfortunately, was later discovered in 1996 by Lee and Hwang [14] to be flawed since the
integrity of the signature could be compromised if its discrete logarithm was solved. In
1997, Laih and Kuo [15] also presented a new signature scheme that was also based on
two hard problems. However, their scheme suffered from large computational and memory
requirements for key production.
In 1998, Shao [11] also proposed two two-hard-problem digital signature schemes. How-

ever, Li and Xiao [16] revealed that the two schemes were insecure. If one valid signature
is known, the attacker can forge a valid signature for any message. Furthermore, in 1999,
Lee [17] also demonstrated that Shao’s schemes could be broken if the factorization prob-
lem was solved because the signer’s secret key could be recovered with a known signature.
He [12] in 2001 proposed a scheme intended to overcome the weakness in Shao’s design.

However, Sun [18] indicated that He’s scheme was only discrete logarithm based. Although
Hwang et al. [19] proposed a scheme to improve the efficiency of He’s scheme, in the same
year, Ding and Laih [20] and Shao [21] also found that He’s scheme was not as secure as
claimed.
Like He, Tzeng et al. [22] in 2004 proposed a new scheme said to be more optimal than

Shao’s [21], which he demonstrated to be resistant to at least three forms of attacks. Shao
[23], however, argued that, contrary to the claim, the new scheme of Tzeng et al. [22] was
vulnerable to signature forging using a probabilistic algorithm by Pollard and Schnorr [24]
if the solutions to the discrete logarithm problems were found. In addition, the private
keys of legal signers may also be recovered if the attacker could successfully factor the
composite number. In the same year, Chang et al. [25] also attempted an improvement
since they claimed He’s scheme [12] contained a flaw in which not only could the forgers
forge valid signatures, but a public key might also have more than one corresponding
secret key.
In 2007, Lin et al. [26] presented an improvement on Shao’s signature schemes [11]

and showed that it was tamper-resistant to Lee’s attack [17]. However, to forge a valid
signature for a given message using Lin et al.’s method [26], the attacker would only have
to solve the factorization problem.
Using the quadratic residues theory, Wei [27] also improved Shao’s schemes in 2007 to

propose two new schemes based on two hard problems. Yet, Zheng et al. [28] in 2008 broke
the Wei’s digital signature schemes: the attacker can forge signatures for any arbitrary
message without any knowledge about the private keys. More recently, Lin et al. [29]
found another vital flaw in Wei’s digital signature schemes from its exponential quadratic
form based verification equation. One can forge a valid signature of any message by
using Pollard-Schnorr’s method [24], and neither the discrete logarithm nor the factoring
problem needed to be solved.
From the discussion above, we see that many of the published signature schemes based

on both factorization and discrete logarithm problems have suffered from security flaws
and that, in addition, seldom gave provable security using a random oracle.
Among these schemes, it is also found that some signature schemes having their ver-

ification equations based on exponential quadratic form can be easily defeated by the
method of Pollard-Schnorr’s congruence solution. Such flawed signature schemes include
Ong et al. [4] in 1984, Shao in 1998, He in 2001, Tzeng in 2004 and Wei in 2007, etc.
The design in this paper, therefore, will extend the verification equation from exponential
quadratic form to the cubic form by taking advantage of the cubic residue theory, which
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forms the core for a new digital signature that will be discussed in the following sections.
The security in our proposed scheme is based on solving the discrete logarithm with a
composite modulus, which has been shown by Bach [30] in 1984 to be exactly as hard
as simultaneously solving the integer factorization problem and the discrete logarithm
problem with a prime modulus. The Random Oracle modeling and the Forking Lemma
technique by Pointcheval-Stern [31] will be used to demonstrate the security strength of
the proposed scheme.

The structure of this paper is organized as follows. Section 2 reviews the definition
of provable security and the random oracle model. In Section 3, we will introduce some
mathematical properties of cubic residues that will be used to create an environment
suitable for our signature scheme in the next section. Section 4 describes the proposed
signature scheme, where Section 5 explains why our verification equation in exponential
cubic form can be immune to Pollard-Schnorr’s [24] congruence solution attack. It also
provides a security proof against existential forgery under no-message as well as adaptive
chosen-message attacks under the random oracle model. Finally, concluding remarks are
given in Section 6.

2. The Concept of Provable Security. In this section, we will first review the concept
of provable security of signature schemes and then the random oracle model.

2.1. Provable security. In order to safeguard information from possible malicious at-
tackers, information security has become the main field of research aimed to solve such
issues. We usually illustrate the security of a digital signature system via the technique
of problem reduction, and in order to prove that a signature scheme S is indeed secure,
we must refer to:

1). Clearly define what the security of the signature system is.
2). Describe what related information of the system an attacker may request to obtain

when attacking a scheme S.
3). Select an acknowledged computationally hard problem H.
4). Reduce “solving this hard problem H” to “breaking the scheme S”. This means that if

one can break the scheme S then he can solve the hard problem H by using the same
breaking algorithm.

From the security aspect, some cryptographic algorithms and protocols today offer few
securities. Cryptographic schemes usually follow a development cycle of trial-and-error at
the expense of individual and corporate users. To provide an even more reliable cryptosys-
tem security measure, security implementers are increasingly demanding mathematically
proven guarantees.

That a given digital signature scheme is proven secure often refers to the accepted as-
sumption that the underlying mathematical algorithms are sufficiently ‘hard’ to solve –
which implies the protection of data. Digital signature algorithms typically include com-
puting the discrete logarithm, factoring a composite number, inverting the RSA function
[2] and computing the Diffie-Hellman problem [1], etc. Although the relationship between
provable security and the complexity theory has yet to be fully understood, most modern
security proofs accept this reduction approach that relies on the assumption of the hard-
ness of the aforementioned mathematical problems [32]. Provable security is of course not
completely secure, but it is the most acceptable level of security for the time being.

The standard security definition of signature schemes was given by Pointcheval and
Stern [33]. There are two specific kinds of attacks against signature schemes: the no-
message attack and the known-message attack. In the first scenario, the attacker only
knows the public key of the signer; in the second one, the attacker has access to a list
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of message-signature pairs. The strongest known-message attack is called the adaptively
chosen-message attack, in which the attacker can ask the signer to sign any message if
he has knowledge of the signer’s public key. He can then adapt his queries according to
previous message-signature pairs.

2.2. Random oracle. There are many real world random functions whose inputs and
outputs defy statistical correlations. An ideal application for these random functions is
the production of digital signatures. In the context of cryptographic proof, random oracles
are often used in place of real life random hash functions, i.e., if a scheme is proven secure
under the random oracle model, it is believed to be equally as secure when hash functions
are used in its place.
In 1993, Bellare and Rogaway [34] proposed the random oracle paradigm in which a

theoretical random function h that maps each input to a truly random output was used
for cryptographic proofs. In practice, however, h is set to some specific function derived in
some way from a standard cryptographic hash function H like SHA-1, MD5, RIPEMD-160
or others. Bellare and Rogaway claimed that the random oracle model was efficient and
guaranteed security. Although the random oracle model is not at the same level as those
of the standard provable security approach, it is arguably superior to those provided by
totally ad hoc protocol design, provided that the instantiating function h was carefully
chosen. Bellare and Rogaway conjectured that the resulting protocol was secure as long
as the protocol and the hash function were sufficiently independent.
However, many experts questioned Bellare and Rogaway’s random oracle model. Canetti

et al. [35], for instance, demonstrated in 2004 that it was possible to have a scheme proven
secure under the random oracle model and yet insecure when a specific hash function was
used. Pointcheval and Stern [33] also showed how a scheme proven secure under the ran-
dom oracle model could have its discrete logarithm problem solved by the oracle replay
attack using the Forking Lemma technique.
For a digital signature scheme to be proven secure under the random oracle model, it

generally needs to have the following properties by referring to [36].

1). The random oracle model assumes a publicly accessible oracle that everyone can access
(it is callable to all participants in the scheme), including the signer, the verifier and
the attacker.

2). In order for a given scheme to be secure, one must prove, using the problem reduce
method under the random oracle model, that “if there exists at least one attacker
with a non-negligible probability of success of breaking the scheme in question, then
it is also true that the attacker can execute a algorithm of his own design with a non-
negligible probability of success in solving the underlying mathematical algorithm of
the scheme”.

3). From a theoretical point of view, no (efficiently-computable) hash function can possi-
bly be a random function. In reality, a cryptographic hash function is instantiated as
the random oracle (the random oracle model is regarded as a bridge between theory
and practice).

4). From a practical point of view, it is better to have a construction that can be proven
secure in the random oracle model than to have a construction with no proof at all.

5). The theoretical random oracle model and a sufficiently random hash function are
computationally interchangeable.

A scheme will only fit the framework of provable security under the random oracle
model if it satisfies all of the above conditions. Although highly theoretical and not
absolutely guaranteed, the security proof under the random oracle model still gives the
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users a higher degree of confidence not afforded by most traditional designs. This is why
the random oracle model is widely viewed as a bridge between theory and practice.

