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ABSTRACT. The human visual system consists of a hierarchy of multiple cortical areas
and it has been reported that a cortical region in the fusiform gyrus called the Fusiform
Face Area, FFA, responds much more strongly to faces than to any other class of stimulus.
Recent studies have also revealed that objects of visual expertise activate the FFA more
strongly than non-expertise stimuli, and it was argued that the right FFA is involved in
expertise-specific rather than face-specific visual processing. According to these evidences,
we propose a new biologically plausible computational model to illustrate face and car
expertise effect on the gateway to the right FFA. In addition, there has been reported a
difference in the onset latency of macaque inferotemporal neural responses. This latter
case is also considered in the proposed model, where faces are recognized in the first layer
and in the second layer, a discrimination task between cars and other objects is carried
out.

Keywords: Biologically plausible computational model, Visual expertise, Gateway to
the right FFA, Face perception

1. Introduction. The human visual system consists of a hierarchy of multiple cortical
areas performing feedforward neural computation on the incoming visual signals. At the
early steps, the visual cortical areas V1 and V2 perform edge and line detection. In a
higher stage of processing, area V4 represents partially complex shapes with information
about the structural description of the represented features [1]. In the final stage of visual
processing lies the inferotemporal cortex, I'T, which is thought to execute visual object
recognition. Near 25% of cells in I'T have been shown to respond selectively to face images,
making IT the ultimate cortical machinery for performing face/nonface recognition tasks
[2-4].

Consistent with prior patient research on prosopagnosia [6], in functional Magnetic Res-
onance Imaging, fMRI, studies, a cortical region in the fusiform gyrus called the fusiform
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face area, FFA, has been shown to respond much more strongly to faces than to any other
class of stimulus [6,7]. These findings have led to the hypothesis that the FFA contains
specialized mechanisms for face processing. There are, however, two different hypotheses
for the FFA mechanisms: many researchers agree that the mechanisms involved in face
processing are “special”, but few agree on what exactly these mechanisms are specialized
in [8-10]. According to the Face Specificity Hypothesis, cognitive and neural machinery
exists that is selectively involved in the perception of faces per se. According to the
Expertise Hypothesis, however, those mechanisms that appear to be selectively involved
in face perception are in fact engaged more generally in the identification of any class
of visual stimuli that share the same basic configuration and for which the subject has
gained substantial visual expertise [11]. Neuropsychologists have found enhanced activity
in face-selective extrastriate areas with the development of expertise for novel objects. It
could be demonstrated that approximately 164 ms after presentation, objects of exper-
tise can be differentiated neurologically from objects of lesser-known categories [12]. Car
and bird expertise also recruit face-selective areas. At the spatial resolution of fMRI, the
peaks of activity for faces, birds or cars in experts, could not be dissociated. Thus, the
hypothesis that different expertise domains recruit the same underlying processes seems
plausible. For example, activity for Greebles in the fusiform ‘face area’, FFA, increased
with expertise [13]. In other words, the FFA may not be specific for faces per se, but rather
only for the operations we perform typically on faces and by default when perceiving faces
[10,14].

A necessary condition for becoming an expert is extensive training. The neurons needed
for the fine discrimination processes have to be tuned for fast and accurate identification
of individuals [15]. Changes in the timing and morphology of the ERP (Event-Related
Potential) responses lead to the conclusion that cortical specificity for face-processing
increases through development [16,17]. From an evolutionary standpoint, it makes sense
that humans should have developed an area of the brain that is specific for the processing
of faces or highly similar objects, to inaugurate specialized mechanisms, which are superior
to other tasks. The ability to recognize particular faces is crucial to many aspects of
social interaction, for example, to distinguish between family and strangers or friends and
enemies. Xu investigated the role of the FFA in visual expertise for car and bird experts
[18], reporting that the same neural mechanisms may be involved in the processing of both
face and non-face expertise visual stimulus, inconsistency with the Expertise Hypothesis.
The deduction is that faces and objects of expertise would selectively activate independent
populations of neurons, interspersed within the same fMRI voxel. In other words, it
can be thought of as a gateway, allowing only objects of visual expertise into the FFA.
Thus, to facilitate the modeling of such independent populations, we need a basic-level
categorization mechanism to discriminate between expertise visual stimuli faces and cars,
and other objects.

