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Abstract. Due to the high risk associated with international transactions, exchange
rate forecasting is a challenging and important field in modern time series analysis. The
difficulty in forecasting arises from the nonlinearity and non-stationarity inherent in ex-
change rate dynamics. To address these problems, this study proposes a hybrid model
that couples two effective feature extraction techniques, phase space reconstruction, and
wavelet analysis, with a Relevance Vector Regression (RVR) model to forecast chaotic ex-
change rates. The time series inputs are first mapped into high-dimension phase space,
and then the phase space signal is decomposed on a wavelet basis to analyze its dynamics
under various frequencies. Finally, each wavelet component is fed into a local RVR to per-
form non-parametric regression and forecasting. Compared with other forecasting models,
such as support vector machines (SVR), RVR, GJR-GARCH or pure wavelet-base mod-
els, the proposed model performs best and statistically improves forecasting performance
under root mean square error (RMSE), mean absolute error (MAE) and directional sym-
metry (DS).
Keywords: Chaos theory, Phase-space reconstruction, Wavelet analysis, Time series
forecasting, Relevance vector regression, Support vector regression

1. Introduction. The recent financial tsunami around 2008 to 2010 has caused great loss
to investors in currency markets. Owing to the high risk associated with international
transactions, exchange rate forecasting is a challenging and important field in modern
financial analysis. The difficulties of exchange rate forecasting arise from inherent non-
linearity and nonstationarity in exchange rate dynamics. To address these problems, this
study develops a hybrid model that integrates two feature extraction techniques with
Relevance Vector Regression (RVR, Tipping [37]) to perform forecasting.

Traditional autoregressive integrated moving average (ARIMA) and GARCH (Boller-
slev [4]) models are popular in financial forecasting. However, they are parametric models
with strong assumptions that the time series must be stationary. Recent nonlinear non-
parametric models – Artificial Neural Networks (ANNs, Kurban and Filik [25]) and fuzzy
systems (Abdollahzade et al. [2], Chang et al. [5]) do not suffer from the above limi-
tations. ANN systems are typically classified as “data-driven” methods. An enhanced
model from ANNs was recently proposed and found to perform well in time series fore-
casting, namely Support Vector Machines (SVMs, Vapnik [38]). The SVM model is based
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on the structural risk minimization (SRM) principle, contrasted to ANNs, which embody
the Empirical Risk Minimization (ERM) principle. Under the SRM principle, SVMs solve
a convex optimization problem with a unique solution. SVMs typically outperform ANNs
and traditional approaches (Perez-Cruz et al. [32], Kim [22], Huang et al. [15], Ince and
Trafalis [19], Hong et al. [16], Chen and Jeong [7], Chen and Chen [6], Begum et al. [3],
Chen et al.[8]).
However, there are still some disadvantages in the SVR model (see Tipping [37]). First,

the number of support vectors grows linearly with increasing training data. Too many
support vectors may cause the problem of over-fitting. Second, SVR predictions are not
probabilistic. A regression problem needs a probabilistic framework to capture uncer-
tainty in prediction. Third, many SVR parameters, such as the trade-off, insensitivity
parameters and kernel width, have to be determined in the initial stage. Fourth, SVM
technique is not always able to construct parsimonious models for system identification.
Finally, the kernel function must satisfy the Mercer’s condition.
The first unique feature of the proposed approach is to replace SVR by RVR (Rele-

vance Vector Regressions, Tipping [37]). RVR overcomes the disadvantages of SVR by
embedding SVR into a Bayesian framework. The Bayesian framework determines op-
timal parameters automatically in the learning process. The RVR significantly reduces
the numbers of support vectors, and all the parameters and hyperplanes are estimated
in probability. Consequently, RVR can produce sparser models and effectively reduce the
risk of overfitting. Recent researches have demonstrated better forecasting capacity of
RVRs (Tipping [37], Li et al. [27]). Instead of using a global RVR for prediction, the
proposed system employs a group of local RVRs to predict each time-frequency (wavelet)
component. Because signal dynamics are complex and heavily dependent on time scales,
local prediction on each wavelet component is an effective method to increase forecasting
accuracy.
The second unique feature of the proposed approach is that, instead of performing

