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Abstract. In this work, temperature regulation of double-pipe heat exchangers is con-
sidered. The positive (unidirectional) and bounded features of the flow rate input variable
are taken into account in the analysis. As a result, a bounded positive PI-type control
scheme, which achieves the regulation objective avoiding input saturation, is proposed.
It turns out to be a simple algorithm that does not need to feed back the whole state
vector, that does not depend on the exact value of the system parameters, and whose
stabilization character is global in the closed-loop system state-space domain. Moreover,
it may be applied to both flow configuration cases, i.e., countercurrent and parallel-flow
heat exchangers. The analytical developments are corroborated through experimental and
simulation results.
Keywords: Regulation, Nonlinear control, Output feedback, Bounded input, Heat ex-
changers

1. Introduction. Since long ago, heat exchangers have been part of a great number
of industrial processes (see, for instance, [1, §1] and references therein) as well as aca-
demic environments [2, 3]. In view of their numerous applications, they have been the
subject of many studies including, among others: steady-state, transient and frequency
response analysis [4, 5, 6]; open-loop qualitative behavior characterization [1, 7]; numer-
ical simulation [8, 9]; state reconstruction [10, 11], parameter identification [12, 13], or
simultaneous estimation of both, states and parameters [14, 15]; and feedback control
[16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]. Among these topics, the last mentioned one has
proved to be essential in the solution formulation to cope with the operation demands
imposed to current industrial processes. In particular, unexpected behaviors that deteri-
orate the closed-loop performance and/or prevent the pre-specified convergence goal are
undesirable or unacceptable. Thus, a control scheme designed to avoid such unexpected
or undesirable phenomena is always preferable.

Several control schemes for the outlet temperature regulation of heat exchangers have
been developed in the literature through the application of various techniques. For in-
stance, linearizing feedback algorithms have been proposed, based on a simple lumped-
parameter model in [16], and considering a distributed-parameter model in [17]. Unfortu-
nately, such a geometric control design methodology assumes the exact knowledge of the
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structure and parameters of the system dynamics, involves all (or a considerable number
of) the states of the considered model, and generally gives rise to complex expressions,
neglecting the natural analytical-stability properties of the process. This is also the case
for the partially linearized control variable methodology used in [18].
Other works like that in [19] – which proposes an optimal (LQI) control scheme, those in

[20, 21] – where standard and particular Generalized Predictive Control (GPC) algorithms
are respectively developed (the latter adopting a particular PID structure), and those in
[22, 23] – where schemes based on Min-Max Model Predictive Control (MMMPC) were
implemented, focus on the optimization of a cost function, disregarding the qualitative
natural properties of the system. Moreover, the implementation of optimization-based
methodologies (like optimal control, GPC and MMMPC) generally involve a considerable
number of calculations in order to accomplish the considered optimization criterion at ev-
ery sampling period. The computational burden becomes specially large in the MMMPC
case in view of the considered double optimization. This problem was reduced through
hinging hyperplanes in [22], and through a neural network solver in [23]. But the use of
such supplementary techniques added up their own complications to the resulting design
procedure.
Other methods, like the multi-loop algorithm tuned using game theory that was devel-

oped in [24], the PID-deadtime scheme (PID with time-delay compensation) proposed in
[25], or the PI fuzzy controller developed in [26], base their efficiency on a tuning proce-
dure or tuning formulae. Nevertheless, they lack formal stability proofs or stability region
estimations.
On the other hand, as far as the authors are aware, previous works on control design for

double-pipe heat exchangers do not simultaneously consider the positive (unidirectional)
and bounded nature of the flow rate taken as input variable. Such controllers could even-
tually try to force the actuators to go beyond their natural capabilities, undergoing the
well-known phenomenon of saturation. In a general context, the presence of such a non-
linearity is not necessarily inconvenient, as long as it is taken into account in the control
design and/or the closed loop analysis. Otherwise, it may give rise to undesirable behav-
iors as pointed out, for instance, in [27, §1] and [28, §I]. Thus, control design considering
those input constraints turns out to be important in order to avoid such unexpected or
undesirable closed-loop system behaviors. This is corroborated from the consideration of
the input saturation phenomenon in the various contexts treated in the recent literature,
as seen, for instance, in [29, 30, 31].
In this work, a non-linear PI-type controller for the hot fluid outlet temperature regula-

tion of double-pipe heat exchangers is proposed, taking the cold fluid flow rate as control
input. With respect to the above cited works, the designed algorithm takes into account
the positive and bounded nature of the flow rate taken as input variable. Contrary to the
exact and partial feedback linearizing methods like those in [16, 17, 18], it does not depend
on the exact knowledge of the system parameters, does not need to feed back all (or a
considerable number of) the process states, and takes into account the natural analytical
and stability properties of the exchanger. As a result, the proposed algorithm turns out
to have a simple structure that avoids the considerable number of calculations character-
izing the optimization-based algorithms such as those in [19, 20, 21, 22, 23]. Moreover,
the resulting controller guarantees stabilization to the desired outlet temperature for any
initial condition within the system state-space domain avoiding input saturation, and is
not restricted to a specific flow configuration but may be applied to both countercurrent
and parallel-flow heat exchangers. These characteristics are corroborated through a for-
mal closed-loop analysis which distinguishes the justification procedure of the proposed
algorithm with respect to the tuning-procedure/formulae-based approaches like those in
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Figure 1. Counter/parallel-flow (solid/dashed resp.) double-pipe heat exchanger