The eigenfaces is well known method for face recognition. The idea of using eigenfaces
was motivated by a technique developed by Sirovich and Kirby (1987) [19] for efficiently
representing human faces using principal component analysis (PCA). Starting with an
ensemble of different face images, they calculated the principal components of the dis-
tribution of faces, expressed in terms of eigenvectors of the covariance matrix of the
distribution. Each individual face in the face set can then be approximated by a linear
combination of the eigenvectors with largest eigenvalues, more commonly referred to as
eigenfaces, using appropriate weights.

Turk and Pentland [20] developed the near real-time eigenfaces systems for face recog-
nition using eigenfaces and Euclidean distance. Their method exploits the distinct nature



A BIO-INSPIRED COMPUTATIONAL NEURAL MODEL 3453

of the weights of eigenfaces in individual face representation. Since the face reconstruc-
tion by its principal components is an approximation, a residual error is defined in the
algorithm as a preliminary measure of “faceness”. This residual error which they termed
“distance-from-face-space” gives a good indication of face existence through the observa-
tion of global minima in a distance map.

There are two main strategies in combining classifiers: fusion and selection. In classifier
fusion, it is supposed that each ensemble member is trained on the whole feature space,
whereas in classifier selection, each member is assigned to learn a part of the feature space.
This way, in the former strategy, the final decision is made considering the decisions of
all members, while in the latter strategy, the final decision is made by aggregating the
decisions of one or a few of experts [21]. Combining classifiers based on the fusion of
outputs of a set of different classifiers have been developed in the field of face recognition
as a method of improving the recognition performance [22]. Classifier selection has not
attracted as much attention as classifier fusion. However, classifier selection is probably
the better of the two strategies, if trained well. One of the most popular methods of
classifier selection is the mixture of experts, ME, originally proposed by Jacobs et al.
[23]. The ME models the conditional probability density of the target output by mixing
the outputs from a set of local experts, each of which separately derives a conditional
probability density of the target output. The outputs of expert networks are combined
by a gating network which is trained to select the expert(s) that is performing the best
at solving the problem [24-26].

For the first time, Ebrahimpour et al. in [27] under the classifier selection category,
proposed a model, in an ME framework, for view-independent face recognition. In their
model, a global eigenspace is used as the representation layer for both gating and expert
networks. In order to sustain the specialization of experts, [28] employs a single-view
representation scheme for the ME experts. In this work, each expert has its own eigenspace
computed from the faces of a single view. According to the input layer eigenspace, each
expert obtains specialization in recognizing faces of a single view. Also Ebrahimpour
et al. in [29,30] propose to achieve view-independent face recognition by combining the
output of experts, specialized in recognizing faces in specific view(s), in an ME framework.
[27] uses single view eigenspaces to direct each expert towards a specific view, which is
extended to overlapping eigenspaces in [28] to direct the experts towards a range of views.
The authors try to improve the face recognition accuracy by applying TDL to ME. In
their proposed method, TDL tries to direct each expert towards a single view [27] and in
another work, towards a range of views [29]. Specialization of exerts in a range of views
results in improved recognition performance on previously intermediate unseen views.

In this paper, we present a new and biologically plausible computational model for
the Gateway to the Right FFA. According to neuro-imaging studies, a special gating
mechanism exists that discriminates between faces/objects of visual expertise and other
objects and allows only the face/object of visual expertise into the FFA. In agreement with
recent findings on the FFA gateway mechanisms, we propose a model with a sequential
architecture, which consists of constructing and training a neural network model which is
mainly composed of two networks. Each network is trained on faces or cars exclusively,
and in other words, each expert network has gained expertise over a specific domain:
face or car. Our simulation consists of three major processing layers: Perceptual Layer,
face layer and car layer. Face and car layers are composed of two sub layers: object
representation and categorization. Each face and car layer is dealing with a part of input
space. The face layer categorizes faces from nonfaces and then nonfaces are fed into the
layer which categorizes cars from other objects.



3454 R. EBRAHIMPOUR, A. SAJEDIN, S. Z. MOUSSAVI AND A. G. FERIZ HENDI

The rest of this paper is organized as follows: Section 2 describes our proposed compu-
tational model of the gateway to FFA and its three processing layers; Section 3 applies
the model to real-world data and investigating the neurophysiological results; Section 4
discusses sequential and parallel processing structures and finally Section 5 concludes and
summarizes the paper.

