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Abstract. This paper presents the particle swarm optimization (PSO) algorithm for
solving the optimal distribution system reconfiguration problem for power loss minimiza-
tion. The proposed methodology determines control variable settings, such as the number
of shunts to be switched, for real power loss minimization in the transmission system.
The problem is formulated as a nonlinear optimization problem. The PSO is a relatively
new and powerful intelligent evolution algorithm for solving optimization problems. It is
a population-based approach. The proposed approach employs the PSO algorithm for the
optimal setting of optimal power flow (OPF) based on loss minimization (LM) function.
The proposed approach has been examined and tested on standard IEEE 14, IEEE 30 and
IEEE 118 bus test systems. The obtained results are compared with those using other
techniques in a previous work to evaluate the performance.
Keywords: PSO, Evolutionary algorithm, Optimal power flow, Loss power minimiza-
tion

1. Introduction. The subject of minimizing distribution systems losses and the problem
of optimal power flow (OPF) have gained a lot of attention due to the high cost of electric
energy; therefore, much of current research on distribution automation is focused on the
minimum loss configuration problem. There are many alternatives available for reducing
losses at the distribution level: reconfiguration, capacitor installation, load balancing, and
introduction of higher voltage levels.

The OPF problem solution aims at optimizing specific objective functions such as loss
of power by adjusting the power control variables and at the same time satisfying the
equality and the inequality constraints. The inequality constraints are the upper and the
lower limits at the control and some state variables, while the equality constraints are the
power flow equations.

A number of mathematical optimization techniques have been proposed in literature to
solve the OPF problem. For decades, conventional optimization techniques such as linear
programming (LP), quadratic programming (QP), gradient method, Newton method and
interior point methods have been used for solving the optimal reactive power dispatch
problem [1-4]. Even though these methods present some drawbacks, they provide, in
general, satisfactory performance. This paper analyzes, once more, the problem of loss
reduction.
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The OPF problem is a nonlinear optimization problem. Nonlinear optimization prob-
lems, however, may require a more complex formulation, as the set of equations involved
may not be linearized. In this case, nonlinear techniques must be employed. One of the
nonlinear problems analyzed in power systems is in regard to loss reduction [5], which
considers, as control variables, the active power generations at the machines, generators,
voltage level, tap settings and AVR sources. This nonlinear problem may be important
for optimal power flow and for voltage stability analysis or merely to improve the system
operating conditions [5].
In recent years, metaheuristic methods have been studied for solving combinatorial

optimization problems to obtain an optimal solution of global minimum. Typical meta-
heuristic methods include simulated annealing (SA), genetic algorithm (GA) and tabu
search (TS) [6-9].
In this paper, the tool that was used to analyze the loss reduction problem belongs to

the family of the evolutionary algorithms. The stochastic technique, known as particle
swarm optimization (PSO), is employed.
The application of this tool in power systems is wide ranging. For example, [9] focuses

on the problems of fuel cost minimization, voltage profile improvement and voltage sta-
bility enhancement. In [8], the hybrid model was employed for loss power minimization.
The PSO is a relatively new and powerful intelligence evolution algorithm for solving

optimization problems. It is a population-based approach [10-12].
The PSO was originally inspired by the social behavior of bird flocks and fish schools. It

was observed that they take into consideration the global level of information to determine
their direction. Hence, the global and the local best positions are computed at each instant
of time (iteration), and the output is the new direction of search. Once this direction is
detected, it is followed by the cluster of birds.
In this paper, a PSO-based approach is proposed to solve the loss reduction problem

by the shunt capacitor installation. This is done in two phases: first, the critical area of
the power system is identified using the tangent vector technique [5]; second, the PSO
techniques are used to optimize the amount of shunt reactive power compensation in each
bus. This model is developed and integrated into a previously written load flow program.
The remainder of the paper is organized as follows. In Section 2, a brief introduction of

the PSO is given. The problem formulation is described in Section 3. Section 4 discusses
the experimental results. Finally, the paper is concluded in Section 5.