predictions in raw data space, this study constructs forecasting models in the phase space.
Prior studies have clearly shown that the behavior of exchange rates can be characterized
by dynamic chaotic systems. Scheindman and Lebaron [34], Frank and Stengos [10],
Schwartz and Yousefi [35] and Wang et al. [39] found chaotic behavior in financial markets
such as the stock market, foreign exchange markets, and the futures market. By phase
space (Packard et al. [31]), chaos theory offers a method to capture the attractor trajectory
and reveals characteristic information of a chaotic dynamic system. Traditional statistical
techniques cannot capture the key information easily. Related works include: Lisi and
Schiavo [28], Iseri et al. [18], and Coban and Buyuklu [9].
The third unique feature of the proposed approach is the application of wavelet anal-

ysis to extract signal features over multiple time scales to enhance the performance of
local predictors. For instance, high-frequency time scales are better for analyzing short-
interval features, such as volatility; on the contrary, low-frequency time scales are suitable
for recognizing long-interval features, such as trends or long-term patterns. Forecasting
models operating in the time domain are difficult to track sudden transients in stock
prices. Therefore, the best solution is to transform the financial time series to a domain
capable of identifying these key features with compact representation.
Based on the ability of extracting key features in signal processing, wavelet analysis has

been applied in financial studies. Kim and In [23] investigated the relationship between
stock returns and inflation through wavelet analysis. Yousefi et al. [43] used a wavelet-
based model to forecast oil price and investigated whether futures markets are efficiently
priced. Mitra [30] applied a wavelet filtering based approach to analyze the relationship
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among money, output and price for the Indian economy. Related works about the appli-
cation of wavelet analysis include Karuppiah and Los [20], In and Kim [17], Kim and In
[24], Fernandez [11], Gallegati [12], Zhang et al. [45] and Rua and Nunes [33].

The main innovation of this paper lies in combining wavelet analysis, chaos analysis
and the RVR model to form a powerful prediction system. In the first stage, this study
utilized delay coordinate embedding to draw the trajectory in the high dimensional phase
(or state) space. In the second stage, wavelet analysis helps to decompose the chaotic
series into several time-frequency components, and each component is fed into a local RVR
to perform forecasting. The sum of all local predictions makes up the final predictions.
The experimental results suggest that the proposed hybrid model outperforms all other
models, including pure models, wavelet-based models and GARCH models (Glosten et
al., [13]). The empirical findings clearly reveal that wavelet analysis and the chaos theory
significantly improve exchange rate forecasting.

Performing regression in an efficient subspace makes the proposed model more sparse
and parsimonious than traditional SVM models, and reduces the risk of overfitting. Sim-
ilar works related to this study include Zhang et al. [44], Wu and Chang [41], Fernandez
[11], Ma and Xu [29] and Yeh et al. [42]. Zhang et al. [44] implemented a wavelet-based
prediction system using neural networks. The weakness of their system comes from many
drawbacks of NNs. Han et al. [14] and Ma and Xu [29] developed RBF-NN (radial ba-
sis function neural network) predictors in phase space. Their systems are more effective
than wavelet-based models, but still suffer the drawbacks of NNs. Fernandez [11] com-
pared wavelet-based and SVM-based forecasts, and showed that wavelet-based models
outperform SVM-based models. His wavelet model is actually a multi-resolution ARIMA
model. The parametric ARIMA model cannot compete with our nonparametric RVR
forecaster. More importantly, our wavelet-based model operates in phase space, which
is more efficient than pure wavelet-based models. Similar to our work, Wu and Chang
[41] and Lau and Wu [26] implemented a phase space support vector regression (SVR)
model for time series forecasting. Because system dynamics in phase space are still com-
plex and dependent on time scales, different from their method, this study implements
local wavelet-based RVRs in phase space, which overcomes the disadvantages of SVR, and
better fits local phase (state) dynamics in each time scale. Yeh et al. [42] constructed a
multiple-kernel support vector regressor in time domain for stock price forecasting. Al-
though it outperforms traditional NN and SVM models, it is not parsimonious enough to
compete with phase space and wavelet-based forecasters. Its two-stage learning algorithm
is complicated, and a large number of model parameters need to be optimized first. Their
predictor also suffers from drawbacks of time domain models.