3. The Concept and Mathematical Properties of Cubic Residues. We will first
introduce the definition and several important properties of cubic residues, since our
proposed scheme in Section 4 is also based on cubic residues. In this section, we will
briefly review some number theory propositions related to cubic residues. Propositions
3.1 to 3.6 are some basic properties about residue numbers, where the proofs can be found
in [37].

3.1. Cubic residue class ring over Z[ω]. Let Z denote the ring of integers, i.e., the
set of 0, ±1, ±2, · · · together with the usual definition of addition and multiplication,

and let ω = −1+
√
−3

2
. Consider the set D = Z[ω] = {a + bω|a, b ∈ Z} and define

(a+ bω)+ (c+dω) = (a+ c)+ (b+d)ω and (a+ bω)(c+dω) = (ad− bd)+ (ad+ bc− bd)ω,
for all a + bω, c + dω ∈ D, then D is a ring. If α = a + bω ∈ D, then ᾱ = a + bω̄ =
a+ bω2 = (a− b)− bω ∈ D, here ᾱ means a complex conjugate of α. For α = a+ bω ∈ D,
we define the norm of α as N(α) = αᾱ = a2 + b2 − ab. Then, D is a Euclidean domain
under norm N and α ∈ D is a unit iff N(α) = 1. Thus, the units in D are ±1, ±ω
and ±(1 + ω). This implies that it is also a principle ideal domain and then an unique
factorization domain, i.e., every element can be decomposed into a product of irreducible
elements uniquely up to a unit element. Note that the primes in Z need not be primes in
D. For example, 7 = (3+ω)(2−ω). To avoid some confusion, we shall call the primes in
Z rational primes and refer to those in D simply as primes. The following Propositions
3.1 to 3.6 are quoted from [39].

Proposition 3.1 (Proposition 9.1.3. [37]). If π ∈ D such that N(π) = p is a rational
prime, then π is a prime in D.

Proposition 3.2 (Proposition 9.1.4. [37]). Suppose that p ≡ 1 mod 3 is a rational prime,
then p = N(π) = ππ̄ where π is a prime in D.

If α, β, γ ∈ D and γ ̸= 0 is not a unit, we say that α is congruent to β modulo γ if
γ |α− β , where we write α ≡ β mod γ. Just as in Z, the congruence classes modulo γ
made into a ring Dγ = D/γD is called the residue class ring modulo γ.

Proposition 3.3 (Proposition 9.2.1. [37]). Let π ∈ D be a prime, then Dπ: = D/πD is
a finite field with N(π) elements.

Let π be a prime in D. Then, D∗
π, the multiplicative group of Dπ, forms a cyclic group

with N(π)−1 elements. The following proposition is similar to the famous Fermat’s Little
Theorem.

Proposition 3.4 (Proposition 9.3.1. [37]). Let π ∈ D be a prime and α ∈ D. If π- α,
then αN(π)−1 ≡ 1 mod π.

If N(π) ̸= 3, it is easily seen that the residue class of 1, ω, ω2 are distinct in Dπ.
Consequently, we have the following proposition.

Proposition 3.5 (Proposition 9.3.2. [37]). Suppose that Zm is a prime in D such that
N(π) ̸= 3 and α ∈ D such that π- α, then there is a unique integer m = 0, 1 or 2 such

that α
N(π)−1

3 ≡ ωm mod π.

Definition 3.1. If π is a prime in D such that N(π) ̸= 3 and α ∈ D, the cubic residue
character of α modulo π, denoted as

(
α
π

)
3
, is given by
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(a)
(α
π

)
3
= 0 if π|α.

(b)
(α
π

)
3
≡ α

N(π)−1
3 mod π if π - α.

Notice that with Proposition 3.5,
(
α
π

)
3
= ωm, m = 0, 1 or 2, if π- α.

We say that α is a cubic residue mod π if x3 ≡ α mod π is solvable. The cubic residue
character plays the same role in the theory of cubic residues as the Legendre symbol does
in the theory of quadratic residues.

Proposition 3.6 (Proposition 9.3.3. [37]). Let π be a prime in D such that N(π) ̸= 3
and α, β ∈ D. Then,

(a)
(α
π

)
3
= 1 iff α is a cubic residue.

(b) α
N(π)−1

3 ≡
(α
π

)
3
mod π.

(c)

(
αβ

π

)
3

=
(α
π

)
3

(
β

π

)
3

.

(d) If α ≡ β mod π, then
(α
π

)
3
=

(
β

π

)
3

.

3.2. Cubic residue mod pq. Suppose that p and q are distinct rational primes. If
p ≡ 1 mod 3 and q ≡ 1 mod 3, then by Proposition 3.2, there are two primes π and π′ in
D such that p = N(π) = ππ̄ and q = N(π′) = π′π̄′. In the following theorem, we want to
show that Dππ′ is ring isomorphic to Zpq.

Theorem 3.1. Let p ≡ 1 mod 3 and q ≡ 1 mod 3 be distinct rational primes. Let π and
π′ be two primes in D such that p = N(π) = ππ̄ and q = N(π′) = π′π̄′, respectively.
Then, Dππ′ is ring isomorphic to Zpq.

Proof: Since p ≡ 1 mod 3 and q ≡ 1 mod 3 are distinct rational primes, by Proposition
3.2, there are two primes π = a1 + b1ω and π′ = a2 + b2ω in D such that p = N(π) = ππ̄
and q = N(π′) = π′π̄′. Let γ = ππ′ = a3 + b3ω, so N(γ) = N(ππ′) = N(π) ·N(π′) = pq.
Note that gcd(b3, pq) = 1. Since pq = N(γ) = a23 + b23 − a3b3 > |a3b3| ≥ |b3| implies
gcd(b3, pq) ̸= pq, if gcd(b3, pq) = p(or q) then p| a3 and p| γ so that p2| γγ̄ = pq, which is
impossible. Accordingly, for every u = m + nω ∈ D, there is a unique element c ∈ Zpq

such that cb3 ≡ n mod pq; that is, u− cγ ≡ m− ca3 mod pq and u ≡ m− ca3 mod γ.
Since m − ca3 is a rational integer, we may define a mapping ϕ from D into Zpq by

ϕ(u) = m−ca3 mod pq, where u = m+nω ∈ D and c, a3 are defined as the above. Firstly,
we show that ϕ is well defined, namely, for u, u′ ∈ D, if u = u′ we have ϕ(u) = ϕ(u′).
Let u ≡ r mod γ and u′ ≡ r′ mod γ. If u = u′, then r ≡ r′ mod γ and there exists a
α ∈ D such that r − r′ = αγ. Since N(r − r′) = (r − r′)2 = N(α)N(γ) = pqN(α), and
p, q are rational primes, we have pq|r − r′, which implies r ≡ r′ mod pq. We thus have
ϕ(u) = r mod pq ≡ r′ mod pq = ϕ(u′).
Secondly, it is obvious that ϕ is a ring homomorphism.
Thirdly, we show that ϕ is onto as follows. For any r ∈ Zpq, since gcd(a3, pq) = 1,

we may solve ca3 ≡ m − r mod pq for some c, where m is any rational integer. Let
u = m+nω ∈ D, where n ≡ cb3 mod pq. Then, u−cγ ≡ r mod pq, and thus, u ≡ r mod γ.
Accordingly, by the definition of ϕ, ϕ(u) = r means that ϕ is onto.
Finally, since the kernel of ϕ is

Ker ϕ = {m+ nω ∈ D |ϕ(m+ nω) = 0}
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= {m+ nω ∈ D |m− ca3 ≡ 0 mod pq and n ≡ cb3 mod pq}
= {m+ nω ∈ D |m+ nω = c(a3 + b3ω) = c γ }
= γD,

by the ring isomorphism theorem Dππ′ = Dγ = D/γD = D/Kerϕ, ϕ induces the ring

isomorphism ϕ̄ : Dππ′ → Zpq defined by ϕ(u + ππ′D) = ϕ(u) for all u ∈ D so that Dππ′

and Zpq are ring isomorphic.
Since Dππ′ is ring isomorphic to Zpq, we infer that Dππ′ has N(ππ′) = pq elements.
Furthermore, in the proof of Theorem 3.1, we have shown that each element of D is

congruent to a rational integer mod ππ′ in Dππ′ , say r mod ππ′, which is then mapped
to r mod pq in Zpq to establish the isomorphism between Dππ′ and Zpq. Accordingly, we
may identify r mod ππ′ in Dππ′ as r mod pq in Zpq.

Similarly, by mapping the coset of a rational integer γ in D∗
ππ′ to the coset of r in Z∗

pq,
we have the following corollary.

Corollary 3.1. D∗
ππ′ and Z∗

pq are multiplicative group isomorphic. Furthermore, D∗
ππ′ has

[N(π)− 1]× [N(π′)− 1] = (p− 1)(q − 1) elements.