2. The Particle Swarm Optimization.

2.1. Overview. The particle swarm optimization algorithm (PSO) is a population-based
optimization method that was first proposed by Kennedy and Eberhart [10]. The PSO
technique finds the optimal solution using a population of particles. Each particle rep-
resents a candidate solution to the problem. PSO is basically developed through the
simulation of bird flocking in two-dimensional space. Some of the attractive features of
the PSO include ease of implementation and the fact that no gradient information is
required. It can be used to solve a wide array of different optimization problems; some
example of applications include neural network training and function minimization.

2.2. PSO algorithm definition. The PSO definition is presented as follows:
1) Each individual particle i has the following properties: A current position in search

space, xi, a current velocity, vi, and a personal best position in search space, yi.
2) The personal best position, yi, corresponds to the position in search space where

particle i presents the smallest error as determined by the objective function f , assuming
a minimization task.
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3) The global best position represents the position yielding the lowest error among all
the yi.

Equations (1) and (2) define how the personal and the global best values are updated at
time t, respectively. In the following, it is assumed that the swarm consists of s particles,

Thus i ∈ 1 . . . s.

yi(t+ 1) =

{
yi(t) if f(yi(t) ≤ f(xi(t+ 1)))
xi(t+ 1) if f(yi(t) > f(xi(t+ 1)))

(1)

ŷ(t) = min {f(y), f(ŷ(t))}
y ∈ {y0(t), y1(t), . . . , ys(t)}

(2)

During each iteration, every particle in the swarm is updated using Equations (3) and
(4).

Two pseudorandom sequences, r1 ∼ U(0, 1) and r2 ∼ U(0, 1) give the stochastic nature
of the algorithm. For all dimensions j ∈ 1 . . . n, let xi; j, yi; j and vi; j be the current
position, the current personal best position, and the velocity of the jth dimension of the
ith particle. The velocity update step is:

vi,j(t+ 1) = wvi,j(t) + c1r1,j(t)[yi,j(t)− xi,j(t)] + c2r2,j(t)[
⌣
yj(t)− xi,j(t)] (3)

The new velocity is then added to the current position of the particle to obtain its next
position:

xi(t+ 1) = xi(t) + vi(t+ 1) (4)

The value of each dimension of every velocity vector vi is clamped to the range [−vmax,
vmax] to reduce the likelihood of the particle leaving the search space. The value of vmax
is usually chosen to be:

vmax = k × xmax, where 0.1 ≤ k ≥ 1.0,

where xmax denotes the domain of the search space. Note that this does not restrict the
values of xi to the range [−vmax, vmax]. Rather than that, it merely limits the maximum
distance that a particle will move.

The acceleration coefficients, c1 and c2, control how far a particle will move in a single
iteration. Typically, both these are set to a value of 2.0, although it has been shown
that setting c1 ̸= c2 can lead to a good performance [10]. The inertia weight, w, in
(3), is used to control the convergence behavior of the PSO. Small values of w usually
result in a more rapid convergence on a suboptimal position, while too large a value may
prevent divergence. Typical implementations of the PSO adapt the value of w during the
training stage, for example, linearly decreasing it from 1.0 to near 0 during the execution.
Convergence can be obtained with fixed values as shown by Kennedy in [10]. In general,
the inertia weight w is set according to the following equation:

w = wmax −
wmax − wmin

itermax

· iter (5)

where itermax is the maximum number of iterations and iter is the current iteration
number.

The PSO system combines two models: a social-only model and a cognition-only model
[10]. These models are represented by the velocity update, shown in Equation (3). The
second term in the velocity update equation, c1r1,j(t)[yi,j(t) − xi,j(t)], is associated with
cognition as it only takes into account the particle’s own experiences. The third term
in the velocity update equation, c2r2,j(t)[

⌣
yj(t)− xi,j(t)], represents the social interaction

between the particles. It suggests that individuals ignore their own experience and adjust
their behavior according to their perception of successful individuals in the neighborhood.

Figure 1 lists the pseudo-code for the basic PSO algorithm.