[24, 25, 26]. Furthermore, the analytical developments are corroborated through experi-
mental and simulation results.

2. Nomenclature and Notation. Throughout the paper, the system variables and
parameters are denoted as follows:

U heat transfer coefficient [J/(◦C m2 s)] A heat transfer surface area [m2]
Cp specific heat [J/(◦C kg)] F mass flow rate [kg/s]
M total mass inside the tube [kg] T temperature [◦C]
∆T temperature difference [◦C] t time [s]
R set of real numbers R+ set of positive real numbers
Rn set of n-tuples (xj) with xj ∈ R Rn

+ set of n-tuples (xj) with xj ∈ R+

0n origin of Rn

Subscripts:
u upper bound c cold i inlet
l lower bound h hot o outlet

Let ∆T1 and ∆T2 stand for the temperature difference at each terminal side of the heat
exchanger, i.e.,

∆T1 ,
{
Thi − Tco if α = 1

Thi − Tci if α = −1
and ∆T2 ,

{
Tho − Tci if α = 1

Tho − Tco if α = −1

where

α ,
{
1 if counter flow

−1 if parallel flow

(see Figure 1). The logarithmic mean temperature difference (LMTD) among the fluids is
typically expressed as (see, for instance, [32] and references therein):

∆Tℓ ,
∆T2 −∆T1

ln ∆T2

∆T1

Nevertheless, this expression reduces to an indeterminate form when ∆T1 = ∆T2, which
is specially problematic in the counterflow case. Such an indetermination is avoided if the
LMTD is taken as

∆TL ,
{
∆Tℓ if ∆T2 ̸= ∆T1

∆T0 if ∆T2 = ∆T1 = ∆T0

(1)

This was proven in [32], together with the following analytical properties:
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Lemma 2.1. [32, Lemma 2 and Remark 3] ∆TL in Equation (1) is continuously differen-
tiable at every (∆T1,∆T2) ∈ R2

+. Moreover, it is positive on R2
+, while lim∆T1→0∆TL = 0

for any ∆T2 ∈ R+, and lim∆T2→0∆TL = 0 for any ∆T1 ∈ R+.

Lemma 2.2. [32, Lemma 3] ∆TL in Equation (1) is strictly increasing in its arguments,
i.e., ∂∆TL

∂∆Ti
> 0, i = 1, 2, ∀(∆T1,∆T2) ∈ R2

+.

Finally, the interior and boundary of a set, say B, will be respectively denoted as int(B)
and ∂B. The derivative of a scalar function depending on a single scalar variable, say
ρ : R → R : ς 7→ ρ(ς), will be denoted ρ′, i.e., ρ′(ς) = dρ

dς
(ς).

3. The System Dynamics. The following assumptions are considered:

A1. The fluid temperatures and velocities are radially uniform.
A2. The heat transfer coefficient is axially uniform and constant.
A3. Constant fluid thermophysical properties.
A4. No heat transfer with the surroundings (adiabatic operation).
A5. Fluids are incompressible and single phase.
A6. Negligible axial heat conduction.
A7. There is no energy storage in the walls.
A8. Inlet temperatures, Tci and Thi, are constant.
A9. The flow rates are axially uniform and any variation is considered to take place

instantaneously at every point along the whole length of the exchanger.

A10. The hot fluid flow rate, Fh, is kept constant, while the value of the cold fluid flow
rate, Fc, can be arbitrarily varied within a compact interval Fc , [Fcl, Fcu], for some
positive constants Fcl < Fcu.