Since π(π′) is a prime in D, by Proposition 3.3, Dπ(Dπ′) is a finite field with N(π) =
ππ̄ = p(N(π′) = π′π̄′ = q) elements. We observe that Dπ and Zp, Dπ′ and Zq, D

∗
π and

Z∗
p , D

∗
π′ and Z∗

q are also isomorphic, respectively.
Since, by Theorem 3.1, each element u ofD is congruent to a rational integer r mod ππ′,

we may suppose that ω ≡ e mod ππ′, where e is a rational integer. Thus, ω ≡ e1 mod π
and ω ≡ e2 mod π′, where e1 ≡ e mod π and e2 ≡ e mod π′. Furthermore, since Dπ(Dπ′)
and Zp(Zq) are isomorphic, we may identify ω ≡ e1 mod π inDπ and ω ≡ e2 mod π′ inDπ′ ,
as e ≡ e1 mod p in Zp and e ≡ e2 mod q in Zq, respectively. In addition, by using the cubic
residue character

(
u
π

)
3
≡ ωi mod π ≡ ei1 mod π in D∗

π and
(

u
π′

)
3
≡ ωi mod π′ ≡ ei2 mod π′

in D∗
π′ , i = 0, 1, 2, we may define the cubic residue character

(
r
p

)
3
≡ ei1 mod p in Z∗

p and(
r
q

)
3
≡ ei2 mod q in Z∗

q , 0 ≤ i ≤ 2 where r = ϕ(u) of Theorem 3.1. In addition, it can be

pointed out that the characters of the cubic residue play the same role in the theory of
cubic residues as the Legendre symbols do in the theory of quadratic residues.

Now, let Zi,j(pq) =
{
r ∈ Z∗

pq

∣∣∣ ( r
p

)
3
≡ ei1 mod p,

(
r
q

)
3
≡ ej2 mod q

}
for 0 ≤ i, j ≤ 2,

then Z∗
pq can be divided into nine disjoint equivalence classes; that is Z∗

pq =
2∪

i=0

2∪
j=0

Zi,j(pq),

and each Zi,j(pq) has
1
9
(p − 1)(q − 1) elements. Furthermore, r ∈ Z∗

pq is a cubic residue
mod pq if and only if r ∈ Z0,0(pq).

In the following paragraphs, we will focus our attention on how to obtain a representa-
tive value ci,j from Zi,j(pq) for 0 ≤ i, j ≤ 2. This will be beneficial for the application of
Theorem 3.2 we will give later on.

Note first that in the RNS (Residue Number System), an integer r is represented
according to a basis B = {p, q} of two relatively primes modului by the ordered pair
⟨r1, r2⟩ where r1 ≡ r mod p, r2 ≡ r mod q are positive integers. The Chinese Remainder
Theorem ensures the uniqueness of this representation within the range 0 ≤ r < pq. If x
and y are given in the RNS of the form ⟨x1, x2⟩ and ⟨y1, y2⟩ respectively, one has

x± y mod pq = ⟨x1 ± y1 mod p, x2 ± y2 mod q⟩
xy mod pq = ⟨x1y1 mod p, x2y2 mod q⟩.

Let p ≡ 1 mod 3, q ≡ 1 mod 3 be distinct rational primes, and let π = a1 + b1ω,
π′ = a2 + b2ω be primes in D such that p = N(π) = ππ̄ and q = N(π′) = π′π̄′ according
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to Theorem 3.1. Then, ω ≡ e1 mod π and ω ≡ e2 mod π′, where e1 = −a1b
−1
1 and

e2 = −a2b
−1
2 . Therefore, we have

(
r
p

)
3
≡ ei1 mod p and

(
r
q

)
3
≡ ei2 mod q, 0 ≤ i ≤ 2, for

all r ∈ Z∗
pq.

Because p ≡ 1 mod 3, q ≡ 1 mod 3 and ω3 = 1, therefore,
(

e1
p

)
3
= 1, e1, e

2
1 whenever

p ≡ 1 mod 9, p ≡ 4 mod 9 and p ≡ 7 mod 9, respectively. In the same way, we obtain the

same results for
(

e2
q

)
3
. By pairing p and q, we have a total of 9 possible cases which will

be discussed below.
In particular, if we put p ≡ q ≡ 4 mod 9, then

(
e1
p

)
3
= e1 and

(
e2
q

)
3
= e2. Thus, if

we set ci,j = ⟨ei1, e
j
2⟩ (in RNS representation with base B = {p, q}), obviously, we have

ci,j ∈ Zi,j(pq), 0 ≤ i, j ≤ 2. Generally speaking, this is the most popularly used case.
In the case p ≡ q ≡ 7 mod 9, we have results similar to the paragraph above where

p ≡ q ≡ 4 mod 9.

Note that if p ≡ 1 mod 9 or q ≡ 1 mod 9, then
(

e1
p

)
3
= 1 or

(
e2
q

)
3
= 1. In this

particular case, we must use the alternative method as follows.
Let p = 3t+1k + 1 for some t ≥ 1 and 3 - k. First, after solving the equation a3

t

1 ≡
e1 mod p (note that

(
e1
p

)
3
= 1 implies that e1 is a cubic residue mod p), we have

(
a1
p

)
3
≡

a
p−1
3

1 mod p ≡ a3
tk

1 mod p ≡ ek1 mod p = e1 or e21 mod p. In the same way, let q ≡
3t

′+1k′+1, for some t′ ≥ 1 and 3 - k′, and we obtain the same result
(

a2
q

)
3
≡ e2 or

e22 mod q, for some a2 which satisfies a3
t′

2 ≡ e2 mod q.
The following table lists a set of representative elements for each possible class of Z∗

pq

under the condition p ≡ 1 mod 3 and q ≡ 1 mod 3. Since the values of ci,j in each row
are determined from the previously discussed results, they can only be one of the possible
answers for that given row.

Table 1. The representative elements for each possible class of Z∗
pq

Classification ci,j ∈ Zi,j(pq), 0 ≤ i, j ≤ 2

p ≡ 1 mod 9, q ≡ 1 mod 9 ci,j = ⟨ai1, a
j
2⟩, ⟨ai1, a

2j
2 ⟩, ⟨a2i1 , a

j
2⟩ or ⟨a2i1 , a

2j
2 ⟩

p ≡ 1 mod 9, q ≡ 4 mod 9 ci,j = ⟨ai1, e
j
2⟩ or ⟨a2i1 , e

j
2⟩

p ≡ 1 mod 9, q ≡ 7 mod 9 ci,j = ⟨ai1, e
2j
2 ⟩ or ⟨a2i1 , e

2j
2 ⟩

p ≡ 4 mod 9, q ≡ 1 mod 9 ci,j = ⟨ei1, a
j
2⟩ or ⟨ei1, a

2j
2 ⟩

p ≡ 4 mod 9, q ≡ 4 mod 9 ci,j = ⟨ei1, e
j
2⟩

p ≡ 4 mod 9, q ≡ 7 mod 9 ci,j = ⟨ei1, e
2j
2 ⟩

p ≡ 7 mod 9, q ≡ 1 mod 9 ci,j = ⟨e2i1 , a
j
2⟩ or ⟨e2i1 , a

2j
2 ⟩

p ≡ 7 mod 9, q ≡ 4 mod 9 ci,j = ⟨e2i1 , e
j
2⟩

p ≡ 7 mod 9, q ≡ 7 mod 9 ci,j = ⟨e2i1 , e
2j
2 ⟩

It is known in the theory of quadratic residues that for any r ∈ Z∗
pq, there is another

c ∈ Z∗
pq such that rc is a quadratic residue. In cubic residues, we have a similar inference

as follows.

Theorem 3.2. Let p ≡ 1 mod 3, q ≡ 1 mod 3 be two distinct rational primes. For each
r ∈ Z∗

pq, there exists a c ∈ Z∗
pq such that rc is a cubic residue mod pq.
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Proof: Suppose that r ∈ Zi,j(pq) for some 0 ≤ i, j ≤ 2. Then,
(

r
p

)
3
≡ ei1 mod p and(

r
q

)
3
≡ ej2 mod q. For this pair (i, j), there exists a pair (i′, j′) 0 ≤ i′, j′ ≤ 2, such that

i + i′ ≡ 0 mod 3 and j + j′ ≡ 0 mod 3. Choose one c ∈ Zi′,j′(pq), then
(

c
p

)
3
≡ ei

′
1 mod p

and
(

c
q

)
3
≡ ej

′

2 mod q. Therefore,
(

rc
p

)
3
=

(
r
p

)
3

(
c
p

)
3
= ei+i′

1 ≡ 1 mod p and
(

rc
q

)
3
=(

r
q

)
3

(
c
q

)
3
= ej+j′

1 ≡ 1 mod q. Accordingly, rc ∈ Z0,0(pq) is, therefore, a cubic residue

modpq.
Based on the theorem above, we conclude that if r ∈ Z∗

pq ∩Zi,j(pq) for any 0 ≤ i, j ≤ 2,
then there exists ci′,j′ ∈ Zi′,j′(pq) with i + i′ ≡ 0 mod 3 and j + j′ ≡ 0 mod 3 such that
rci′,j′ is a cubic residue modpq. The above discussions can be illustrated by the following
small example.