1708 A. A. A. ESMIN AND G. LAMBERT-TORRES

Figure 1. The PSO algorithm

The initialization step mentioned in the algorithm consists of the following:

1. Initialize each coordinate xi,j to a value from the uniform random distribution on
the interval [−xmax, xmax], for all i ∈ 1 . . . s and j ∈ 1 . . . n. It is important to note
that the choice of good random algorithms has a direct impact on the good initial
distribution of the particles along the search space.

2. Initialize each vi,j to a value drawn from the uniform random distribution on the
interval [−vmax, vmax], for all i ∈ 1 . . . s and j ∈ 1 . . . n. Alternatively, the veloci-
ties of the particles could be initialized to 0, as the starting positions are already
randomized.

The stopping criterion mentioned in the aforementioned algorithm depends on the type
of problem being solved. Usually, the algorithm is run for a fixed number of iterations
(objective function evaluations) or until a specified error bound is reached.
It is important to note that the velocity term models the rate of change in the position of

the particle. The changes induced by the velocity update Equation (2) therefore represent
acceleration.
The description of how the algorithm works is as follows: Initially, based on particle

fitness information, some particle is identified as the best particle. Then, all the particles
are accelerated in the direction of this particle, but at the same time in the direction of
their own best previously encountered solutions. Occasionally, the particles will overshoot
their target, exploring the search space beyond the current best particles. All particles
also have the chance to discover better particles en route, in which case the other particles
will change direction and head toward the new best particle. Because most functions have
some continuity, chances are that a good solution will be surrounded by equally good, or
better, solutions. By approaching the current best solution from different directions in
search space, the chances that these neighboring solutions will be discovered by some of
the particles are good [13].
The next section illustrates how this method can be applied in a power system.
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3. The Problem Formulation. The LM mode of the OPF problem can be formulated
as follows:

Minimize f(x, σ)

subject to g(x, σ) = 0,

and h(x) < 0, xl < x < xu (6)

where f(x) are scalar functions, the sum of branch losses in an area of interest; g(x) are
functional equality constraints; the power flow equations; h(x) are functional inequality
constraints and the limits on the control variables; and x are the state variable vectors that
consist of both the control and the dependent variables (voltage magnitudes and angles,
shunt susceptances, active power generations, etc.); σ is the system loading parameter;
whereas the lower and the upper limits are xl and xu.

The solution process of the LM consists of optimizing the objective function and satis-
fying the following constraints:

1) Power flow equations;
2) Branch flow limits;
3) Bus voltage limits;
4) Control variable limits.

3.1. Stopping criteria and power flow program limits. Several stopping criteria
could be used. One option was a combination of number of iterations and errors in
the loss value. In addition, penalty is used, because in power flows with all the system
limits, and if some violation is observed, an error is computed. This approach is usually
employed in genetic algorithms (GAs). Several limits have been considered in the power
flow program [15], for instance: (a) for transmission lines loading, all overloads flagged
during the power flow computation are incorporated in the Jacobian matrix and solved
by generator redispatch; (b) for LTC tap blocking, the problem has been handled by
blocking the LTC tap changes when this action prevents several problems for the system
and allows recovery of a larger amount of constant impedance load; (c) for loss reduction—
it is encountered by computation of generator redispatch or shunt compensation, with a
larger load margin; (d) for load shedding, solved by an augmented Jacobian, it is made
in the system critical bus with the purpose of controlling the undervoltages.

3.2. Critical bus identification. The technique used in this paper is to reduce the
active power loss in a critical area under the point of view of voltage instability. This
critical area is identified with tangent vector help. Such a vector is given by Equation
(7), and the reader is referred to [8]. ∆θg

∆θl
∆Vl

 1

∆σ
= [J ]−1

 Pgo

Plo

Qlo

 (7)

This vector shows how the state variables change as a function of a system parameter
variation, and its largest entries indicate the buses most likely to drive the system to
voltage collapse. The application of this technique to loss sensitivity studies is proposed
in [5].

4. Methodology and Simulation Results. In this section, the practical results as-
sociated with PSO applied to LM are obtained. The proposed PSO approach for LM
is tested on standard IEEE 14 [16], IEEE 30 [17] and IEEE 118 [18] bus test systems.
The IEEE test systems have been designed to incorporate all characteristics of real power
systems in a concentrated system and provide a unique system for comparisons among
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different strategies. The control strategy used is based on shunt compensation. Table 1
gives the details of the test systems.