Under these assumptions, and taking the whole exchanger as a single bi-compartmen-
tal cell, a simplified but suitable lumped-parameter model that accurately captures the
dynamical properties of the qualitative behavior of double-pipe heat exchanger, as thor-
oughly shown in [1], is:

Ṫco =
2

Mc

[
Fc (Tci − Tco) +

UA

Cpc

∆TL(Tco, Tho)

]
(2a)

Ṫho =
2

Mh

[
Fh (Thi − Tho)−

UA

Cph

∆TL(Tco, Tho)

]
(2b)

where ∆TL(·, ·) is the LMTD (complemented) expression (1), considered a function of
(Tco, Tho). A physically reasonable state-space domain for system in Equation (2) is [1, 7]

D ,
{
{(To1, To2) ∈ R2 | Tci < Toj < Thi , j = 1, 2} if α = 1

{(To1, To2) ∈ R2 | Tci < To1 < To2 < Thi} if α = −1

The control objective consists in the regulation of the hot fluid outlet temperature,
Tho, towards a pre-specified desired value Thd (the set-point), through the cold fluid flow
rate Fc as input variable, taking into account the unidirectional nature and restricted
range of such an input flow rate (according to Assumption 1). The use of a simple but
qualitatively suitable model, like that in Equation (2), for the control design, aiming at
the achievement of such an objective, is desirable as pointed out for instance in [33, 34].
Indeed, a high order process dynamics representation would end up in a complex scheme
with complicated expressions, and would involve temperature measurements of interme-
diate points throughout the exchanger which are not always available. In particular,
the model in Equation (2) has been used for control design for instance in [16, 18]. It
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has actually been used as a suitable representation of the dynamics of double-pipe heat
exchangers for numerous purposes, as pointed out in [1].

Remark 3.1. Notice that by considering ∆TL a function of (Tco, Tho) on D, continuous
differentiability and positivity hold for all (Tco, Tho) on D, and 0 (zero) may be considered
the value that ∆TL takes at any (Tco, Tho) on ∂D such that ∆T1(Tco, Tho)·∆T2(Tco, Tho) = 0
(see Lemma 2.1). Furthermore, strict monotonicity in its arguments holds as (applying
the chain rule): ∂∆TL

∂Tho
> 0 and ∂∆TL

∂Tco
< 0, ∀(Tco, Tho) ∈ D (see Lemma 2.2).

Remark 3.2. Let y denote the open-loop state vector, i.e., y , (Tco, Tho)
T , and let

ẏ = f̄(y; θ) represent the open-loop system dynamics in Equation (2) assuming constant
flow rates, where θ ∈ Rp (for some positive integer p) is the system parameter vector.
Considering Lemma 2.1, one sees (from Equation (2)) that f̄ is continuously differen-
tiable in (y; θ) on D × Rp

+. Then, the system solutions, y(t; y0, θ) with y0 , y(0) ∈ D,
do not only exist and are unique, but are also continuously differentiable with respect to
initial conditions and parameters, for all y0 ∈ D and all θ sufficiently close to any nominal
parameter vector θ0 ∈ Rp

+ (see, for instance, [35, §3.3]).
In [1], it was shown that, considering constant flow rates, the system dynamical model

in Equation (2) possesses a unique equilibrium point (T ∗
co, T

∗
ho) ∈ D, where(

T ∗
co

T ∗
ho

)
=

(
1− P P

RP 1−RP

)(
Tci

Thi

)
,
(
gc(Fc)

gh(Fc)

)
(3)

with R = FcCpc

FhCph
,

P =


1− S

1 + (−S)βR
if R ̸= α

UA

UA+ FcCpc

if R = α = 1

S = exp
(

αUA
FhCph

− UA
FcCpc

)
and β , α+1

2
.

Claim 3.1. gh in Equation (3) is a one-to-one strictly decreasing continuously differen-
tiable function of Fc.

Proof: Continuous differentiability of gh with respect to Fc follows from the arguments
given in Remark 3.2. Hence, from Equation (3), g′h(Fc) =

dgh
dFc

(Fc) is given by

g′h(Fc) =


RS [1 + γ − eγ] (Thi − Tci)

Fc (1 + (−S)βR)2
if R ̸= β

− CpcU
2A2(Thi − Tci)

2CphFh (UA+ CphFh)
2 if R = β = 1

where γ , UA
CpcFc

− αUA
CphFh

. Thus, from Formula 4.2.30 in [36]1, it follows that g′h(Fc) <

0, ∀Fc > 0, showing that gh(Fc) is strictly decreasing on its domain. This, in turn,
corroborates its one-to-one character.

Remark 3.3. Observe that through Claim 3.1, two important facts are concluded:

1. T ∗
ho is restricted to a reachable steady-state space defined by

Rh , [gh(Fcu), gh(Fcl)] (4)

1Formula 4.2.30 in [36] states the following well-known inequality: ex > 1 + x, ∀x ̸= 0.
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2. Any value of T ∗
ho ∈ Rh is uniquely defined by a specific flow rate value F ∗

c ∈ Fc (see
Assumption 1), which in turn defines a unique value of T ∗

co according to Equation
(3).