Example 3.1. Let p = 7 = 3× 2 + 1, q = 13 = 3× 4 + 1 be two distinct rational primes.
Then, p = ππ̄ = (3+ 2ω)(3+ 2ω̄), q = π′π̄′ = (4+ω) · (4+ ω̄) and p ≡ q ≡ 1 mod 3. We,
therefore, have e1 = −3 · 2−1 ≡ 2 mod 7, e2 = −4 · 1−1 ≡ 9 mod 13. Since

Z0(7) =
{
r ∈ Z∗

7 |
(
r
7

)
3
= 20

}
= {1, 6}, Z0(13) =

{
r ∈ Z∗

13|
(

r
13

)
3
= 90

}
= {1, 5, 8, 12},

Z1(7) =
{
r ∈ Z∗

7 |
(
r
7

)
3
= 21

}
= {4, 3}, Z1(13) =

{
r ∈ Z∗

13|
(

r
13

)
3
= 91

}
= {4, 6, 7, 9},

Z2(7) =
{
r ∈ Z∗

7 |
(
r
7

)
3
= 22

}
= {2, 5}, Z2(13) =

{
r ∈ Z∗

13|
(

r
13

)
3
= 92

}
= {2, 3, 10, 11},

we find that Zi,j(91) = Zi(7)× Zj(13). In particular,

Z0,0(91) =
{
r ∈ Z∗

91

∣∣∣ (r
7

)
3
= 20,

( r

13

)
3
= 90

}
= Z0(7)× Z0(13)

= {⟨1, 1⟩, ⟨1, 5⟩, ⟨1, 8⟩, ⟨1, 12⟩, ⟨6, 1⟩, ⟨6, 5⟩, ⟨6, 8⟩, ⟨6, 12⟩}
= {1, 57, 8, 64, 27, 83, 34, 90}

has (7−1)(13−1)
9

= 8 elements. If we let

C = {c0,0 = ⟨1, 1⟩, c0,1 = ⟨1, 4⟩, c0,2 = ⟨1, 2⟩, c1,0 = ⟨4, 1⟩, c1,1 = ⟨4, 4⟩,
c1,2 = ⟨4, 2⟩, c2,0 = ⟨2, 1⟩, c2,1 = ⟨2, 4⟩, c2,2 = ⟨2, 2⟩}

= {1, 43, 15, 53, 4, 67, 79, 30, 2}

be the set of representative elements for each partition class of Z∗
91. Then, ci′,j′ ·Zi,j(91) =

Z0,0(91), for i + i′ ≡ j + j′ ≡ 0 mod 3. For example, let i = 0, j = 1, i′ = 0 and j′ = 2.
Then,

c0,2 · Z0,1(91) = ⟨1, 2⟩ · {⟨1, 4⟩, ⟨1, 6⟩, ⟨1, 7⟩, ⟨1, 9⟩, ⟨6, 4⟩, ⟨6, 6⟩, ⟨6, 7⟩, ⟨6, 9⟩}
= {⟨1, 8⟩, ⟨1, 12⟩, ⟨1, 1⟩, ⟨1, 5⟩, ⟨6, 8⟩, ⟨6, 12⟩, ⟨6, 1⟩, ⟨6, 5⟩}
= {8, 64, 1, 57, 34, 90, 27, 83}
=Z0,0(91).

This example below shows how a cubic congruence equation is solved.

Example 3.2. Let p = 139 = 3 × 46 + 1, q = 229 = 3 × 76 + 1 be two distinct rational
primes. Then, p = ππ̄ = (13 + 10ω)(13 + 10ω̄), q = π′π̄′ = (17 + 12ω) · (17 + 12ω̄)
and p ≡ q ≡ 4 mod 9. In addition, e1 = −13 · 10−1 mod 139 = 96 and e2 = −17 ·
12−1 mod 229 = 94. As shown in the last paragraph just before Table 1, we set ci,j =
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⟨ei1 mod p, ei2 mod q⟩ = ⟨96i mod 139, 94j mod 229⟩ ∈ Zi,j(pq), 0 ≤ i, j ≤ 2. Let

C = {c0,0 = ⟨1, 1⟩, c0,1 = ⟨1, 94⟩, c0,2 = ⟨1, 134⟩, c1,0 = ⟨96, 1⟩, c1,1 = ⟨96, 94⟩,
c1,2 = ⟨96, 134⟩, c2,0 = ⟨42, 1⟩, c2,1 = ⟨42, 94⟩, c2,2 = ⟨42, 134⟩}

= {1, 20017, 23492, 19695, 7880, 11355, 459, 20475, 23950} .

be the set of representative elements for Zi,j(pq), 0 ≤ i, j ≤ 2.
We can obtain nine equivalence classes Zi,j(pq) = ci,jZ0,0(pq) = {ci,j · r3 mod pq |r ∈

Z∗
pq}, 0 ≤ i, j ≤ 2, such that Z∗

pq =
∪

0≤i,j≤2

Zi,j(pq).

Now, for b = 23903 ∈ Z∗
pq, we want to find c ∈ C such that cb is a cubic residue. First,

we calculate
(
23903
139

)
3
≡ 23903

139−1
3 mod 139 = 42 and

(
23903
229

)
3
≡ 23903

229−1
3 mod 229 =

94, so we have b = 23903 ∈ Z2,1(pq). Therefore, we choose c = c1,2 such that c1,2 ·
b mod pq = 11355 × 23903 mod 31831 = 27459 is a cubic residue. This means that
x3 ≡ 27459 mod 31831 is solvable. Let x00 = 31112 = ⟨115, 197⟩, then we have

x3
00 = ⟨1153 mod 139, 1973 mod 229⟩

= ⟨1520875 mod 139, 7645373 mod 229⟩
= ⟨76, 208⟩ = 27459.

Hence, xi,j = ci,j · ⟨115, 197⟩, 0 ≤ i, j ≤ 2 are roots of the cubic congruence equation

x3 ≡ 27459 mod 31831

4. The Proposed Scheme. Using the cubic residue theory introduced in the preceding
section, we now present a new signature scheme with an exponential cubic verification
equation form and with security based on solving the discrete logarithm with a composite
modulus.
Let us first give some theorems and definitions before we begin with our proposal.

Theorem 4.1. Dirichlet’s Theorem on Primes in Arithmetic Progressions (Theorem 2.9.
[38]) Let (A,B) = 1. Then, the arithmetic progression Aℓ+B, ℓ = 1, 2, 3, . . ., contains
infinitely primes.

For instance, let A = 5 and B = 4. It is obvious that there are infinitely primes in the
form of 5ℓ+ 4, e.g., 19, 29, 59, 79, 89, 109, 139, 149, 179, . . . .

Definition 4.1. If m, n are positive integers, a ∈ Z and gcd(a,m) = 1, we say that a is
an n-th power residue modm if xn ≡ a mod m is solvable.

Theorem 4.2 (Proposition 4.2.1. [37]). If Zm possesses primitive roots and gcd(a,m) =

1, then a is an n-th power residue modm iff a
φ(m)

d ≡ 1 mod m, where d = gcd(n, φ(m))
and φ(m) is the Euler function.

Definition 4.2 (β-RSA modulus N). An integer N is called a β-RSA modulus if N = p×q,
where p = 4p1+1, q = 4q1+1, p1 ≡ q1 ≡ 1 mod 3, and p, q, p1, q1 are large prime numbers.
(According to Dirichlet’s Theorem, we can find large prime numbers like p, q, p1, q1).

Definition 4.3 (Factoring problem with a β-RSA modulus N). Let N = p×q, p = 4p1+1,
q = 4q1+1p1 ≡ q1 ≡ 1 mod 3, be a β-RSA modulus. We call it a factoring problem with a
β-RSA modulus N if N is given while p, q, p1, q1 are unknown and we are asked to factor
N into the product of p and q.
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Definition 4.4 (Discrete logarithm problem with a β-RSA modulus N). Let N be a β-
RSA modulus and G be the cyclic multiplicative subgroup of Z∗

N with a generator g of
order p1q1. We call it a discrete logarithm problem with a β-RSA modulus N if a ∈ G, g,
N are given and we are asked to find 1 ≤ b < p1q1 such that a ≡ gb mod N.

From the operational perspective, the proposed signature scheme can be presented in
three phases: the initial phase, the signature generation phase and the verification phase.
Initial phase

The signer follows the steps below to set the signing environment.

(1) Choose a β-RSA modulus N = p × q, where p = 4p1 + 1, q = 4q1 + 1 and p1, q1 are
large primes, such that p1 ≡ q1 ≡ 1 mod 3.

(2) Determine two primes π = a1 + b1ω and π′ = a2 + b2ω ∈ D such that p1 = N(π) =
ππ′ and q1 = N(π′) = π′π̄′, respectively. Compute e1 ≡ −a1b

−1
1 mod p1 and e2 ≡

−a2b
−1
2 mod q1.

(3) For each (i, j), 0 ≤ i, j ≤ 2, choose one ci,j ∈ Zi,j(p1q1) =
{
r ∈ Z∗

p1q1
|
(

r
p1

)
3
= ei1

and
(

r
q1

)
3
= ej2

}
and set C = {ci,j |0 ≤ i, j ≤ 2}.