The remainder of this paper is organized as follows. Section 2 introduces the relevance
vector regressions. Section 3 introduces phase space reconstructions and the proposed
system. Section 4 exhibits the data sets, and reports experimental results measured by
RMSE, MAE and DS. The Wilcoxon signed-ranks test (Wilcoxon [40]) is applied to test
the performance among each model. Section 5 draws the conclusions.

2. Relevance Vector Regressions. Given an input-target training pair S = {Xt, Yt}t=1,

...,n, assuming that targets are independent and the noise of the data is Gaussian with
variance σ2, the probability distribution of Yt can be written as

p(Y
∣∣w,σ2 ) = (2πσ2)N/2exp

(
−∥Y − Φw∥2

2σ2

)
(1)

where Y = [Y1, . . . , Yn]
T , w = [w1, . . . , wn]

T , Φ is a matrix in which the rows contain the
response of the kernel function to inputs, and the matrix function Φ can be represented
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as

Φ =


1 K(X1, X1) K(X1, X2) · · · K(X1, XN)
1 K(X2, X1) K(X2, X2) · · · K(X2, XN)
...

...
...

. . .
...

1 K(XN , X1) K(XN , X2) · · · K(XN , XN)

 (2)

Rather than attempting to look for optimal weight parameters of the model, a prior
distribution is defined over each of the weights. In the RVR framework, Gaussian prior
distributions are chosen:

p(wt |αt ) =

√
αt

2π
exp

(
−(wtα

2
t )

2

)
(3)

where αt is the hyperparameter that governs the prior distribution defined over the weight
wt.
Adopting the Markov property, we obtain the following posterior distribution which

follows normal distribution:

p(Y pred |Y ) =

∫∫∫
p(Y pred

∣∣w,α, σ2 )p(w,α, σ2 |Y )dwdαdσ2 (4)

where Ypred is the model prediction. With the prior and the likelihood distributions, the
posterior distribution over the weights can be calculated through the Bayes’ rule:

p(w
∣∣Y ,α,σ2 ) =

p(Y |w, σ2)p(w |α)

p(Y |α,σ2 )
(5)

where α = [α1, . . . , αN ]. The resulting posterior distribution over the weights is the
multivariate Gaussian distribution

p(w
∣∣Y ,α, σ2 ) = (2π)−(N+1)/2

∣∣∣∑∣∣∣−1/2

exp

(
−(w − µ)TΛ−1(w − µ)

2

)
∼ N

(
µ,
∑)

(6)
where the mean and covariance are respectively denoted as

µ = σ−2
∑

ΦTY (7)∑
= (σ−2ΦTΦ +A)−1 (8)

with A = diag[α0, . . . , αN ]. The likelihood distribution over the training targets are
computed by integrating the weights and simplified as

p(Y
∣∣α, σ2 ) = (2π)−N/2 |Λ|−1/2 exp

(
−Y Λ−1Y T

2

)
∼ N(0,Λ) (9)

where the covariance is written by Λ = σ2I + ΦA−1ΦT . Given Formula (6) to Formula
(9), we rewrite Formula (4) by the following:

p(Y pred |Y ) =

∫∫∫
p(Y pred

∣∣w,α, σ2 )p(w
∣∣Y ,α, σ2 )p(α, σ2 |Y )dwdαdσ2 (10)

In the RVR framework, the estimated value of the weights is obtained by the mean of
posterior distribution denoted as Formula (6), which is the Maximum a Posteriori (MAP)
estimator. The MAP estimator of the weights determination depends on hyperparameters
α and the noise σ2 in which the two estimates are estimated by maximizing the marginal
likelihood

(α̂, σ̂2) = arg max p(α, σ2 |Y ) (11)
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and the posterior distribution of corresponding output is obtained by the predictive dis-
tribution

p(Y pred |Y ) =

∫∫∫
p(Y pred

∣∣w, α̂, σ̂2 )p(w
∣∣Y , α̂, σ̂2 )dw (12)

The maximization of the marginal likelihood with respect to α and σ2 is performed iter-
atively, because there is no closed solution. In practice, during the iterative re-estimation
many of the hyperparameters αt approach infinity, yielding a posterior distribution (5)
of the corresponding weight wt that tends to be a delta function centered around zero.
The corresponding weight is thus deleted from the model, as well as its associated basis
function ϕt(Xt). The model is built on the few training examples whose associated hyper-
parameters do not go to infinity during the training process, leading to a sparse solution.
These remaining examples are called the relevance vectors.