4. The Proposed Controller. The analysis developed in [1], under the consideration of
constant flow rates, showed that the vector field in Equation (2) has a normal component
pointing to the interior of D at every point on ∂D. Consequently, for all initial state
vectors in D, the system trajectories remain in D globally in time, and are bounded
since D is bounded. Moreover, D was proven to contain a sole invariant composed by
a unique equilibrium point (T ∗

co, T
∗
ho) (see Equation (3)). Therefore, every trajectory of

the dynamical model in Equation (2) converges to (T ∗
co, T

∗
ho). The idea is then to propose

a controller defined in terms of a dynamic internal (auxiliary) state, ϕ, in such a way
that the closed-loop system keeps the same analytical features, with Fc forced to evolve
within int(Fc) (i.e., such that Fcl < Fc(t) < Fcu, ∀t ≥ 0), and forcing the existence of a
sole invariant composed by a unique equilibrium point (T ∗

co, T
∗
ho, ϕ

∗) where T ∗
ho = Thd, the

pre-specified desired set-point (according to the control objective, stated in Section 3).
This is achieved through the following control scheme.

Proposition 4.1. Consider the dynamical system in Equation (2) with Fc being able to
take values exclusively on Fc = [Fcl, Fcu]. Let the value of Fc be continuously computed as

Fc(ϕ, Tho) = kpη(ϕ) (Tho − Thd) + ϕ (5)

for any constant Thd taken on int(Rh) (see (4)), where

η(ϕ) , (ϕ− Fcl)(Fcu − ϕ)

ϕ is an auxiliary state whose instantaneous value is dynamically calculated according to
the following auxiliary dynamics

ϕ̇ = kiη(ϕ) (Tho − Thd) (6)

kp is a nonnegative scalar satisfying

kp <
1

(Fcu − Fcl)(Thi − Tci)
(7)

and ki is a positive constant. Then, provided that ki is sufficiently small, for any initial
closed-loop (extended) state vector (Tco, Tho, ϕ)(0) ∈ D× int(Fc): Tho(t) → Thd as t → ∞,
with Fc(t) ∈ int(Fc), ∀t ≥ 0, and

(
Tco, Tho

)
(t) ∈ D, ∀t ≥ 0.

Proof: First note that, from the satisfaction of inequality (7), it follows that

0 < −kp(Fcu − Fcl)(Thi − Tci) + 1 ≤ kp(Fcu + Fcl − 2ϕ)(Tho − Thd) + 1

= kpη
′(ϕ)(Tho − Thd) + 1 =

∂Fc

∂ϕ

∀(ϕ, Tho) ∈ Fc × T , where

T , {To ∈ R | Tci ≤ To ≤ Thi},
i.e.,

∂Fc

∂ϕ
> 0 ∀(ϕ, Tho) ∈ Fc × T (8)

Moreover, ∂Fc

∂Tho
= kpη(ϕ) ≥ 0, ∀(ϕ, Tho) ∈ Fc×T , with strict inequality on int(Fc)×int(T )

if kp > 0. Then Fc(Fcl, Tci) = Fcl < Fc(ϕ, Tho) < Fcu = Fc(Fcu, Thi), ∀(ϕ, Tho) ∈ int(Fc)×
int(T ), or equivalently

Fc(ϕ, Tho) ∈ int(Fc) ∀(ϕ, Tho) ∈ int(Fc)× int(T ) (9)
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Now, the closed-loop dynamics takes the form

d

dt


Tco

Tho

ϕ

 =


2

Mc

[
Fc(ϕ, Tho) (Tci − Tco) +

UA

Cpc

∆TL(Tco, Tho)

]
2

Mh

[
Fh (Thi − Tho)−

UA

Cph

∆TL(Tco, Tho)

]
kiη(ϕ) (Tho − Thd)

 (10)

with Fc(ϕ, Tho) as expressed in Equation (5). Let x denote the closed-loop (extended)
state vector, i.e., x , (Tco, Tho, ϕ)

T , and let ẋ = f(x) represent the closed-loop system
dynamics (in Equation (10)). Based on Lemma 2.1 (see also Remark 3.1), and in view of
the satisfaction of (9), it can be verified that, with α = 1:

f1(Thi, Tho, ϕ) =
2Fc(ϕ, Tho)

Mc

(Tci − Thi) < 0 ∀(Tho, ϕ) ∈ int(T )× int(Fc)

f2(Tco, Tci, ϕ) =
2Fh

Mh

(Thi − Tci) > 0 ∀(Tco, ϕ) ∈ int(T )× int(Fc)

with α = −1:

f1(Tco, Tco, ϕ) =
2Fc(ϕ, Tco)