2. Computational Modeling of the Gateway to the Right FFA. We propose a
novel model based on biological pathways as shown in Figure 1. The first layer of the
model is a set of neurons whose response properties are similar to those of complex cells
in the visual cortex. A common way to model these cells in other visual recognition
networks is to use the so-called “Gabor filters”. Normally, these units are defined by
forty Gabor different filters are derived, considering five different scales and four different
orientations (0, 45, 90 and 135 degrees). Each of these filters is convolute with the input
image, resulting in forty filtered copies of the input image. To encompass all the features
produced by the different Gabor, the resulting Gabor wavelet features are concatenated
to derive an augmented Gabor feature vector. A Gabor filter is defined as:

22y -
G(u,v) = exp <_ﬁ iy > X COS (27rx> (1)
where x = ucosf + vsinf, y = —usinf + vcosf. By varying o, A, and the wave 6, the

properties of the Gabor filter can be adjusted. We term this level the “perceptual” layer
(See Figure 2 for examples of the filters at four particular orientations and five scales).
The next two layers are face and car layers. From a psychological viewpoint, the face
layer is first constructed and then the car layer is formed. Neuropsychologists believe
that it takes a long time to become an expert. For instance, in the field of chess it takes
about ten years to reach the world-class level [31]. The same is commonly said about
face expertise, whether one is a child or an adult [32]. Only after a development phase of
not less than 10-14 years with an ongoing cortical restructuring [33], the full expertise is
ready to work properly [34]. Distinguished improvement in recognition tasks is observed
between the ages of 2 and 10 years [35]. Therefore, it is justified to speak of a downright
face recognition ontogeny.

1- Perceptual Layer:
Applying Gabor Filters to the stimulus
2- Face Layer:
2-1- Projecting Perceptual Layer Output into face space.
2-2- Face/ nonface Categorization.
2-3- If face then go to end; else
{
3- Car Layer:
3-1- Projecting Perceptual Layer Output into car space.
3-2- Car/ other object Categorization.

1
End.

FiGURE 1. The implementation steps to model expertise effect on the gate-
way to the right FFA. The proposed model is composed of three layers:
perceptual layer, face and car layers.
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FiGure 2. Gabor filters with circular receptive field at four different ori-
entations and five scales

— Face/
: [ Face PCA Nonface
Gabor Filters ° Projection
. > Matrix Network
— | Representation Layer Categorization Layer
Perceptual Layer
Face Layer

FIGURE 3. The face layer is composed of two sub-layers: representation and
categorization layers. In the representation layer, PCA mapping is carried
out and in the categorization layer a MLP or ME networks performs the
categorization task.

It is believed that a part of this time is devoted to the formation of a gateway which
discriminates between faces and nonfaces. We relate this module, the face/nonface gate-
way, to the face layer in our model. In other words, during the period of becoming a face
critic, an experienced neuron population is generated (Figure 3). This brain development
can be interpreted as a training of specialized brain areas or can be seen as a selection
mechanism based on an unspecific ‘resonance’ between the sensorial input and the brain
[36]. Due to our suggestion, in either case, this brain development corresponds to the
PCA and classifier module of the model.

After obtaining face expertise as a default, in the process of forming the second layer, a
cortical restructuring is carried out. It should be mentioned that the restructuring process
of the second experienced neuron population takes not less than a decade. During the
period of becoming a car critic, a new PCA and classifier module is generated, acting as
the car gateway, which categorizes cars from other objects, excluding faces. This recent
module corresponds to the car layer in the proposed model.

There is also a difference in the onset latency of inferotemporal neural responses [2]
which is considered in the model. Where faces are labeled as “face” in the face layer and
then in the case of nonface stimuli, the output of the perceptual layer is allowed to enter
the car layer, to separate cars and other objects. Thus, faces are categorized faster than
cars and other objects.
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Face and car layers are feedforward network consisting of two sub-layers common to
most object recognition models [3]: the first sub-layer is the “representation” layer, and
the second is the “categorization” layer, Figure 3 illustrates the details of the face Layer;
the car-expert layer differs in Car PCA projection matrix, “eigencars”, and car/other
objects network as representation and categorization layers, respectively. To avoid a high
dimensional and redundant input space we employed the representation layer, which is
common in both face and car layer. In the favor of an easier decision making we completely
separate the input classes by extracting orthogonal dimensions from the data using PCA
technique. The resulting low-dimensional object-level representation is specific to the face
or car processing, as is in the population of the so-called “experienced cell” in inferior
temporal cortex [11,14]. On the other hand, there are biological evidences indicating
the existence of I'T neurons which completely separate the input classes by extracting
orthogonal dimensions from the data [37].