3. Feature Extractions and the Proposed System.

3.1. Reconstructed phase space. In order to estimate the internal system information
from complex time series data, Packard et al. [31] brought up delay-coordinate state space
reconstruction to reconstruct chaos attractor. Consider a time series St = (x1, x2, . . . , xn),
on the basis of Takens’ Embedding Theorem (Takens [36]), the system trajectory that
positioned in m-dimension Euclidean space can be reconstructed in (2m + 1)-dimension
space by delay coordinate. We can define a m-dimension n-delay state vectors as

Xt = (xt, xt−τ , xt−2τ , . . . , xt−(m−1)τ ), t = 1, 2, . . . , nm (13)

where nm = n− (m− 1)τ , m is the embedding dimensions and τ is a time delays. Given
a time series St, an m-dimension phase space can be extended

PhS =


x1 x1−τ x1−2τ x1−3τ · · · x1−(m−1)τ

x2 x2−τ x2−2τ x2−3τ · · · x2−(m−1)τ
...

...
...

...
. . .

...
xnm xnm−τ xnm−2τ xnm−3τ · · · xnm−(m−1)τ

 (14)

According to the above definition, the important work is to choose optimal embedding
dimension m and delay time τ when reconstruct a suitable phase space.

To reconstruct the phase space, good choices for time lag τ and embedding dimension
m are needed. This study uses the first minimum of the mutual information function
(Abarbanel [1]) I(τ) to determine τ :

I(τ) =
N−τ∑
t=1

P (xt, xt+τ ) log2

(
P (xt, xt+τ )

P (xt)P (xt+τ )

)
, (15)

where P (xn) is the probability density of xn, while the P (xn, xn+τ ) is the probability
density of xn and xn+τ .

The false nearest neighbor (FNN, Kennel et al. [21]) method is a approach to find the
optimal embedding dimension. The idea of the algorithm false nearest is the following.
For each point in the time series look for its nearest neighbor in a m-dimensional space.
Calculate the distance. Iterate both points and compute

Ri =
∥Zi+1 − Zj+1∥
∥Zi − Zj∥

(16)

If Ri exceeds a given heuristic threshold Rt, this point is marked as having a false nearest
neighbor. The criterion that the embedding dimension is high enough is that the fraction
of points for which Ri > Rt is zero, or at least sufficiently small.
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3.2. The proposed system. The procedure of the new approach is as follows: (1) AMI
and FNN are employed to obtain the optimal delay time and embedding dimension for
the target index for phase space reconstruction. Based on this technique, this study trans-
forms input variables to phase space which is better for capturing the essential dynamics
of a chaotic system. (2) Wavelet analysis is applied to decompose the phase space sig-
nal into several time-frequency components for multi-resolution predictions, because the
system dynamics differ for each time-frequency (wavelet) component. (3) Each wavelet
component is finally fed into a local RVR for prediction. Figure 1 shows the overall flow
diagram of the hybrid model.

Figure 1. Flow diagram of the hybrid model

4. Experimental Analysis and Results.

4.1. Data description and performance criteria. This study used monthly data for
the experiment running from January 1991 to Jun 2009. All data were sampled from
DataStream. The target outputs of this study cover six monthly exchange rate returns,
namely GBP/USD, JPY/USD, NTD/USD, DEM/USD, FRF/USD and ITL/USD. The
return values were calculated by the following formula:

Yt = ln(yt)− ln(yt−1) = ln

(
yt
yt−1

)
, t = 2, 3, . . . , n (17)

where Yt represents the return, yt represents the raw data. Each data set included 220
observations, divided into training sets and test sets, 160 observations for training sets
and 60 observations for test sets. However, exchange rate predictions were difficult due
to the complex factors that influence exchange rate movements. Consequently, macroe-
conomic factors, which may affect exchange rate directly or indirectly, were also selected
as input variables. Table 1 lists all the target variables and explanatory variables. Table
2 summarizes the descriptive statistics of the complete data sets.
This study considered one-step-ahead forecasting. Financial information is realized

every month; therefore, we can adaptively adjust the model for next predictions. One-
step-ahead forecasting can prevent problems associated with cumulative errors from the
previous period that affect out-of-sample forecasting. The proposed model was trained
in a batch manner; namely, 160 data points before the day of prediction were treated
as the training data set, and the window of training data set slides with the current
prediction, namely, moving the window one-step forward after every forecast and repeating
the procedure. The daily returns in the final 60 days of the data series were used as the test
data set for evaluating the performance of all prediction models. To measure experimental
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Table 1. Data collection

Target Variable Explanatory Variable
Code Variables Code Variables
GBP Great British Pound Y Exchange rate (end of month)
JPY Japanese Yen CPI Consumers Price Index
NTD New Taiwan Dollar IPI Industry Product Index
DEM Deutsche Mark M Money Supply M2
FRF French Franc R Interbank Call Loan Rate
ITL Italian Lira L Leading Indicator

S Stock Price Index
Trade Trade balance
IFR Inflator Rate.
MUS M2 (US)
RUS Interbank Call Loan Rate (US)

Table 2. Descriptive statistics for raw data

GBP JPY NTD DEM FRF ITL
Observations 221 221 221 221 221 221
Mean 0.0008 −0.0014 0.0008 −0.0004 −0.0004 0.0009
Median 0 −0.0007 0.0001 −0.0012 −0.0009 −0.0012
Maximum 0.1277 0.1139 0.073 0.0825 0.0827 0.1147
Minimum −0.0846 −0.1547 −0.0458 −0.0661 −0.0655 −0.0655
Std. Dev. 0.0283 0.0321 0.0134 0.0258 0.0253 0.0266
Skewness 0.9688 −0.4526 0.6374 0.0749 0.1072 0.4455
Kurtosis 6.1298 5.5544 7.2991 3.1712 3.1449 4.0738

performance, the Root Mean of Squared Error (RMSE), the Mean Absolute Error (MAE)
and the Directional Symmetry (DS) were employed. The definition of each indicator is
as follows:

RMSE =

[
1

N

N∑
t=1

(Y predt − Yt)
2

] 1
2

(18)

MAE =
1

N

N∑
t=1

|Y predt − Yt| (19)

DS =
1

N

N∑
t=1

dst × 100%

dst =

{
1, (Y predt − Yt−1)× (Yt − Yt−1) > 0
0, otherwise

(20)

where Y predt represents the forecasting values and Yt represents the true values; in For-
mula (20), dst indicates if the prediction on price movement (up or down) is correct.

4.2. Four pure forecasting models. This study initially employed four pure models for
forecasting, including GARCH (generalized autoregressive conditional heteroscedasticity),
RBF-NN (radial basis function neural network), SVR (support vector regression) and
RVR (Relevance Vector Regression). Figure 2 displayed the flow diagrams of the four
pure models.



1924 S.-C. HUANG AND C.-H. HSIEH

Figure 2. Flow diagrams of four pure models

4.3. Performance evaluations on four pure models. Tables 3 and 4 show the per-
formance of four pure models. The conditions imposed to develop the results are as
follows: (1) the input data for these models were the target exchange rate and macroe-
conomic factors. (2) For the GARCH model, a general GJR-GARCH (1, 1) was set for
the experiment. (3) The SVR model employed Gaussian kernel function for forecasting.
The optimal parameters for the SVR model were searched by cross validation. (4) The
RBF-NN used five neurons for the centers, and initialized via a k-means algorithm. The
maximum iteration was 500 on training, the stopping criterion was an error smaller than
10−5. (5) The RVR also used the Gaussian kernel. The initial parameters of RVR were
σ = 0.1, αi = 1, wi = 0, and the maximum iterations were 1000. Figure 2 illustrates the
first stage experiment.
Table 3 shows the performance of GARCH under RMSE, MAE and DS. Table 4 shows

the performance of RBF-NN, SVR and RVR. As listed in Tables 3 and 4, in pure models,
RVR outperforms SVR and RBF-NN in each three criteria for all the return series, and
SVR outperforms RBF-NN. The performance of RVR and GARCH is similar, but the
RVR model is more effective and robust in DS predictions. These results confirm prior
research (Tipping [37], Kim [22], Huang et al. [15], Ince and Trafalis [19], Hong et al.
[16]).