Mc

(Tci − Tco) < 0 ∀(Tco, ϕ) ∈ int(T )× int(Fc)

f2(Tho, Tho, ϕ) =
2Fh

Mh

(Thi − Tho) > 0 ∀(Tho, ϕ) ∈ int(T )× int(Fc)

and for any α ∈ {−1, 1}:

f1(Tci, Tho, ϕ) =
2UA

McCpc

∆TL(Tci, Tho) > 0 ∀(Tho, ϕ) ∈ int(T )× int(Fc)

f2(Tco, Thi, ϕ) = − 2UA

MhCph

∆TL(Tco, Thi) < 0 ∀(Tco, ϕ) ∈ int(T )× int(Fc)

f3(Tco, Tho, Fcl) = f3(Tco, Tho, Fcu) = 0 ∀(Tco, Tho) ∈ D

This shows that there is no point on the boundary of D × Fc where the vector field
f has a normal component pointing outwards. Consequently, for any initial extended
state vector in D × int(Fc), the closed-loop system solution cannot leave the system
state-space domain D × int(Fc). Moreover, it is clear that the points on ∂D × int(Fc)
cannot even be approached. On the other hand, from expression (8), it can be seen
that, for any given cold fluid flow rate steady-state value F ∗

c ∈ Fc, corresponding to a
specific hot fluid outlet steady-state temperature T ∗

ho ∈ T (according to Remark 3.3), there
corresponds a unique auxiliary state equilibrium value ϕ∗ ∈ Fc. With this and Remark
3.3 in mind, it can be seen from Equation (6) that the closed-loop system has a unique
equilibrium point x∗ = (T ∗

co, T
∗
ho, ϕ

∗) in D × int(Fc), where T ∗
ho = Thd, and ϕ∗ takes the

unique value on Fc through which T ∗
ho adopts the desired value Thd. Besides, letting x∗

l ,(
gc(Fcl), gh(Fcl), Fcl

)
and x∗

u ,
(
gc(Fcu), gh(Fcu), Fcu

)
(see Equation (3); observe further

that Fc(Fcl, gh(Fcl)) = Fcl and Fc(Fcu, gh(Fcu)) = Fcu) – with gh(Fcl) = max{T ∗
ho ∈ Rh}

and gh(Fcu) = min{T ∗
ho ∈ Rh} (see Remark 3.3), it follows that f(x∗

l ) = f(x∗
u) = 03.

Actually, x∗
l and x∗

u are the only equilibrium points on the boundary of D × Fc. The
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Jacobian matrix of f , i.e.,

∂f

∂x
=



∂f1
∂x1

∂f1
∂x2

∂f1
∂x3

− 2UA

MhCph

∂∆TL

∂Tco

− 2

Mh

[
Fh +

UA

Cph

∂∆TL

∂Tho

]
0

0 kiη(ϕ) kiη
′(ϕ)(Tho − Thd)


where

∂f1
∂x1

=
2

Mc

[
−Fc(ϕ, Tho) +

UA

Cpc

∂∆TL

∂Tco

]
∂f1
∂x2

=
2

Mc

[
kpη(ϕ)(Tci − Tco) +

UA

Cpc

∂∆TL

∂Tho

]
∂f1
∂x3

=
2

Mc

(kpη
′(ϕ)(Tho − Thd) + 1)(Tci − Tco)

and η′(ϕ) = Fcu + Fcl − 2ϕ – evaluated at x∗
l and x∗

u, i.e.,
∂f
∂x

∣∣
x=x∗

l

and ∂f
∂x

∣∣
x=x∗

u
, have

eigenvalues ki(Fcu − Fcl)(gh(Fcl)− Thd) > 0 and ki(Fcl − Fcu)(gh(Fcu)− Thd) > 0, respec-
tively. Then x∗

l and x∗
u are unstable and consequently the points on D × ∂Fc cannot

be asymptotically approached from the interior of the system state-space domain either.
Consequently, for any x0 ∈ D × int(Fc), x(t; x0) ∈ D × int(Fc), ∀t ≥ 0, or equiva-
lently (Tco, Tho)(t) ∈ D and ϕ(t) ∈ int(Fc), ∀t ≥ 0. This and expression (9) prove that
Fc(ϕ, Tho)(t) = Fc(ϕ(t), Tho(t)) ∈ int(Fc), ∀t ≥ 0. Now, consider the Jacobian matrix of
f at x∗, i.e., ∂f

∂x

∣∣
x∗ . Its characteristic polynomial is P (λ) = λ3 + a2λ

2 + a1λ+ a0, where

a2 ,
[
2Fc(ϕ, Tho)

Mc

+
2Fh

Mh

− 2UA

McCpc

∂∆TL

∂Tco

+
2UA

MhCph

∂∆TL

∂Tho

]
x=x∗

a1 ,
[
4FhFc(ϕ, Tho)

McMh

+
4UAFc(ϕ, Tho)

McMhCph

∂∆TL

∂Tho

− 4UAFh

MhMcCpc

∂∆TL

∂Tco

+
4UAkpη(ϕ)(Tci − Tco)

McMhCph

∂∆TL

∂Tco

]
x=x∗

and a0 , kiā0 with

ā0 ,
[
4UAη(ϕ)(Tci − Tco)