(4) Choose an integer g ∈ Z∗
N = {1 ≤ a < N |gcd(a,N) = 1} with order 1

4
× lcm(p− 1, q−

1) = p1q1.

(5) Select at random an integer x ∈ Z∗
p1q1

as the secret key and compute y ≡ gx
3
mod N

as the public key.
(6) Let H : {0, 1}∗ × Z∗

N → Z∗
p1q1

be a one-way hash function, where {0, 1}∗ denotes the
set of all binary bit strings.

(7) Publish N, y, g, H.

Signature generation phase
To create a signature for a message m, the signer does the following.

(1) Randomly choose an integer t ∈ Z∗
p1q1

and computer = gt
3
mod N.

(2) Choose a proper c ∈ C = {ci,j|0 ≤ i, j ≤ 2} such that [H(m, r2)3 − x3r3] × t−3c−1 ∈
Z0,0(p1q1).

(3) Compute and get s ∈ Z∗
p1q1

which satisfies x3r3 + ct3s3 ≡ H(m, r2)3 mod p1q1.
(4) The signature of message m is (c, r, s).

Signature verification phase
Anyone can do the following to verify the signature (c, r, s).

(1) Compute and check if the following equation holds.

yr
3

rcs
3 ≡ gH(m,r2)3 mod N

(2) The signature (c, r, s) is valid if the above equation holds, otherwise we reject it.

5. Security Analysis with Discussions. In this section, we claim that our proposed
scheme is secure against Pollard and Schnorr’s attack [24], and that our scheme is also
secure under the random oracle model against the two most frequently cited attack sce-
narios, the no-message attack and the adaptively chosen-message attack.

5.1. Security against Pollard-Schnorr’s attack.

5.1.1. Pollard-Schnorr’s congruence solution attack. Pollard and Schnorr [24] showed, in
1987, that a solution of the congruence equation X2 + kY 2 ≡ m mod n can easily be
found if k and m are relative prime to n.

As aforementioned in Section 1, many previously suggested signature schemes with
their verification equations based on exponential quadratic form were not as secure as
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claimed since they were subject to Pollard-Schnorr’s congruence solution attack [24], such
as those proposed by Ong et al. [4] in 1984, Shao [11] in 1998, He [12] in 2001, Tzeng [22]
in 2004 and Wei [27] in 2007, etc. By using Wei’s method [27] as an example, we will
briefly introduce the concept of cryptanalysis by Pollard-Schnorr’s method.
In [27], Wei modified both of Shao’s schemes [11] in attempt to resist Li and Xiao’s

attack [16]. In modified scheme 1, the verification equation is u(u2m2) ≡ vv
2 ·ys2−r2 mod p;

and in modified scheme 2 it is uu2m4 ≡ vv
2m2 · y(s2−r2) mod p. It is obvious that both

verification equations are of exponential quadric form. Therefore, by applying Pollard-
Schnorr’s method, Lin et al. [29] performed a cryptanalysis on both of Wei’s modified
schemes, and showed that they can forge a valid signature of an arbitrary message. Lin
et al.’s cryptanalysis can be briefly reviewed as follows.
Aim at Wei’s modified scheme 1, the attacker substitutes u = y2, v = y3 in the

verification identity u(u2m2) ≡ vv
2 ·ys2−r2 mod p for any message m. He obtains (y2)u

2m2 ≡
(y3)v

2 · ys2−r2 mod p or 2u2m2 − 3v2 ≡ s2 − r2 mod p1q1. If the condition gcd(2u2m2 −
3v2, p1q1) = 1 is satisfied, he can solve out (r, s) from s2 − r2 ≡ 2u2m2 − 3v2 mod p1q1 by
using the method of Pollard and Schnorr. Otherwise, he can repeat to adjust the values of
u and v until gcd(2u2m2 − 3v2, p1q1) = 1, so that he can forge a valid signature (u, v, r, s)
of an arbitrary message m. Similar to the modified scheme 2, the attacker can solve out
(r, s) from s2 − r2 ≡ 2u2m4 − 3v2m2 mod p1q1 again by letting u = y2, v = y3 and then
using the method of Pollard and Schnorr. Thus, he can also forge a valid signature of any
message from the modified scheme 2.
As a result, in the preceding section we prevent security risks from verification equations

in exponential quadric form (here we specifically refer to those vulnerable to Pollard-
Schnorr’s congruence solution attack) by implementing ours in exponential cubic form.

5.1.2. Security analysis of the proposed scheme against Pollard-Schnorr’s attack. Before
we begin the security analysis of our scheme against Pollard-Schnorr’s attack, we will
introduce some related mathematical preliminaries.
In 1984, Goldwasser and Micali introduced the notation of computationally indistin-

guishable distributions which was presented in [39,40]. For a distribution Q, let x ∈R Q
denote that x is generated by distribution Q. An ensemble of probability distributions
Q(x) is polynomial time sampleable if there is a probabilistic polynomial (in |x|) time
machine that on input x its output is distributed according to Q(x). Thus, we may define
a probabilistic polynomial time machine D (called the distinguisher) that can recognize
the language Q(x) as follows:

D(x, y) =

{
1, when input y ∈ Q(x)
0, when input y /∈ Q(x)

Definition 5.1. [41] Two ensembles of probability distributions A(x) and B(x) are polyno-
mial-time indistinguishable if for any distinguisher D acts as follows: x ∈R D(n) is gener-
ated and then D is given the output generated by either A(x) or B(x), and | Pr[(D(x, y) =
1|y ∈R A(x)] − Pr[D(x, y) = 1 |y ∈R B(x)] | < 1

p(n)
for all polynomials P and for all

sufficiently large n.

As shown in the initial phase of our scheme, let p1 and q1 denote two distinct large
primes such that p1 ≡ q1 ≡ 1 mod 3; π = a1 + b1ω ∈ D and π′ = a2 + b2ω ∈ D such
that p1 = N(π) = ππ̄, q1 = N(π′) = π′π̄′, e1 ≡ −a1b

−1
1 mod p1, e2 ≡ −a2b

−1
2 mod q1

and Zi,j(p1q1) =
{
r ∈ Z∗

p1q1

∣∣∣ ( r
p1

)
3
≡ ei1 mod p1,

(
r
q1

)
3
≡ ej2 mod q1

}
for 0 ≤ i, j ≤ 2.

Then, Zi,j(p1q1), 0 ≤ i, j ≤ 2, constitute a partition of Z∗
p1q1

and each of which has the
same cardinality. Suppose that Z∗

p1q1
is a uniform distribution and x ∈R Z∗

p1q1
. Then, the
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probability of x ∈ Zi,j(p1q1) are equal for each 0 ≤ i, j ≤ 2. Therefore, corresponding to
the quadratic residuosity intractability assumption given in [42,43], we can analogize the
intractability assumption to cubic residuosity as follows.
Assumption 5.1. The Cubic Residuosity Intractability Assumption (CRA) Let P (l)
denote the set of primes of size l bits. Define C ′ = {N|N = p×q, p = 4p1+1, q = 4q1+1,
p1 ≡ q1 ≡ 1 mod 3 and p1, q1 ∈ P (l)}. Suppose that p1 and q1 are unknown. Then, for
any N ∈ C ′, the ensembles Zi,j(p1q1), 0 ≤ i, j ≤ 2, are polynomial-time indistinguishable.

Let r0 = ⟨e01, e02⟩ ∈ Z0,0(p1q1), r1 = ⟨e01, e12⟩ ∈ Z0,1(p1q1), r2 = ⟨e11, e02⟩ ∈ Z1,0(p1q1),
r3 = ⟨e11, e12⟩ ∈ Z1,1(p1q1), r4 = ⟨e11, e22⟩ ∈ Z1,2(p1q1), r5 = ⟨e21, e12⟩ ∈ Z2,1(p1q1), r6 =
⟨e21, e22⟩ ∈ Z2,2(p1q1), r7 = ⟨e21, e02⟩ ∈ Z2,0(p1q1), r8 = ⟨e01, e22⟩ ∈ Z0,2(p1q1). Since r

3
i = ⟨1, 1⟩,

0 ≤ i ≤ 8, we have the following remark.

Remark 5.1. Let n = p1q1. If a is a cubic residue mod n and x ∈ Z∗
n is a cubic root

of a mod n (i.e., x3 ≡ a mod n), then y = rix mod n, 0 ≤ i ≤ 8, are the nine distinct
incongruent roots of the equation x3 ≡ a mod n.

Lemma 5.1. Let n = p1q1. Given x, y ∈ Z∗
n such that x3 ≡ y3 mod n and x ̸= y then

there is 1
2
chance of factoring n.