Table 3. Forecasting results of GJR-GARCH (1, 1) model

Exchange rate RMSE MAE DS
GBP 0.0362 0.0245 68.33
JPY 0.0287 0.0225 75.00
NTD 0.0113 0.0080 86.67
DEM 0.0211 0.0155 76.67
FRF 0.0204 0.0159 75.00
ITL 0.0196 0.0147 75.00

4.4. Performance comparison on wavelet-based models and the proposed hy-
brid model. To reconstruct a phase space from observed data, it is necessary to confirm
the chaotic nature of observed data and determine the embedding dimension m and delay
time τ . The False Nearest Neighbors method (FNN, Kennel et al. [21]) and the Average
Mutual Information method (AMI, Abarbanel [1]) were adapted to determine the em-
bedding dimension (m) and delay time (τ) respectively. Table 5 presents the results of
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Table 4. Forecasting results of RBF-NN, SVR and RVR

Exchange rate RBF-NN SVR RVR
RMSE MAE DS RMSE MAE DS RMSE MAE DS

GBP 0.0256 0.0178 46.67 0.0235 0.0169 80.00 0.0232 0.0171 80.00
JPY 0.0292 0.0228 50.00 0.0286 0.0213 80.00 0.0277 0.0217 71.67
NTD 0.0129 0.0101 40.00 0.0136 0.0108 71.67 0.0132 0.0102 73.33
DEM 0.0325 0.0236 48.33 0.0263 0.0209 73.33 0.0259 0.0208 73.33
FRF 0.0702 0.0512 41.67 0.0259 0.0205 73.33 0.0262 0.0202 76.67
ITL 0.0264 0.0215 45.00 0.0264 0.0208 66.67 0.0263 0.021 70.00

optimal m and τ where the value denoted in boldface is the optimal dimension numbers.
Consistent with the findings of Schwartz and Yousefis [35], the exchange rate returns in
the current study belong to low-dimension chaos except for GBP, which is reconstructed
by a five-dimensional space.

Table 5. Delay time and embedding dimension

HHHHHHm
τ

GBP/USD DEM/USD FRF/USD NTD/USD JPY/USD ITL/USD
(τ = 3) (τ = 3) (τ = 1) (τ = 2) (τ = 2) (τ = 3)

1 73.2558 80.2326 77.9070 72.6744 77.9070 65.6977
2 23.8372 9.3023 7.5581 12.2093 16.8605 8.7209
3 3.4884 0.0000 0.0000 0.0000 0.0000 0.0000
4 1.1628 0.0000 0.0000 0.0000 0.0000 0.0000
5 0.5814 0.0000 0.0000 0.0000 0.0000 0.0000
6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Note: the value denoted in boldface in the table is the optimal dimension numbers.

After phase space reconstruction, this study employed the Daubechies wavelet with
length 8 to decompose the phase space signal. Decomposed signals range from one low-
frequency component (trend) and five high-frequency components (fluctuation); namely,
the resolution level is five. Time-scale information was extracted from phase space signals
through this step.

The procedure of the new model is shown in Figure 1. The conditions imposed to
develop the results of Table 6 are as follows: (1) the optimal m and τ are displayed in
Table 5. (2) The wavelet analysis used the Daubechies wavelet filter with length 8 to
decompose the phase space signals. The resolution level was set to five. (3) A local RVR
was used to forecast each frequency component. The final prediction was given by the
combination of all frequency components. (4) The parameters used for RVR were the
same as in Section 4.3.