McMhCph

∂∆TL

∂Tco

]
x=x∗

From these expressions and Lemma 2.2 (see also Remark 3.1), it follows that

a2 > b2 ,
2Fcl

Mc

+
2Fh

Mh

> 0

a1 > b1 , − 4FhUA

MhMcCpc

[
∂∆TL

∂Tco

]
x=x∗

> 0

0 < ā0 < b̄0 ,
4UAη

(
Fcl+Fcu

2

)
(Tci − Thi)

McMhCph

[
∂∆TL

∂Tco

]
x=x∗

where the fact that η(ϕ) ≤ η
(
Fcl+Fcu

2

)
, ∀ϕ ∈ Fc, has been taken into account. Furthermore,

assume that ki satisfies

ki ≤
b1b2
b̄0

=
8FhCph(FclMh + FhMc)

MhMcCpc(Fcu − Fcl)2(Thi − Tci)
(11)
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Observe that, under this consideration, it follows that a0 = kiā0 < kib̄0 ≤ b1b2 < a1a2, i.e.,
a0 < a1a2 which is a necessary and sufficient condition for the three roots of P (λ) to have
negative real part (see, for instance, in [37, Example 6.2]). Thus, x∗ is asymptotically
stable. Its attractivity is global on D× int(Fc) if {x∗} is the only invariant in D× int(Fc),
which is the case for small enough values of ki. Indeed, from boundedness of D× int(Fc)
and its positive invariance with respect to the closed-loop system dynamics, every solution
x(t; x0 ∈ D × int(Fc)) has a nonempty, compact, and invariant positive limit set L+, and
x(t; x0) → L+ as t → ∞, ∀x0 ∈ D×int(Fc) [35, Lemma 4.1]. Then, the global attractivity
of x∗ on D× int(Fc) is subject to the absence of periodic orbits on D× int(Fc) (implying
L+ = {x∗}). Sufficiently small values of ki render the closed loop a slowly varying system
[35, §9.6]. Then, the 3rd-order closed-loop dynamics can be approximated by the 2nd-
order system in Equation (2) with (quasi) constant Fc. Since under such representation
no closed orbits can take place2, the absence of periodic solutions of the closed-loop (3rd-
order) system on D × int(Fc) is deduced. Thus, Tho(t) → Thd as t → ∞.

Remark 4.1. Notice, from the proof of Proposition 4.1, that inequality (11) may be
taken as an a priori control gain tuning criterion for ki. The right-hand-side expression
may be calculated using available system parameter (average) estimations; one may trust
that a value of ki quite smaller than the calculated bound would satisfy inequality (11).
Further, one could in general expect that upper and lower bound reliable estimations of
each parameter are available, e.g., Cph ∈ [Cphl, Cphu], Cpc ∈ [Cpcl, Cpcu], Mh ∈ [Mhl,Mhu],
Mc ∈ [Mcl,Mcu] and Fh ∈ [Fhl, Fhu] (the inlet temperatures are assumed to be measurable);

then by choosing ki ≤ 8FhlCphl(FclMhl+FhlMcl)

MhuMcuCpcu(Fcu−Fcl)2(Thi−Tci)
, the satisfaction of inequality (11) is

ensured.

Remark 4.2. The sufficiently small restriction imposed to ki, as well as to kp through
inequality (7), may be seen as a limitation of the proposed algorithm. However, the suf-
ficient character of the conditions stated through inequality (7) and Remark 4.1 permits
the consideration of control gain values higher than the concerned bounds (up to certain
limit) without destabilizing the closed loop or saturating the input.

Remark 4.3. Observe that the proposed approach does not need to feed back the whole ex-
tended state vector. No measurements of Tco are required for its implementation. Further-
more, the exact knowledge of the accurate values of the system parameters is not needed.
Such features characterize the proposed algorithm as a simple controller that gives rise
to a control signal evolving within its physical limits. This way, undesirable phenomena,
such as windup, are avoided.

Remark 4.4. Observe that the proposed controller may be equivalently expressed in the
following PI form

Fc(t) = kpeϕ(t) + ki

∫ t

0

eϕ(τ)dτ + ϕ0 (12)

where eϕ is a weighted error variable defined as eϕ , η(ϕ)e, with e , Tho − Thd (the
standard error variable) and ϕ is the current value of the integral action, i.e., of (the
addition of) the last two terms in the right-hand side of (12), and ϕ0 is the value of ϕ at
the initial time t = 0, i.e., ϕ0 = ϕ(0) ∈ int(Fc). Figure 2 shows a graphical representation
of the computation procedure giving rise to the controller implementation. Note that the
(weight) function η(ϕ), involved in the proposed scheme, states the difference with respect
to a conventional PI control law. It is actually thanks to such a non-linear term, η(ϕ),

2This is verified through Bendixon’s Criterion (see, for instance, [35, Lemma 2.2]), since ∂f̄1
∂y1

+ ∂f̄2
∂y2

=

−a2 < 0, ∀y ∈ D, as was stated and shown in [1].