Proof: Note first that x, y ∈ Z∗
n, x3 ≡ y3 mod n and x ̸= y mean that x and y

are two distinct incongruent cubic root of a common cubic residue mod n. Thus, by
Remark 5.1, we have y = rix for 1 ≤ i ≤ 8. Note further that x3 ≡ y3 mod n implies
(x−y)(x2+xy+y2) ≡ (x−y)x2(1+ri+r2i ) ≡ 0 mod n, 1 ≤ i ≤ 8, or (x−y)(1+ri+r2i ) ≡ 0
mod n, 1 ≤ i ≤ 8, becausex ∈ Z∗

n. Therefore, we see that gcd((x−y) mod n, n) = p1or q1
if (1 + ri + r2i ) ̸≡ 0 mod n. Next, by direct computation of CRT, we have (1 + ri + r2i ) ̸≡
0 mod n for i = 1, 2, 7, 8 and (1 + ri + r2i ) ≡ 0 mod n, for i = 3, 4, 5, 6. Thus, there is 1

2
chance of factoring n by means of gcd((x− y) mod n, n).

From Lemma 5.1, we immediately have the following theorem.

Theorem 5.1. Let n = p1q1, where p1 and q1 are unknown. Suppose that a is a cubic
residue mod n. If there exists an algorithm which can determine, in a polynomial time,
two distinct cubic roots {w1, w2} of a mod n and w2 = riw1 for some i ∈ {1, 2, 7, 8}, then
n can be factored into the product of p1 and q1, in a polynomial time.

Now, suppose an adversary intends to forge a valid signature of a message m from the
verification equation

r3x3 + ct3s3 ≡ H
(
m, r2

)3
mod p1q1 (1)

of our scheme.
Then, in order to find a suitable set (r, c, t, s) that satisfy Equation (1), he may try to

perform the three following steps: (a) Determine r, t and compute M = H (m, r2). (b)
By setting X = rx, Y = ts, Equation (1) can be rewritten as

X3 + cY 3 ≡ M3 mod p1q1 or Y 3 ≡ c−1(M3 −X3) mod p1q1. (2)

(c) Either (i) determine c, X and solve for Y by finding a cubic root of c−1(M3−X3) mod
p1q1, or (ii) determine c and solve for (X, Y ) by using Pollard -Schnorr’s method [24].
However, we claim that he can not succeed in both cases.

Case 1: Determine c, X and solve Y by finding a cubic root of c−1(M3−X3) mod p1q1
Obviously, Equation (2) is solvable if and only if c−1(M3−X3) is a cubic residue mod p1q1;
i.e., if and only if (M3 − X3) mod p1q1 and c are in the same class Zi,j (p1q1), 0 ≤ i,
j ≤ 2. However, by the Cubic Residuosity Intractability Assumption, adjusting (M3 −
X3) mod p1q1 such that it belongs in the same class Zi,j(p1q1) as c is an intractability
problem.
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Assume even if the adversary has a magic box (MB) that can adjust c and (M3, X3)
such that c−1(M3−X3) is a cubic residue mod p1q1. He still need to compute a cubic root
of c−1(M3 −X3) mod p1q1. Assume further that the MB can also solve Y 3 ≡ c−1(M3 −
X3) mod p1q1with probability ε in polynomial time. Then, by inputting c−1(M3 − X3)
into MB repeatedly, if MB outputs two different cubic roots of {w1, w2}. c−1(M3 −X3)
and w2 = riw1 mod p1q1 for some i = 1, 2, 7, 8, the adversary has 1

2
ε chance of factoring

n in polynomial time. This is rather unlikely because the factoring problem is known to
be computationally infeasible at present.
Case 2: Determine c and solve for (X, Y ) by using Pollard-Schnorr’s method [24].

Although in [24], Pollard and Schnorr also extended the algorithm for solving the equation
X2 + kY 2 ≡ m mod n to give an efficient method to find the integer solutions for the
equation x3 + ky3 + k2z3 − 3kxyz ≡ m mod n, where k, m are relatively prime to n,
their solutions did not contain those of the form (x, y, 0) with xy ̸≡ 0 mod n. Therefore,
Equation (2) cannot be solved by Pollard-Schnorr’s method.
As far as our knowledge is concerned, currently there are no efficient algorithms to

solve the equation X3+ cY 3 ≡ M3 mod p1q1 even if k, m are relatively prime to n = p1q1.
Accordingly, our signature scheme is secure against Pollard-Schnorr’s attack.

5.2. Security against no-message attacks. In the so called no-message attack, the
attacker only knows the public key of the signer (this is mentioned in Section 2.1). The
proof of the proposed scheme being secure against existential forgery using the no-message
attack discussed in this section is adopted from [31,33,44], in which the attacker is sim-
ulated by a probabilistic polynomial time Turing machine A that generates probabilistic
inputs by reading bits from a random tape and outputs from a random oracle.

5.2.1. Unforgeability. Signature schemes often use a hash function H, therefore, the func-
tion H has to be free of collision. A hash function is an important ingredient of a signature
scheme security. Bellare and Rogaway [34] and Fiat and Shamir [45] all considered that
H is actually a random function. This suggestion about H being a random function
originated from the corresponding model, called the “random oracle model”, in which the
hash function can be seen as an oracle that produces a random value for each new query.
However, identical answers are obtained if the same query is asked twice.
Now, assume that the hash function H outputs a k-bit string, where 2k−1 < p1q1 ≤ 2k

as defined in Definition 4.2. Then, we will consider a signature scheme which, on the
input message m and a random number σ1 takes its value from an appropriately large
set; produce a triplet (σ1, h, σ2) as the signature. In the triplet (σ1, h, σ2), h is the output
hash value of (m,σ1) and σ2 only depends onσ1, the message m and h.
We will state a well-known lemma given by Pointcheval and Stern [35]. The Forking

Lemma, and which will be repeatedly used below. This lemma uses the “oracle replay
attack”, by a polynomial replay of an attack with the same random tape and a different
oracle, to obtain two signatures of a specific form. By directly applying the Forking
Lemma technique of Pointcheval and Stern [33], we can obtain the following generic
result. Accordingly, we will now illustrate the Forking Lemma suitable for the current
No-Message Attack scenario.

Lemma 5.2 (The Forking Lemma, Theorem 1 [35]). Let the forger A be a Probabilistic
Polynomial time Turing machine (PPT) whose input only consists of public data. We
denote the number of queries that A can ask to the random oracle by Q. Assume that,
within a time bound T , A produces a valid signature (m,σ1, h, σ2) with probability ε ≥ 7Q

2k
,

then there is another machine which has control over A and produces two valid signatures
(m,σ1, h, σ2) and (m,σ1, h

′, σ′
2), such that h ̸= h′ in expected time T ′ ≤ 84480TQ

ε
.
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We will now apply this lemma to our scheme in order to prove its security against
no-message attacks.

Theorem 5.2 (Security against no-message attacks). Assume that within a time bound
T1, an attacker A (PPT) performs an existential forgery of our scheme under a no-message
attack. If it has a non-negligible probability ε of success, then the discrete logarithm
problem with a β-RSA modulus can be solved with the probability of ε′′ = ε

18
, in expected

time less than c̄ ·
(
84480QT1

ε
+ T2 + T3

)
for some constant c̄ ≥ 1.

Notice that T2 and T3 represent the average computing times of finding the greatest
common divisor via Euclidean algorithm and solving the cubic residue x3 ≡ a mod p1q1
respectively.

Proof: Suppose that an attacker can break our signature scheme of probability ε
within a bound time T1. Then, he continuously replays the same input (m,σ) to different
machines. By using the Forking Lemma, he can obtain two valid signatures (m,σ, h1, σ1)
and (m,σ, h2, σ2) in expected time T ′

1 ≤
84480QT1

ε
, such that hash function values h1 ̸= h2,

where h1 = H1(m, r21), h2 = H2(m, r22). Here σ = (m, r2) is the input; σ1 = (c1, r1, s1)
and σ2 = (c2, r2, s2) are the outputs.

Since r21 ≡ r22 ≡ r2 (mod p1q1) and r1 ̸= ±r2 (mod p1q1) with probability 1
2
, we are

able to get a factor of p1q1 via gcd(r1 − r2, p1q1). Thus, the β-RSA modulus N can be
factored in expected time T2 with a non-negligible probability ε′ = ε

2
.

Moreover, under the assumption r1 ̸= ±r2 (mod p1q1), if the attacker gets two valid
signatures (m, c1, r1, s1) and (m, c2, r2, s2), consider the two congruence equations{

yr
3
1r

c1s31
1 ≡ gh

3
1 (mod N) (3)

yr
3
2r

c2s32
2 ≡ gh

3
2 (mod N) (4)

Hence, yc2r
3
1s

3
2−c1r32s

3
1 ≡ gc2h

3
1s

3
2−c1h3

2s
3
1 (mod N) or

x3(c2r
3
1s

3
2 − c1r

3
2s

3
1) ≡ (c2h

3
1s

3
2 − c1h

3
2s

3
1) (mod p1q1) (5)

Since H1 and H2 came from the “Oracle replay”, we may further assume that c2h
3
1s

3
2 ̸=

c1h
3
2s

3
1 (mod p1q1). Let d = gcd(c2r

3
1s

3
2 − c1r

3
2s

3
1, p1q1). Considering the following three

cases for the congruence Equation (5), we have

Case 1: If d = 1, then Equation (5) can be solved x3 ≡ (c2r
3
1s

3
2−c1r

3
2s

3
1)

−1[c2h
3
1s

3
2−c1h

3
2s

3
1]

(mod p1q1).
Cbse 2: If d = p1 or q1, so c2r

3
1s

3
2 − c1r

3
2s

3
1 = ℓ1p1 (or ℓ2q1) for some ℓ1 (or ℓ2), then x3 ≡

(ℓ1p1)
−1[c2h

3
1s

3
2 − c1h

3
2s

3
1] (mod q1) or x

3 ≡ (ℓ2q1)
−1[c2h

3
1s

3
2 − c1h

3
2s

3
1] (mod p1).