In the second sub layer of the face network, categorization layer, the outputs of repre-
sentation layer are then categorized into “faces and nonfaces” by two network strictures a
multilayer perceptron network and ME with MLP experts. For the second sub layer of the
car-network, the same process is repeated, with the distinction that the discrimination
task is performed between cars and other objects, excluding faces.

3. Experimental Results. Our experiments are divided into two parts. The first exper-
iment investigates model implementation. Our second experiment is designed to examine
the accordantly of the proposed model with the agreed neuroscientists findings in connec-
tion with face expertise efficiency in the FFA.

3.1. Experiment I. The experiment carried out in this work can classified into the fol-
lowing stages. First, eigenfaces are generated from the face image set after the Gabor fil-
tering. Second, the face/nonface classifier is designed and trained. Third, the face/nonface
classification performance is evaluated. Fourth, eigencars are generated from the car im-
age set after the Gabor filtering. Fifth, the car/other object classifier is designed and
trained. In the last step, the car/other object classification performance is evaluated.

TABLE 1. Filter specifications used to create the filters. Filter size indicates
the size of the filter used for the Gabor filters.

Size |9 x 9 15 x 15 21 x 21 27 x 27 33 x 33

€ o | 36 6.3 9.2 12.3  15.8
-~

[\8)

S A | 46 79 1.5 154 19.7
~

3

S 0, /4, w/2, 37w /4

3.1.1. Image dataset. We applied a set of 2085 face images to train the face layer collected
from Olivetti [38], UMIST [39], Harvard [40], Yale [41], and BioID [42] databases resized
to 40 x 40 pixels. Meanwhile we collected 2085 nonface samples from images containing
landscapes, trees, buildings, cars, rocks, flowers etc. (Figure 4). After applying Gabor
filters with properties as shown in Table 1, the PCA matrix has built from exclusively
face images, it was used to project face and nonface samples from a 32000 dimension
image space to an optimal case 50 dimension space, which was revealed from different
experiments [43,44].
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FIGURE 4. Sample images from face and nonface categories used to train
the face network

FIGURE 5. Sample images from car and other object categories used to
train the car layer

To train the car layer, we collected a set of 1450 side views of cars mainly from UIUC
Image Database [45] and complementary from the various available web pages cropped and
resized to 40 x 40 pixels. We used 1500 samples of other objects containing landscapes,
trees, buildings, rocks, flowers etc. (Figure 5). After applying Gabor filter, the PCA
matrix, built exclusively from car images, was used to project cars and other objects from
a 32000 dimension image space to a 50 dimension eigencar space.

Moreover, the images from face, car and nonface categories used in training set has
been established over a wide variety of conditions, including gray-scale images, variations
in pose, lighting conditions, image cluttered scenes and varied camera-subject distances
(see Figures 4 and 5).

3.1.2. Training phase. In the categorization layer, the classification task is handled using
two neural networks structures: First a three-layer Multi-Layered Perceptrons (MLPs)
network and secondly Mixture of Experts (ME). MLPs network is the most popular
neural network for regression and classification. The weights of the MLPs classifier are
learned using the error back-propagation algorithm [46-48]. In the basic form of ME
[21], the expert and gating networks are linear classifiers, however, for more complex
classification tasks, the expert and gating networks should be more complicated. For
instance, [49] proposed a face/nonface recognition model, in which they use MLPs in
forming the gating and expert networks to improve the face detection accuracy (details in
appendix A). During our experiments, for the face layer with MLPs network the optimal
structure was found to be 50 : 10 : 1 and for the car layer with MLPs network the optimal
structure turned out to be 50 : 15 : 1 (see Table 2). Furthermore experiments for face layer
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TABLE 2. The details of the training parameters of the MLP networks for
face and car layer and its performance

Hidden Output Percentage Percentage
neurons 1  threshold of face of car
number value layer (%) layer (%)
S 12 0.05 0.603 92.87 -
g" 14 0.05 0.561 96.29 -
: 16 0.05 0.653 94.33 —
S 18 0.05 0.439 95.20 —
R 20 0.05  0.461 93.71 —~
5 12 0.05 0.589 — 93.13
gﬁ 14 0.05 0.518 — 94.91
': 16 0.05 0.618 — 95.36
3 18 0.05 0.67 — 95.17
| 20 005 0613 - 04.42

by combining structure, ME with MLPs experts, to find optimal topology and parameters
of ME structure repeated more than 20 times. The details of the training parameters are
shown in Table 3. It should be mentioned that the training parameters and output node
threshold values in all experiments for the MLP and ME structures, were selected in a
manner that the error on the validation set obtained minimum.