For comparing the effectiveness of phase space representation, this study also performed
wavelet-based SVR and RVRmodels for predictions. Figure 3 displays their flow diagrams.
The conditions imposed to develop the experiment results of wavelet-based SVR and RVR
are as follows: (1) the wavelet analysis also used the Daubechies wavelet filter with length
8 to decompose the input data. The resolution level was also set to five. 2) Different from
our hybrid model, all frequency components were fed into a single (or global) SVR or
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RVR for final forecasting. (3) The parameters used for RVR were the same as in Section
4.3. The SVR parameters were also searched by cross validation.
Table 6 exhibits the forecasting results of the wavelet-based models and our hybrid

model (phase space reconstruction + wavelet decomposition + RVR), evaluated by each
performance criteria. Comparing the two wavelet-based models with the new model, the
new model obviously outperforms the wavelet-based models for each three criteria. The
new model successfully obtained important state information of a chaotic dynamic system
through reconstructing the phase space. Building prediction models in phase space is more
effective and efficient.

Figure 3. Flow diagrams of wavelet-based SVR and RVR models

Table 6. Forecasting results of wavelet-based models and our hybrid model

Exchange rate Wavelet-SVR Wavelet-RVR Our hybrid model
RMSE MAE DS RMSE MAE DS RMSE MAE DS

GBP 0.0152 0.0156 88.33 0.0098 0.0113 88.33 0.0083 0.0065 90.00
JPY 0.0240 0.0211 78.33 0.0120 0.0113 91.67 0.0082 0.0061 96.67
NTD 0.0086 0.0084 88.33 0.0067 0.007 86.67 0.0045 0.0037 85.00
DEM 0.0164 0.0143 83.33 0.0106 0.0107 86.67 0.0070 0.0054 85.00
FRF 0.0151 0.0129 86.67 0.0138 0.0106 81.67 0.0072 0.0057 85.00
ITL 0.0157 0.0149 83.33 0.0126 0.0104 85.00 0.0072 0.0054 91.67

4.5. Wilcoxon testing to confirm superiority of the new model. This section sum-
marizes performance under the three criteria and performs a formal statistical comparison
of each model. Table 7 summarizes the results on RMSE; Table 8 summarizes the results
on MAE; Table 9 summarizes the results on DS. On average, the pure SVR is poorer
than the GJR-GARCH. This is because of the weakness of the pure SVR model in cap-
turing volatility clustering, resulting in its underperformance compared to the GARCH
type models. The RVR outperforms SVR and RBF-NN. RVR and SVR all have robust
DS performance. The performance of RVR and GARCH is similar, but the RVR model
is more effective and robust in DS predictions.
To confirm that our forecasting strategy is significantly better in statistics, this study

conducted a Wilcoxon signed rank test (Wilcoxon [40]), a nonparametric alternative (for
sample median) to the two sample t-test, based solely on the order in which the observa-
tions from the two samples fall. Table 10 shows the results on RMSE. Panel A of Table
10 reports the Wilcoxon tests of the GJR-GARCH model. Panel B of Table 10 displays
the Wilcoxon comparison of our hybrid model with other models. Panel A of Table 10
shows that the wavelet-based models and our hybrid model significantly outperform (at
5%) the GJR-GARCH model. Panel B demonstrates that our hybrid model significantly
outperforms (at 5%) all other models. This confirms that our hybrid model has the best
performance.
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Table 7. Comparison of RMSE for each model

Exchange
RBF-NN SVR RVR Wavelet-SVR Wavelet-RVR GJR-GARCH

Our hybrid
rate model
GBP 0.0256 0.0235 0.0232 0.0152 0.0098 0.0362 0.0083
JPY 0.0292 0.0286 0.0277 0.0240 0.0120 0.0287 0.0082
NTD 0.0129 0.0136 0.0132 0.0086 0.0067 0.0113 0.0045
DEM 0.0325 0.0263 0.0259 0.0164 0.0106 0.0211 0.0070
FRF 0.0702 0.0259 0.0262 0.0151 0.0138 0.0204 0.0072
ITL 0.0264 0.0264 0.0263 0.0157 0.0126 0.0196 0.0072