2042 A. ZAVALA-RÍO, C. M. ASTORGA-ZARAGOZA, M. ADAM-MEDINA ET AL.

HEAT

EXCHANGER

Tho

Thd
_

+

Á
+

+

´(¢)

CONTROLLER

kp

ki
R

e

eÁ

£

ACTUATOR

Fc

Figure 2. Block diagram: controller implementation

that the input flow rate, Fc, is kept within its physical limits. Indeed, observe that, in
view of expression (9) (guaranteed through the satisfaction of inequality (7)), for any
ϕ(0) ∈ int(Fc), Fc is not able to go beyond the lower and upper bounds of Fc since,
at Fcl or Fcu, ϕ stops evolving. Moreover, due to the unstable nature of the consequent
equilibrium points, x∗

l and x∗
u, appearing on the boundary of D ×Fc, such limit values of

Fc, i.e., Fcl and Fcu, cannot even be asymptotically approached. This way, Fc is guaranteed
to evolve within int(Fc) = (Fcl, Fcu).

5. Closed Loop Tests. In order to verify the efficiency of the proposed controller, ex-
periments were carried out on a bench-scale pilot plant consisting of a completely in-
strumented double-pipe heat exchanger3. The plant operates as a water-cooling process –
with the hot and cold water respectively flowing through the internal and external tubes –
and may be configured in either countercurrent or parallel flow configuration. Engelhard
Pyro-Control Pt-100 temperature transmitters measure the temperatures at one extreme
of the pipes (the one coinciding with the hot fluid outlet in both flow configurations) while
RIY-Moore temperature transmitters measure the temperatures at the other extreme (the
one coinciding with the hot fluid inlet in both flow configurations). The current signals
produced by the transmitters (in the range of 4 − 20 mA) are fed to current-to-voltage
converters, and the resulting voltage signals are then read through a data acquisition
card (AT-MIO-16E-1 by National Instruments). Both fluid flow rates are measured via
Platon flowmeters, and the cold fluid flow rate is regulated through a pneumatic valve
(Research Control Valve by Badger Meter, Inc.). A monitoring interface, designed using
LabVIEWr, displays the controlled output Tho and the manipulated variable Fc.
For the developed experimental tests, the inlet temperatures were kept constant at Tci =

30 ◦C and Thi = 66 ◦C. The hot fluid flow rate was fixed at Fh = 16.7×10−3 kg/s. The cold
fluid flow rate Fc was made vary between Fcl = 0.8×10−3 kg/s and Fcu = 10.8×10−3 kg/s,
respectively the lower and upper input bounds. On the other hand, after numerous trial-
and-error experimental tests, a control gain combination giving rise to good closed loop
responses was determined to be: kp = 2.5 s/(◦C · kg) and ki = 0.72 [1/(◦C · kg)].
Experiments were carried out in both – countercurrent and parallel– flow configurations.

In all the performed tests, the controller gain values were defined as mentioned above,
i.e., kp = 2.5 s/(◦C · kg) and ki = 0.72 [1/(◦C · kg)]. The experiments were run departing
from steady-state conditions corresponding to a constant cold fluid flow rate value of
Fc = 2 × 10−3 kg/s. At t = 50 s, the loop was closed taking Thd = 62.5 ◦C; at t = 600 s,
the set-point was changed to Thd = 61 ◦C; finally, at t = 1100 s, the hot fluid flow rate
was perturbed by changing its value from Fh = 16.7× 10−3 to 20× 10−3 kg/s.

3A study on the calculation of the system parameters and model validation of such an experimental
device (where the dynamical model in Equation (2) was validated) has been developed in [38].
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Figure 3. Experimental results with the proposed scheme

Figure 3 shows the experimental results for the countercurrent and the parallel flow
configurations. Observe that the control objective is achieved in every case; in particular,
the outlet desired temperature was reached when the loop was closed and the reference
was changed, and successful outlet temperature stabilization was performed under pertur-
bation; moreover such achievements took place avoiding input saturation. Note further
that the closed-loop system takes comparable times to recover from a perturbation than
from a reference change; for instance, one sees, from the graphs on the figure, that (in
both flow configuration cases) a stabilization time of around 200 s takes place for both
the reference change produced at t = 600 s and the perturbation arisen at t = 1100 s.