At the face categorization layer, outputs 1 and 0 were considered as faces and non-
faces, respectively. Choosing an appropriate threshold value can noticeably improve the
recognition rate of the model. A reliable approach to find a proper threshold value is to
use “ROC curves”. ROC curves reveal recognition and false rates at the same time, and
hence can be utilized to define the threshold value of maximum recognition and minimum
false rates. Using this approach the best threshold value, regarding the face layer output
node by MLP network, was found to be 0.551 which yields a recognition rate of 96.29%.
The same process was repeated for the car categorization layer, and the best threshold
value was 0.618 with which a recognition rate of 95.36% is attained (see Table 2).

Whereas, in conformity with Table 3, for face layer the ME network with two experts
and gating net work topologies 50 : 7 : 1 and 50 : 5 : 2, respectively and 7, = 0.045,
ng = 0.015, the best threshold value was found to be 0.469 which yields a recognition
rate of 100% . Also for car layer the ME network with two experts and gating net work
topologies 50 : 9 : 1 and 50 : 4 : 2, respectively and 7. = 0.045, n, = 0.005, the best
threshold value was found to be 0.49 which obtains a recognition rate of 100%.

For finding optimum training neural network parameters, the training data is often
divided into training and validation sets. All of 4170 collected face and nonface images
are divided in to 3000 samples for training and 1170 samples for validation. Also the
2950 collected car and non car images are divided to 1500 samples for training and 1450
samples for validation.

3.1.3. Results. To evaluate the model performance we used a test set of 650 face images,
500 car images and 60 images of other objects that were not present in training phase.
In conformity with Figure 1, the test set images were first delivered to the perceptual
layer where Gabor filtering was carried out. The outputs of the perceptual layer were
projected into the “face space” through PCA mapping, and in the categorization layer
faces, were distinguished from nonfaces. Those images labeled as “nonface” were then
guided to the car layer; this time projected into the “car space” through PCA mapping



A BIO-INSPIRED COMPUTATIONAL NEURAL MODEL 3459

TABLE 3. The details of the training parameters of the ME with MLPs
networks for face and car layer and its performance

Gating network Ezxpert networks Output Percentage Percentage
hidden neurons hidden neurons . ny threshold of face of car
number number value  layer (%) layer (%)
s 4 5 0.045 0.015 0.460 98.13 -
g’ 4 4 0.040 0.015 0.463 97.98 -
: 5 5 0.040 0.020 0.465 99.63 -
3 5 4 0.050 0.010 0.467 99.22 -
R 5 3 0.045 0.015 0.469 100 -
5 3 6 0.040 0.015 0.471 - 96.47
D 4 4 0.045 0.005 0.490 - 99.81
T 5 5 0.040 0.015 0.521 - 98.15
S 6 6 0.045 0.010 0.535 - 99.02
© 6 8 0.040 0.005 0.540 - 97.62

100~

Recognition Rate (%)

40 L | 1 1 L |
0 50 100 150 200 250 300

Number of Epoches

FIGURE 6. Recognition performance curves. The model based on mixture
of experts (solid line) exhibits much better performance in comparison with
The model based on MLP (dotted line).

and in the categorization layer, cars were separated from other objects. The resulting
recognition rate of the model by MLPs for categorization layers on the test set was 93.87%
and by using the ME structure for the face and car categorization layers performance of
recognition rate on the same test set was improved to 99.33%.

It should be mentioned, the results are attained for the best structure designed in
training phase on test data set. Figure 6 illustrates recognition rate of the model versus
increasing the number of epochs on test data set. Consider in this figure: both speed of
convergence and learning stability are more increased in the model based on ME than
the same on MLP. Meanwhile, in comparison from the viewpoint of the computational
load and the number of free parameters, the model based on ME had a suitable condition
relative to the same on MLP. For example, the number of weights in the model based on
MLP is about1500 while in the model based on ME are approximately 1100.