Average 0.03280 0.02405 0.02375 0.01583 0.01092 0.02288 0.00707

Table 8. Comparison of MAE for each model

Exchange
RBF-NN SVR RVR Wavelet-SVR Wavelet-RVR GJR-GARCH

Our hybrid
rate model
GBP 0.0178 0.0169 0.0171 0.0156 0.0113 0.0245 0.0065
JPY 0.0228 0.0213 0.0217 0.0211 0.0113 0.0225 0.0061
NTD 0.0101 0.0108 0.0102 0.0084 0.0070 0.0080 0.0037
DEM 0.0236 0.0209 0.0208 0.0143 0.0107 0.0155 0.0054
FRF 0.0512 0.0205 0.0202 0.0129 0.0106 0.0159 0.0057
ITL 0.0215 0.0208 0.0210 0.0149 0.0104 0.0147 0.0054

Average 0.02450 0.01853 0.0185 0.01453 0.01022 0.01685 0.00547

Table 9. Comparison of DS for each model

Exchange
RBF-NN SVR RVR Wavelet-SVR Wavelet-RVR GJR-GARCH

Our hybrid
rate model
GBP 46.67 80.00 80.00 88.33 88.33 68.33 90.00
JPY 50.00 80.00 71.67 78.33 91.67 75.00 96.67
NTD 40.00 71.67 73.33 88.33 86.67 86.67 85.00
DEM 48.33 73.33 73.33 83.33 86.67 76.67 85.00
FRF 41.67 73.33 76.67 86.67 81.67 75.00 85.00
ITL 45.00 66.67 70.00 83.33 85.00 75.00 91.67

Average 45.27833 74.167 74.167 84.721 86.668 76.111 88.890
Note: each forecasting value in the above table is evaluated on a percentage basis.

Table 10. Comparison of each models with Wilcoxon signed rank test

Exchange
RBF-NN SVR RVR

Wavelet-based Wavelet-based
GJR-GARCH

Our hybrid
rates SVR RVR model

Panel A: each value obtained from the comparison of GJR-GARCH and remainders with
Wilcoxon signed rank test
Stats 4 7 7 0∗∗ 0∗∗ — 0∗∗

p-value 0.2188 0.5625 0.5625 0.0313 0.0313 — 0.0313
Panel B: each value obtained from the comparison of our hybrid model and remainders with
Wilcoxon signed rank test
Stats 0∗∗ 0∗∗ 0∗∗ 0∗∗ 0∗∗ 0∗∗ —
p-value 0.0313 0.0313 0.0313 0.0313 0.0313 0.0313 —

5. Conclusions. This study implements a novel model for exchange rate forecasting.
The new model couples two useful techniques, phase space reconstruction and wavelet
feature extraction, with Relevance Vector Regressions (RVRs) for nonparametric exchange
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rate modeling and forecasting. By extracting nonlinear time series characteristics using
these two techniques, the proposed model captures the movement of exchange rate returns
more effectively, and consequently outperforms other forecasting models such as RBF-NN,
SVRs, RVRs and GJR-GARCH.
Using AMI and FNN, this study obtained the optimal delay time and embedding di-

mension for phase space reconstruction. Based on this technique, this study transforms
input space to phase space, which better captures the essential dynamics of a chaotic sys-
tem. This study further applies wavelet decomposition to map the phase space signal into
several time-frequency domains to forecast individually by different local models. Each
time-frequency component is finally fed into RVRs for prediction. Experimental results
on six exchange rate returns measured by three performance criteria prove that these
two feature extraction techniques powerfully reduce forecasting errors. Compared with
general wavelet-based and traditional time series models, our hybrid model performs best
and obtains a statistically significant performance improvement.

5.1. Limitations of the study and suggestions for future research. This inves-
tigation has certain limitations that need to be considered. Some of these limitations
may represent fruitful avenues for future studies. First, this study employs a traditional
wavelet decomposition, which uses a fixed basis to perform wavelet transformation. To
adapt to any types of data, future studies may consider adaptive wavelet transforma-
tions via lifting or other schemes. Second, this study constructs a local predictor on each
wavelet component, which is computational intensive and more suitable to operate on a
parallel or distributed computing environment. In contrast, future research may consider
a global model in the wavelet domain. Third, semi-supervised learning is a new technique
to improve forecasting performance. Finally, trading is also an important issue in the
financial application of soft computing. How to effectively utilize the forecasting power
of this study for trading requires further investigation.
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