For comparison purposes, the linearizing feedback approach developed in [16] was im-
plemented in counter flow configuration. The reader may corroborate the complexity of
the control expression developed in [16] with respect to the simplicity of the algorithm
in Proposition 4.1. The controller parameter values were tuned as suggested in [16]. In
view of the slow closed-loop responses produced by this controller (as will be seen and
commented below), two tests were performed. The first test departed from the same
steady-state initial conditions of the previous experiments, i.e., those corresponding to a
cold fluid flow rate constant value of Fc = 2× 10−3 kg/s; at t = 50 s, the loop was closed
taking Thd = 62.5 ◦C; afterwards, at t = 2000 s, the reference was changed to Thd = 61 ◦C.
With the system in closed loop, the second test departed from the steady-state conditions
produced at the end of the first test; at t = 300 s, the hot fluid flow rate was perturbed
by changing its value from Fh = 16.7× 10−3 to 20× 10−3 kg/s.

Figure 4 shows the closed-loop outlet temperature response and control signal arisen
with such a linearizing feedback scheme at both performed tests: the results of the first test
(reference change) are shown in Figure 4(a) while those of the second test (perturbation
rejection) are presented in Figure 4(b). Note that notoriously longer stabilization times
take place compared with those previously observed with the proposed scheme. Indeed,
note from the graphs on the figures that while a regulation time of about 950 s took
place when the loop was closed (at t = 50 s during the first test), the system took more
than 2000 s to get stabilized from the reference change (at t = 2000 s during the first
test) and more than 1500 s to recover from the perturbation (arisen at t = 300 s during
the second test). Moreover, responses with overshoot are observed during the first test,
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Figure 4. Experimental results with the linearizing feedback scheme

and oscillating convergence takes place after the reference was changed (during the first
test) and when the perturbation was produced (during the second test). Furthermore,
observe that the resulting control signals are noisy. This may be a consequence of the
high dependence of the linearizing feedback controller on the system states (entailing a
high degree of measurement noise corruption).
Further tests were performed through computer simulation using model (2) in counter

flow configuration (α = 1). The system parameter values were taken from [15] as follows:
U = 1050 J/(◦C m2 s), A = 0.014 m2, Mc = 0.134 kg, Mh = 0.015 kg, Cpc = 4174 J/(◦C
kg) and Cph = 4179 J/(◦C kg). The rest of the involved values were taken as in the
previously considered experimental setup, i.e., of Tci = 30◦C, Thi = 66◦C, Fh = 16.7 ×
10−3kg/s, Fcl = 0.8 × 10−3kg/s and Fcu = 10.8 × 10−3kg/s. The proposed approach was
compared with the fuzzy PI controller recently developed in [26]. The control parameters
on the fuzzy PI algorithm were taken such that the integral of the square of the error
(among the output, Tho, and the desired value, Thd) was minimized; the resulting values
(using the notation used in [26], and expressed in the appropriate units which are omitted)
were Ge = 5 × 10−6, Gde = 4 × 10−6 and Gu = 2000. As for the proposed approach,
the control gain values were fixed as kp = 2.7 s/(◦C kg) and ki = 3.8 [1/(◦C kg)]. A test
similar to the one performed through the experimental setup was implemented for both
simulated controllers: same departing conditions, reference changes and perturbation.
The results are shown in Figure 5. One sees that both controllers achieve the regulation
objective. Moreover, the closed-loop variable responses obtained with the fuzzy PI are
faster than those that took place with the proposed controller. However, observe that
the fuzzy PI scheme produces control signals that force the actuator to react sweeping
large flow rate ranges in very short periods of time. More importantly, input saturation
could not be avoided, which is more significantly seen when the hot fluid flow rate value
was perturbed at t = 1100 s. On the contrary, the proposed scheme achieves acceptable
stabilization times through smooth signals avoiding input saturation.

6. Conclusions. In this work, temperature regulation of double-pipe heat exchangers
was considered. The positive (unidirectional) and bounded nature of the flow rate taken
as input variable was taken into account in the analysis. This has been proved to be
important in several senses. For instance, in view of such input constraints – inherent to
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real actuators typically used for the control of heat exchangers, the analysis proved that
the reachable steady-state space is restricted to a subset of the system state-space domain.
Any intention to stabilize the process towards a desired outlet temperature outside such a
reachable steady-state space would fail, and would give rise to an unexpected phenomenon,
such as a steady-state error. Furthermore, a bounded positive PI-type regulation scheme
that avoids input saturation was proposed. It turns out to be a simple algorithm that does
not need to feed back the whole closed-loop state vector, does not depend on the exact
knowledge of the system parameters, and whose stabilization character is global in the
closed-loop system state-space domain. Through such a regulation scheme, unexpected
or undesirable phenomena, such as windup, are avoided. Moreover, it was shown to
be applicable in both flow configuration cases, i.e., to countercurrent and parallel heat
exchangers. Experimental and simulation tests corroborated the theoretical developments
and showed good results compared to the implementation of a linearizing feedback scheme
previously proposed in the literature and to a recently published fuzzy PI controller.
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