Ccse 3: If d = p1q1, then c2r
3
1s

3
2−c1r

3
2s

3
1 = 0 (mod p1q1). This implies c2h

3
1s

3
2−c1h

3
2s

3
1 = 0

(mod p1q1) which contradicts our assumption.

Finally, let λ = (c2r
3
1s

3
2 − c1r

3
2s

3
1)

−1(c2h
3
1s

3
2 − c1h

3
2s

3
1). Then, x3 ≡ λ (modp1q1) is

solvable if and only if λ is a cubic residue mod p1q1. By Section 2, we already know that
λ ∈ Z0,0(p1q1) with a probability of about 1

9
. Therefore, by using the oracle replay and

Theorem 4.2, we obtain at least one solution x with the probability of ε′′ = ε′

9
in expected

time T3.
Additionally, let N be a β-RSA modulus and g, G, p1q1 be defined as above. Let a ∈ G

and the attacker attempts to find b, 1 ≤ b ≤ p1q1, such that a ≡ gb mod N. Through trial
and error, he can choose an integer ℓ ∈ C = {ci,j |0 ≤ i, j ≤ 2} such that y = aℓ = gbℓ

is regarded as a public key. From the results above, the attacker inserts aℓ, g, N, p1q1
as the inputs of the efficient oracle replay to obtain O(y, g,N, p1q1) = x. By setting
b ≡ ℓ−1x3 mod p1q1, the attacker can check whether the equation a ≡ gb mod N holds or
not, since the probability that ℓb is a cubic residue modp1q1 is approximately 1

9
. Thus,
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there exists such a x ∈ Z∗
p1q1

that is regarded as a secret key and satisfies ℓb ≡ x3 mod p1q1,
where the discrete logarithm problem with a β-RSA modulus can be solved in polynomial
time with a non-negligible probability.

5.3. Security against adaptively chosen-message attacks. Next, we aim to prove
that the proposed signature scheme is secure against adaptively chosen-message attacks.
In the adaptively chosen message case, where the attacker can ask the signer to sign any
message that he wants if he has knowledge of the public key of the signer, he can then
adapt his queries according to previous message-signature pairs. The attacker views the
signer as a kind of oracle. The signer can be simulated by a simulator S that cannot
know the secret key, since the attacker did not interact with the real signer. Therefore, to
prove the unforgeability property of a given signature scheme against adaptively chosen
message attacks is the same as proving the existence of a simulator. The simulator creates
an output distribution using a no-message attack that is indistinguishable from that of
the adaptively chosen message attack.
We will state the “Forking Lemma” suitable for adaptively chosen-message attacks

which was proved by Pointcheval and Stern [33] as follows.

Lemma 5.3 (The Forking Lemma, Theorem 3 [35]). Let A be a probabilistic polynomial
time Turing machine whose input only consists of public data. We denote respectively by
Q and R the number of queries that A can ask to the random oracle and the number of
queries that A can ask to the signer. Assume that, within a bound time T1, A produces,

with probability ε ≥ 10(R+1)(R+Q)
2k

, a valid signature (m,σ1, h, σ2). If the triplet (σ1, h, σ2)
can be simulated without knowing the secret key, with an indistinguishable distribution
probability, then there is another machine which has control over the machine obtained
from A, replacing interaction with the signer by simulation and produces two valid signa-
tures (m,σ1, h, σ2) and (m,σ1, h

′, σ′
2) such that h ̸= h′ in expected time T ′ ≤ 120686T1Q

ε
.

Lemma 5.4. For the discrete logarithm problem with a β-RSA modulus, the signer can
be simulated with an indistinguishable distribution.

Proof: The proof shares the same logic as in [36] directly. Under the random or-
acle model, using the two parameters v, e for forgery, the attacker can obtain an in-
distinguishable simulation. First, he assumes that the output set Λ of random oracles
is

{
0, 1, 2, 3, . . . , 2k − 1

}
and 2k ≥ p1q1 ≥ 2k−1. He then randomly chooses e ∈ Z∗

p1q1
,

ν ∈ Z∗
p1q1

and c ∈ C = {ci,j |0 ≤ i, j ≤ 2}. Finally, by letting r = gc
−1e3yc

−1ν3 mod N,

s = −rv−1 mod p1q1 and h = −erv−1 mod p1q1, he can easily check that

yr
3

rcs
3 ≡ gr

3x3 · gcs3(c−1e3+c−1x3ν3)(modN)

≡ gr
3x3+c(c−1e3+c−1x3ν3)(−r3ν−3)(modN)

≡ gr
3x3−r3e3ν−3−r3x3

(mod)

≡ g−r3e3ν−3

(modN) ≡ gh
3

(modN).

It follows that the quadruple (c, r, s, h) is a valid signature of a message m as soon as
h = H(m, r2).
Let (c, r, s, h) ∈ C × ZN × Zp1q1 × Λ. Trying to output this signature through our

simulation yields the following system of equations{
h3v3 + r3e3 ≡ 0 mod p1q1
x3v3 + e3 ≡ c logg r mod p1q1.

Consider the determinant ∆ =

∣∣∣∣ h3 r3

x3 1

∣∣∣∣ = h3 − x3r3 mod p1q1.
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Case 1: ∆ ̸= 0, then the system of equation has exactly one solution (ν3, e3), and there-
fore, 81 ways for simulator S to generate such 81 different valid signatures.

Cbse 2: ∆ = 0, then h3 ≡ x3r3 mod p1q1. S can generate such signatures only if r = h =
s = 0 mod p1q1, e

3 = −x3ν3 mod p1q1 and v ∈ Z∗
p1q1

. Thus, there are φ(p1q1)

ways to generate at most
⌈

pq
p1q1

⌉
= 17 different improper signatures. However,

the probability of ∆ = 0 is bounded by O
(

N
2kN2

)
= O

(
1

2kN

)
< O

(
1
N

)
, which is a

negligible value.

Thus, even without the secret key, the probability of the simulator S to successfully
simulate a valid signature is overwhelming.

Theorem 5.3 (Security against adaptively chosen-message attacks). Assume that Q, R
are the same as defined in Lemma 5.3 and T2, T3 are the same as described in Theorem 5.2.
Let A be an attacker which performs an existential forgery under an adaptively chosen-
message attack against our scheme and has a non-negligible probability ε of success within

a bound time T1. Assume that ε ≥ 10(R+1)(R+Q)
p1q1

, then the discrete logarithm problem with

a β-RSA modulus can be solved with the probability of ε′ = ε
18

in expected time less than
¯̄c ·

(
120686QT1

ε
+ T2 + T3

)
for some constant ¯̄c ≥ 1.

Proof: Let A(PPT) be an attacker which performs an existential forgery of our scheme
under an adaptively chosen-message attack within a bound time T1. If the attacker has a

non-negligible probability ε ≥ 10(R+1)(R+Q)
p1q1

of success, then by Lemma 5.4, the signer can

be simulated by simulator S which does not know the secret key with an indistinguishable
distribution probability. Therefore, by Lemma 5.3 (the Forking Lemma), the collusion
of the attacker A and the simulator S can gain two valid signatures, (m,σ1, h, σ2) and
(m,σ1, h

′, σ′
2), such that h ̸= h′ in expected time T ′ ≤ 120686T1Q

ε
. Once this is done, using

the same proof as in Theorem 5.2, we obtain the result of Theorem 5.3.

6. Conclusions and Future Works. In view of security flaws were discovered among
many signature schemes suggested previously with exponential quadratic verification
equation and with security based on discrete logarithm and integer factorization prob-
lems. In this paper, by taking advantage of the cubic residue theory, we have proposed
a new signature scheme with an exponential cubic verification equation to prevent the
attack from Pollard-Schnorr’s congruence solutions. In addition, by using the random
oracle modeling and the Forking Lemma, we have formally proved that the security of
our proposed scheme is based on solving the discrete logarithm problem with a composite
modulus. This has been proved by Bach in 1984 to be equivalent to solving both the inte-
ger factorization and the discrete logarithm with a prime modulus. Furthermore, we have
shown that our scheme is secure against the two most frequently cited attack scenarios,
the no-message attack and the adaptively chosen-message attack.