3.2. Experiment II. Several neurophysiological evidences have shown the modality of
FFA activities for expertise or non expertise stimuli. This experiment is designed to ex-
amine the accordantly of the proposed model with the agreed neurophysiological findings
in the human visual system.
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3.2.1. Method and material. Faces are one of the most relevant stimulus classes in ev-
eryday life. Although faces in principle are a very homogenous visual category, adult
observers are able to detect subtle differences between facial parts and their spatial re-
lationship. Humans are able to recognize familiar faces with an accuracy of over 90%,
even after fifty years. These evolutionary very adaptive abilities seem to be remarkably
disrupted if faces are turned upside-down. We thus compared face/nonface recognition
with upright and inverted faces. Consider the results in Figure 8: Recognizing is difficult
when faces are inverted.

Next investigation which recognizing faces that are misaligned along the horizontal
or vertical midline. The parts in fractured faces were displaced spatially both in the
horizontal and vertical direction. As well, many parts were displaced from their original
location. We wished to determine whether our model recognition would be impaired
if displacements involved whole units, such as the top or bottom of the face, and if it
mattered whether the displacement was horizontal or vertical (see Figure 7).

FIGURE 7. Examples of a) upright face, b) inverted face, ¢) misaligned
along the horizontal midline, d) misaligned along the vertical midline, and
e) fractured face that were used in experiment II

Consequently, our model had to identify faces that were misaligned along the vertical
or horizontal midline. Our performance would provide information about the spatial
relations that are crucial for face recognition consistently with neurophysiological results
[50,51]. Then we altered the spatial relations among components of features without
inversion. We accomplished this by cutting photos of faces of test set of face images into
four or five parts and spreading them apart while retaining a semblance of the first-order
relations among them. That is, the arrangement, from top to bottom, of forehead, eyes,
nose, mouth and chin was preserved although the spatial distance between them was
altered (see Figure 7).
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3.2.2. Results. The proposed model was impaired at recognizing inverted faces and also
those faces that were misaligned along the horizontal but not the vertical in accordance
with neurophysiological findings. The drop in performance for the model from the intact
condition was comparable to that observed for fractured faces, even though in this exper-
iment most of the components retained their relation to one another. Altering the spatial
relations among components had as deleterious an effect on recognition as did inversion
and misalignment (see Figure 8).

100

95—
S0
85
80—
75—
0

65

Recognition Rate (%)

B0 —

55—

50

P T & 7 @

FicUure 8. Computational modeling results for upright face, inverted face,
misaligned along the horizontal midline, misaligned along the vertical mid-
line, fractured face recognition (each result is the average of ten times run)

4. The Proposed Sequential Method vs. Parallel Method. We now proceed to
outline the strength and weakness of our sequential model in comparison with an alter-
native parallel model. We first describe the sequential model preferences:

1. The sequential structure of the proposed model is strongly supported by biological
evidences. As mentioned before, a recent study on macaque inferotemporal cortex
has reported a difference in the onset latency of neural responses to primate and
non-primate faces [2]. This latency can be modeled in a sequential structure, where
faces are recognized in the first layer, and then in the second layer, with latency,
another visually experienced object is processed.

2. From a computational viewpoint, the sequential model is more laborsaving. To
clarify this, consider a face image at the input: the sequential model projects the
input image into the face space in its first layer, if it is correctly recognized; the task
is finished without going through car categorization. However, in a parallel structure
both face and car processes are carried out and then a decision is made about the
entity of the input image. In this latter case, the parallel processing of the input
image increases the computational complexity.

On the other side, a parallel model has some advantages:

1. The decision made by a parallel system about the entity of an input image is more
reliable than a sequential system, as the decision is made through a comparison
between the outputs of, say, two networks. Whereas in a sequential system, the
output of the first layer is compared with a fix threshold and the decision is made.
Now if the system makes a wrong decision at this step, which might be caused by an
inappropriate threshold, the output will certainly be mistaken. Note that this kind
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of problem in a sequential system can be avoided to a large extent by choosing an
appropriate threshold. To maximize the recognition performance of the model, we
chose an appropriate threshold for each layer with the aid of ROC curves.

2. A parallel model is faster than a sequential model in responding to a nonface stimulus.
In a sequential model, after labeling an input image as a nonface, it is guided to the
car layer to see whether the input image is a car or not. But in a parallel model,
both face and car processes are executed at the same time, so it is faster to find that
the nonface input image is a car or not. Although the omission of the time latency
makes the parallel model faster, but at the same time makes it more biologically
implausible [2]. As our purpose was to model expertise effect on the gateway to the
Right FFA, we chose to base our model on a sequential structure.