Table 1. Description of test systems

Description IEEE 14 IEEE 30 IEEE 118
No. of buses NB 14 30 118
No. of generators NG 5 6 54
No. of transformers NT 3 4 9
No. of shunts Nsh 2 2 12
No. of branches Nl 20 41 186
No. of equality constraints 28 60 236
No. of inequality constraints 65 125 566
No. of control variables 10 12 75
No. of discrete variables 5 6 21

A comparative study with the IP primal-dual interior-point algorithm (IP) [9] was done
to verify the performance of the proposed algorithm. The PSO and the IP algorithms
were implemented using MATLAB 6.12 [19] running on PC Pentium (Dual Core) with
2GB.
In the IEEE 14-bus system shown in Figure 2, there are 14 buses, out of which 5 are

generator buses. Bus 1 is the slack bus; 2, 3, 6 and 8 are taken as PV generator buses; and
the rest are PQ load buses. The network has 20 branches, 17 of which are transmission
lines and 3 are tap-changing transformers. It is assumed that capacitor compensation is
available at buses 9 and 14. Totally, there are nine control variables, which consist of four
PV generator voltages, three tap-changing transformers with 20 discrete steps of 0.01 p.u.
each, and two shunt compensation capacitor banks with three discrete steps of 0.06 p.u.
each.

Figure 2. Network diagram of IEEE 14-bus system
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To calculate the amount of shunt capacitor to be installed, the following methodology is
used: Initially, using the tangent vector and the loss sensitivity technique, the critical area
of the power system is identified. Once this area is identified, the PSO technique is used
to optimize the amount of shunt reactive power compensation that should be available in
each bus.

The results obtained by PSO are compared with those achieved using primal-dual
interior-point algorithm (IP) presented in a previous work [15], where a similar methodol-
ogy was used. Many simulations have been done using PSO and the results are discussed
in more detail later.

The PSO parameters used are given in Table 2:

Table 2. The PSO simulation parameters

Population numbers 5, 10 e 15
Iteration 100
Wmax 0.9
Wmin 0.2
C1; C2 1

Table 3 shows the critical buses for the IEEE 14, IEEE 30 and the IEEE 118-bus sys-
tems. These results are obtained by executing the tangent vector and the loss sensitivity
program.

Table 3. Critical buses

System The Critical Buses
IEEE 14 14 13 12 10
IEEE 30 30 29 26 19 24 18
IEEE 118 41 39 33 117 35 43 2 3

Once the bus candidates for shunt compensation have been identified, the optimization
process takes place. The optimal amount of shunt compensation and the associated power
loss are the results of interest at this stage. For each bus set, the amount of shunt reactive
compensation suggested by the optimization program is implemented, and the load flow
is executed. This process in continued until the maximum number of iterations is reached
or a stop criterion is satisfied.

4.1. IEEE 14-bus: Tables 4 and 5 show the test results for the IEEE 14-bus system.
The former shows the results obtained with the LM using IP and the latter the results
using the PSO algorithm. The graphics in Figure 3 illustrates the behavior of the PSO
with pop = 5, 10 and 15 with 100 iterations.

Table 4. Results obtained by IP–IEEE 14

Iteration 6
Initial Loss (p.u) 0.091
Shunt Compensat. (p.u) 0.10215
Final Loss (p.u) 0.0903
Total Reduction (p.u) 0.0005
Simulation Time (s) 0.89
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Table 5. Results obtained by PSO IEEE 14

Population Number = 15 - Initial Loss (p.u) = 0.09099
Iteration Final Loss (p.u) Total Redu. (p.u) Simulation Time (s) Shunt Comp. (p.u)

5 0.09046721 0.00062296 4.80 0.09582646
25 0.09034439 0.00064578 25.03 0.10215723
50 0.09033803 0.00065213 51.11 0.10346126
75 0.09033797 0.00065219 76.89 0.10342244
100 0.09033795 0.00065222 101.41 0.10341871

Figure 3. Graphic of PSO behavior for IEEE-14 system

4.2. IEEE 30-bus. Tables 6 and 7 show the test results for the IEEE 30-bus system.
The former shows the results obtained with the LM using IP and the latter the results
using the PSO algorithm. Table 8 shows a summary result using PSO with a different
population numbers (5, 10 and 15) and with 100 iterations.
The graphics in Figures 4 and 5 illustrate the behavior of the PSO using pop = 5, 10

and 15 with 100 iterations. The Figure 5 shows the graphics of the PSO behavior for the
IEEE-30 system with zoom-starting from 5a iteration.