Since cubic residues are introduced into the proposed scheme, the computational cost
is inevitably increased in comparison with those signature schemes having exponential
quadratic verification equation. Nevertheless, in 1986, Williams [46] suggested an effective
method to reduce the complexity of computing the cubic roots of a cubic residue modulo
an RSA composite. Further, in 2009, Chang and Lai [47] proposed an effective method
to speed up modular exponentiation operation. Perhaps Williams’ method together with
Chang and Lai’s method can be applied to develop an effective method to reduce the
computation complexity of our signature generation and verification. This remains to be
our future research problem.



1662 H.-F. LIN, C.-Y. GUN AND C.-Y. CHEN

REFERENCES

[1] W. Diffie and M. Hellman, New directions in cryptography, IEEE Trans. on Information Theory,
vol.22, pp.644-654, 1976.

[2] R. Rivest, A. Shamir and L. Adleman, A method for obtaining digital signature and public-key
cryptosystem, Communications of the ACM, vol.21, no.2, pp.120-126, 1978.

[3] M. O. Rabin, Digitalized Signatures and Public-Key Functions as Intractable as Factorization,
MIT/LCS/TR-212, MIT Lab. for Computer Science, Cambridge, Mass, 1979.

[4] H. Ong, C. Schnorr and A. Shamir, An efficient signature scheme based on quadratic equations,
Proc. of the 16th Symposium on the Theory of Computing, Washington, pp.208-216, 1984.

[5] T. ElGamal, A public key cryptosystem and a signature scheme based on the discrete logarithm,
IEEE Trans. on Information Theory, vol.31, no.4, pp.469-472, 1985.

[6] C. P. Schnorr, Efficient identification and signatures for smart cards, Advances in Cryptology – Proc.
of Eurocrypt’89, LNCS, vol.434, pp.688-689, 1990.

[7] J. He and T. Kiesler, Enhancing the security of ElGamal’s signature scheme, Iet Software/iee Pro-
ceedings – Software, vol.141, no.4, pp.249-252, 1994.

[8] L. Harn, Public-key cryptosystem design based on factoring and discrete logarithms, IEE Proc. of
Computers and Digital Techniques, vol.141, no.3, pp.193-195, 1994.

[9] E. F. Brickell and K. S. McCurley, An interactive identification scheme based on discrete logarithms
and factoring, J. Cryptology, vol.5, no.1, pp.29-40, 1992.

[10] C. S. Laih and W. C. Kuo, New signature schemes based on factoring and discrete logarithms, IEICE
Trans. Fundamentals, vol.E80-A, no.1, pp.46-53, 1997.

[11] Z. Shao, Signature schemes based on factoring and discrete logarithms, IEE Proc. of Computers and
Digital Techniques, vol.145, no.1, pp.33-36, 1998.

[12] W. H. He, Digital signature scheme based on factoring and discrete logarithms, Electronics Letters,
vol.37, no.4, pp.220-222, 2001.

[13] K. C. McCurley, The discrete logarithm problem, Proc. of Symposia in Applied Mathematics, Prov-
idence, Rhode Island, vol.42, pp.49-74, 1990.

[14] N. Y. Lee and T. Hwang, Modified Harn signature scheme based on factoring and discrete logarithms,
IEE Proc. of Computers and Digital Techniques, vol.143, no.3, pp.196-198, 1996.

[15] C. S. Laih and W. C. Kuo, New signature schemes based on factoring and discrete logarithms, IEICE
Trans. Fundamentals, vol.E80-A, no.1, pp.46-53, 1997.

[16] J. Li and G. Xiao, Remarks on new signature scheme based on two hard problems, Electronics
Letters, vol.34, no.25, pp.2401-2402, 1998.

[17] N. Y. Lee, Security of Shao’s signature schemes based on factoring and discrete logarithms, IEE
Proceedings, vol.146, no.2, pp.119-121, 1999.

[18] H. M. Sun, Cryptanalysis of a digital signature scheme based on factoring and discrete logarithms,
NCS, 2002.

[19] M. S. Hwang, C. C. Yang and S. F. Tzeng, Improved digital signature scheme based on factoring
and discrete logarithms, Journal of Discrete Mathematical Sciences and Cryptography, vol.5, no.2,
pp.151-155, 2002.

[20] L. Ding and C. S. Laih, Comment: Digital Signature Scheme Based on Factoring and Discrete
Logarithms, 2002 (unpublished).

[21] Z. Shao, Comment on signature schemes based on factoring and discrete logarithms, Electronics
Letters, vol.38, no.24, pp.1518-1519, 2002.

[22] S. F. Tzeng, C. Y. Yang and M. S Hwang, A new digital signature scheme based on factorings and
discrete logarithms, International Journal of Computer Mathematics, vol.81, pp.9-14, 2004.

[23] Z. Shao, Security of meta-He digital signature scheme based on factoring and discrete logarithm,
Applied Mathematics and Computation, vol.170, pp.976-984, 2005.

[24] J. Pollard and C. Schnorr, An efficient solution of the congruence x2+ky2 = m mod n, IEEE Trans.
on Information Theory, vol.33, pp.17-28, 1987.

[25] C. C. Chang, Y. F. Chang and W. C. Wu, An extendable-message-passing protocol with signa-
tures based on two hard problems and its applications, Proc. of the International Conference on
Cyberworlds (CW’05), 2005.

[26] H. F. Lin, J. S. Liu and C. Y. Chen, Improved Shao’s signature scheme, Journal of Information
Science and Engineering, vol.23, pp.285-298, 2007.

[27] S. Wei, Digital signature scheme based on two hard problems, International Journal of Computer
Science and Network Security, vol.7, no.12, 2007.



A NOVEL DIGITAL SIGNATURE SCHEME BASED ON CUBIC RESIDUE 1663

[28] J. Zheng, Z. Shao, S. Huang and T. Yu, Security of two signature schemes based on two hard
problems, Proc. of the 11th IEEE International Conference on Communication Technology, pp.745-
748, 2008.

[29] H. F. Lin, C. Y. Gun and C. Y. Chen, Comments on Wei’s digital signature scheme based on two
hard problems, International Journal of Computer Science and Network Security, vol.9, no.2, 2009.

[30] E. Bach, Discrete logarithms and factoring, Technical Report UCB/CSD 84/186, Computer Science
Division (EECS), University of California, Berkeley, CA, USA, 1984.

[31] D. Pointcheval and J. Stern, Security proofs for signature schemes, Advances in Cryptology – Euro-
crypt’96, LNCS, vol.1070, pp.387-398, 1996.

[32] A. W. Dent, Fundamental problems in provable security and cryptography, Phil. Trans. R Soc. A,
vol.364, no.1849, pp.3215-3230, 2006.

[33] D. Pointcheval and J. Stern, Security arguments for digital signatures and blind signatures, Journal
of Cryptology, vol.13, no.3, pp.361-396, 2000.

[34] M. Bellare and P. Rogaway, Random oracles are practical: A paradigm for designing efficient pro-
tocols, Proc. of the 1st ACM Conference on Computer and Communications Security, pp.62-73,
1993.

[35] R. Canetti, O. Goldreich and S. Halevi, The random oracle methodology, J. ACM, vol.51, no.4,
pp.557-594, 2004.

[36] J. Katz, Introduction to cryptography lecture 39, CMSC456, University of Maryland, 2004.
[37] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, 2nd Edition, Springer-

Verlag, 1993.
[38] K. H. Rosen, Elementary Number Theory and Its Applications, 3rd Edition, Reading, Addison-

Wesley, 1993.
[39] S. Goldwasser and S. Micali, Probabilistic encryption, J. Com. Sys. Sci., vol.28, no.2, pp.270-299,

1984.
[40] A. C. Yao, Theory and applications of trapdoor functions, Proc. of the 23th Symposium on the

Foundation of Computer Science, pp.80-91, 1982.
[41] M. Naor and M. Yung, Public-key cryptosystems provably secure against chosen ciphertext attacks,

Proc. of the 22nd ACM Symposium of Theory of Computing, 1990.
[42] M. Blum, P. Feldam and S. Micali, Non-interactive zero-knowledge proof systems, Proc. of the 20th

Annual Symposium on the Theory of Computing, Chicago, pp.103-112, 1988.
[43] A. de Santis, S. Micali and G. Persiano, Non-interactive zero-knowledge proof systems, Proc. of

Crypto’87, 1987.
[44] E. Brickell, D. Pointcheval, S. Vaudenay and M. Yung, Design validations for discrete logarithm based

signature schemes, Practice and Theory in Public Key Cryptography, LNCS, vol.1751, pp.276-292,
2000.

[45] A. Fiat and A. Shamir, How to prove yourself: Practical solutions of identification and signature
problems, Advances in Cryptology – Proc. of CRYPTO’86, LNCS, vol.263, pp.186-194, 1987.

[46] H. C. Williams, An M3 public-key encryption scheme, Proc. of Cryptology – CRYPTO’85, pp.358-
368, 1986.

[47] C.-C. Chang and Y.-P. Lai, Modular square-and-multiply operation for quadratic residue bases,
International Journal of Innovative Computing, Information and Control, vol.5, no.10(A), pp.3059-
3069, 2009.