5. Conclusion. In this paper we proposed a bio-inspired computational model to expli-
cate how faces and cars are allowed to enter the FFA. In accordance with neuropsycho-
logical evidences, after a development phase of not less than a decade, with an ongoing
cortical restructuring, the full expertise is ready to work properly. After a period of at
least 10 years, second expertise comes to existence and another cortical restructuring is
carried out. As face expertise is a default cortical restructuring, in our model we first
arranged face layer. Inside the face layer, a face PCA and classifier module was utilized
to handle face/nonface discrimination task. In the next layer of our model, car experience
is considered to be the second expertise. The car layer is composed of a car PCA and
classifier module to discriminate between cars and other objects. The PCA and classi-
fier modules, in critic layers, represent the cortical restructurings caused by expertise.
Another noticeable point of the proposed model is the sequential processing structure
supported by biological evidences reporting a difference in the onset latency of macaque
inferotemporal neural responses.
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Appendix A.

Mixture of Experts. In a revised version of mixture of experts model, to improve the
performance of the expert networks, we use MLPs instead of linear networks or experts
in Figure 9. The application of MLPs in the structure of expert networks calls for a
revision in the learning algorithm. In order to match the gating and expert networks,
the learning algorithm is corrected by using an estimation of the posterior probability of
the generation of the desired output by each expert. Using this new learning method,
the MLP expert networks” weights are updated on the basis of those estimations and this
procedure is repeated for the training data set. It should be mentioned that we do not
use the notation of [36] to formulize the learning rules of the modified ME, but we follow
the one which is described in Appendix A of [52], since its clear explanation of learning
rules makes its extension easier for our purpose.

Each expert is a feedforward network and all experts receive the same input and have the
same number of outputs. The gating network is also feedforward, and typically receives
the same input as the expert networks. The experts compete to learn the training patterns
and the gating network mediates the competition. The gating network is simultaneously
trained to combine the experts’ outputs. Each expert is an MLP network with one hidden
layer that computes an output O; as a function of the input stimuli vector, x, and a set of
weights of hidden and output layers and a sigmoid activation function. We assume that
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FIGURE 9. The mixture of experts is composed of expert networks and a
gating network

each expert specializes in a different area of the input space. The gating network assigns
a weight g; to each of the experts’ outputs, O;. The gating network determines the g; as
a function of the input vector x and a set of parameters such as weights of its hidden and
output layers and a sigmoid activation function. The g; can be interpreted as estimates of
the prior probability that expert i can generate the desired output y. The gating network
is composed of two layers: the first layer is an MLP network, and the second layer is a
softmax nonlinear operator. Thus the gating network computes O,, which is the output
of the MLP layer of the gating network, then applies the softmax function to get:

g= PO Ly (A1)

N
‘231 exp(0Oy,)
]:

where N is the number of expert networks. So the g; are nonnegative and sum to 1. The
final mixed output of the entire network is:

N
Or=> g-0; i=1..N (A2)
=1

The weights of MLPs are learned using the error back propagation, BP, algorithm. For
each expert ¢ and the gating network, the weights are updated according to the following
equations:

Aw, = nchi(y — 0;)(0:(1 = 0,))Of; (A3)
Awh = nehlwg(y - Oz)(Oz(]- - Oz))th(]- - th)fL’Z (A4)
Awyg = ng(h — g)(Oy4(1 — OQ))OI{g (A5)
Awpy = ngwyTg(h — 9)(O4(1 = 0y))Ong(1 = Opg); (A6)

where 1, and 7, are learning rates for the expert and the gating networks, respectively.
wy, and w,, are the weights of input to hidden and hidden to output layer, respectively, for
experts and wy, and w,, are the weights of input to hidden and hidden to output layer,
respectively, for the gating network. O}; and Oy are the transpose of Op; and Oy, the
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outputs of the hidden layer of expert and gating networks, respectively. h; is an estimate
of the posterior probability that expert ¢ can generate the desired output y:

,_ 9iexD (—=3(y—0)"(y — 0y))
.=

395 (=3(y = 0)T(y — 0y))

As pointed out by [52], in the network’s learning process, “the expert networks “com-

pete” for each input pattern, while the gate network rewards the winner of each compe-

tition with stronger error feedback signals. Thus, over time, the gate partitions the input
space in response to the expert’s performance”.

(A7)