Table 6. Results obtained by IP–IEEE 30

Iteration 6
Initial Loss (p.u) 0.1896
Shunt Compensat. (p.u) 0.6196
Final Loss (p.u) 0.1840
Total Reduction (p.u) 0.0056
Simulation Time (s) 4.96

4.3. IEEE 118-bus. Tables 9 and 10 show the test results for the IEEE 118-bus system.
The former shows the results obtained with the LM using IP, and the latter the results
using the PSO algorithm. The graphics in Figure 6 illustrate the behavior of the PSO
with pop = 5, 10 and 15 with 100 iterations.
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Table 7. Results obtained by PSO/IEEE-30

Population Number = 15 - Initial Loss (p.u) = 0.18962255
Iteration Final Loss (p.u) Total Redu. (p.u) Simul. Time (s) Shunt Comp. (p.u)

5 0.18164544 0.00797711 12.17 0.26565748
10 0.18158854 0.00803401 23.45 0.28925055
15 0.18158854 0.00803401 35.89 0.28925055
20 0.18158854 0.00803401 47.25 0.28925055
25 0.18158854 0.00803401 59.02 0.28925055
30 0.18158854 0.00803401 70.97 0.28925055
35 0.18158854 0.00803401 81.70 0.28925055
40 0.18151395 0.00810860 92.14 0.28608188
45 0.18136576 0.00825679 102.20 0.28574470
50 0.18136273 0.00825982 112.34 0.28806400
55 0.18133842 0.00828413 122.47 0.28565299
60 0.18131220 0.00831035 132.53 0.28630616
65 0.18128750 0.00833505 142.63 0.28419335
70 0.18127340 0.00834915 152.73 0.28593340
75 0.18127150 0.00835105 162.77 0.28611939
80 0.18126746 0.00835509 172.86 0.28566032
85 0.18126433 0.00835822 182.91 0.28621453
90 0.18126267 0.00835988 192.94 0.28629764
95 0.18126213 0.00836042 203.02 0.28632045
100 0.18126211 0.00836044 213.05 0.28632191

Table 8. Summary of the results obtained by PSO/IEEE 30 with popu-
lation (5,10 and 15) and 100 iterations

POP/Iter Final Loss (p.u) Total Redu. (p.u) Shunt Comp. (p.u)
5 /100 0.18126211 0.00836044 0.28632191
10/100 0.18139671 0.00822584 0.28629105
15/100 0.18126211 0.00836044 0.28632191

Table 9. Results obtained by IP–IEEE 118

Initial Loss (p.u) 1.9728
Shunt Compensat. (p.u) 0.6196
Final Loss (p.u) 1.9710
Total Reduction (p.u) 0.0018
Simulation Time (s) 285.3

Table 10. Results obtained by PSO IEEE 118

Population Number = 15 - Initial Loss (p.u) = 0.18962255
Iteration Final Loss (p.u) Total Redu. (p.u) Time (s) Shunt Comp. (p.u)

5 1.97026274 0.00257382 75.06 0.81632292
25 1.96856163 0.00427493 391.95 1.49754764
50 1.96855999 0.00427657 756.08 1.49829563
75 1.96855999 0.00427657 1119.19 1.49829565
100 1.96855695 0.00427960 1480.64 1.49811538
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Figure 4. Graphic of PSO behavior for IEEE-30 system

Figure 5. Graphic of PSO behavior for IEEE-30 system (Zoom-starting
from 5a. iteration)

The results obtained by the PSO algorithm are better than the ones observed by IP as
shown in Table 10. From the beginning, the PSO with 5 iterations obtained best results
and became better with the increase of the iteration number. The graphics in Figure 6
illustrate the behavior of the PSO using population (5, 10 and 15). The best results are
obtained with population = 15.
As shown in Tables 4-8, the computational time obtained by our approach using the

PSO is higher than the IP. It occurs for small systems, because the PSO usually needs a
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Figure 6. Graphic of PSO behavior for IEEE-118 system

large number of fitness evaluations before a satisfactory result can be obtained, and thus
increases the computational time [20]. However, in these cases, the computation times are
within the time expected in real-life situations. The PSO is better than the IP for large
systems (in time and results – final loss and total reduction) and the real power systems
are large, usually around more than 300 buses.

5. Conclusions. This paper has proposed the PSO algorithm as a new evolutionary
technique to optimize the power loss.

The proposed approach utilizes the local and the global capabilities to search for optimal
loss reduction by installing the shunt compensator.

The approach can be applied for a wide range of Power System optimization problems.
It presents good results for the loss reduction in particular. These results were compared
to those reported in the literature, confirming the potential and the effectiveness of the
proposed approach.

Acknowledgment. This work is partially supported by CNPq and FAPEMIG, in Brazil.

REFERENCES

[1] N. Deeb and S. M. Shahidepour, Linear reactive power optimization in a large power network using
the decomposition approach, IEEE Trans. Power Syst., vol.5, no.2, pp.428-435, 1990.

[2] S. Granville, Optimal reactive dispatch through interior point methods, IEEE Trans. Power Syst.,
vol.9, no.1, pp.136-146. 1994.

[3] J. A. Momoh, S. X. Guo, E. C. Ogbuobiri and R. Adapa, The quadratic interior point method
solving power system optimization problems, IEEE Trans. Power Syst., vol.9, no.3, pp.1327-1336,
1994.

[4] A. M. Chebbo and M. R. Irving, Combined active and reactive despatch – Part 1: Problem formu-
lation and solution algorithm, IEE Proc. Gener. Transm. Distrib., vol.142, no.4, pp.393-400, 1995.

[5] A. C. Zambroni de Souza, Tangent vector applied to voltage collapse and loss sensitivity studies,
Electric Power Systems Research, vol.47, no.1, pp.65-70, 1998.



1716 A. A. A. ESMIN AND G. LAMBERT-TORRES

[6] S. Kaitwanidvilai, P. Olarnthichachart and I. Ngamroo, PSO based automatic weight selection and
fixed-structure robust loop shaping control for power system control applications, International Jour-
nal of Innovative Computing, Information and Control, vol.7, no.4, pp.1549-1563, 2011.

[7] K. Y. Lee, X. Bai and Y. M. Park, Optimization method for reactive power planning by using a
modified simple genetic algorithm, IEEE Trans. Power Syst., vol.10, no.4, pp.1843-1850, 1995.

[8] A. A. A. Esmin, G. Lambert-Torres and A. C. Zambroni de Souza, A hybrid particle swarm op-
timization applied to loss power minimization, IEEE Trans. Power Syst., vol.20, no.2, pp.859-866,
2005.

[9] M. A. Abido, Optimal power flow using particle swarm optimization, Electrical Power & Energy
Systems, no.24, pp.563-571, 2002.

[10] J. Kennedy, The particle swarm: Social adaptation of knowledge, Proc. of 1997 IEEE International
Evolutionary Computation ICEC’97, Indianapolis, USA, pp.303-308, 1997.

[11] P. Angeline, Evolutionary optimization versus particle swarm optimization philosophy and perfor-
mance differences, Proc. of the 7th Annual Conference on Evolutionary Programming, pp.601-610,
1998.

[12] Y. Shi and R. Eberhart, Parameter selection in particle swarm optimization, Proc. of the 7th Annual
Conference on Evolutionary Programming, pp.591-600, 1998.

[13] J. Kennedy, Small worlds and mega-minds: Effects of neighborhood topology on particle swarm
performance, Proc. of the 1999 Congress of Evolutionary Computation, vol.3, pp.1931-1938, 1999.
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