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Abstract. Robotic systems are complicated, nonlinear, multiple-input multiple-output
(MIMO) systems, which make the design of model-based controllers for robotic systems
particularly difficult. Moreover, to achieve reasonable control performance, the dynamic
coupling effects between degrees of freedom (DOFs) of the robotic systems must be over-
come during the control process. Although a model-free, self-organizing fuzzy controller
(SOFC) can be applied to the manipulation of complex and nonlinear systems, its pa-
rameters are difficult to select appropriately, and it mainly focuses on controlling single-
input single-output systems rather than MIMO systems. To address these problems, this
study developed a self-organizing fuzzy radial basis function neural-network controller
(SFRBFNC) for robotic systems. The SFRBFNC introduces a radial basis function
neural-network into the SOFC to compensate for the dynamic coupling effects between the
DOFs of the robotic system, as well as solve the problem caused by inappropriate selection
of parameters in designing an SOFC. The SFRBFNC demonstrated control performance
superior to the SOFC, as shown in experimental results from motion control tests of a
6-DOF robot.
Keywords: Multiple-input multiple-output (MIMO) systems, Radial basis function
neural-network, Robotic motion control, Self-organizing fuzzy controller (SOFC)

1. Introduction. Research and development of industrial automation are important to
improve productivity and quality. The robot is one of the most effective machines used
in industrial automation. Flexible multifunctional robots are ideal candidates to replace
humans for high-risk jobs in unsafe environments or those requiring repetitive motions.
The design of the controller for robotic trajectory motion needs to be efficient and accurate
since many industrial applications require robots to perform tasks with high precision.
Robots are complicated, nonlinear, multiple-input multiple-output (MIMO) systems. It
is difficult to design model-based controllers to manipulate such systems. Thus, it is
necessary to develop model-free control strategies for the control of complex and nonlinear
robots.

Fuzzy logic control, which does not require a mathematical model of the system, has
been successfully applied to robotic systems to improve their control performances [1-
3]. However, a fuzzy logic controller (FLC) for practical applications has difficulties in
determining suitable membership functions and fuzzy rules. Moreover, the main problem
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in the design of an FLC is that both the inference table and the knowledge base of the FLC,
which are constructed using an expert’s knowledge or the experience of a skilled operator,
are fixed after selection. To solve the problems of the FLC implementation, Procyk and
Mamdani [4] first proposed a self-organizing fuzzy controller (SOFC). This control strategy
involves the use of online learning, rather than human thinking, to establish fuzzy control
rules, thereby simplifying the procedures for designing an FLC. Subsequently, Shao [5]
and Zhang and Edmunds [6] developed modified learning methods to further simplify the
design of the SOFC. However, the construction of the modified learning scheme is based
on a performance decision table proposed by Procyk and Mamdani [4] and the design of
a performance decision table is as difficult as the design of a fuzzy rule table. Therefore,
to overcome this problem, Yang [7], Huang and Lee [8], and Lin and Lian [9,10] used the
output error and the error change of the system to establish a learning algorithm that
can adjust the linguistic fuzzy rule table of the SOFC directly, so that it can be generated
without any initial fuzzy rules. The SOFC eliminates the difficulty of finding appropriate
membership functions and fuzzy rules in designing an FLC. Under the disk operating
system, Huang and Lee [8] employed this SOFC to control a robot with 5 degrees of
freedom (DOFs) and evaluated its trajectory tracking performance.
The SOFC has demonstrated its superior learning ability in controlling complicated

and nonlinear systems in practical applications [8-10]; however, both the learning rate and
weighting distribution in the SOFC must be carefully chosen and are fixed once selected.
Unfortunately, inappropriate selection of either the weighting distribution or the learning
rate (or both) in the SOFC will substantially affect the output response of the system
and may result in an unstable system. Moreover, the SOFC is primarily designed for
controlling single-input single-output systems, so the use of the SOFC to control robotic
systems, which are MIMO systems, cannot eliminate the dynamic coupling effects between
the DOFs of the robotic systems.
Neural networks for robotic system control have attracted the attention of many re-

searchers because they have model-free features and learning abilities. Neural networks
have been used to control complicated robotic systems and their control performances
have been demonstrated in previous studies [11,12]. However, in practical applications,
convergence rates of neural networks are too slow to compensate for the dynamic coupling
effects between the DOFs of robotic systems. Noticeably, it is difficult to achieve satisfac-
tory control performance when using a neural network to control robotic systems, unless
the convergence algorithm and the training speed of the neural network are significantly
improved.
The design and implementation of fuzzy control systems with learning capacities in-

troduced by neural networks have become very active areas of research in recent years
[13-15]. Such a synergism between neural networks and fuzzy logic systems, integrated
into a functional system, has provided a new way of realizing intelligent systems for var-
ious applications. Most of the hybrid fuzzy-logic and neural network control strategies
make use of neural networks to determine the membership functions and use the deter-
mined membership functions to design appropriate fuzzy control rules, which are fixed
once decided. Nevertheless, the design of these control strategies is very complicated and
impractical for practical industrial applications. The robot is an example of an MIMO
system. It is characterized by complicated dynamic coupling effects between the DOFs of
the robot. Controller development for robotic systems needs to overcome these coupling
effects to improve the overall control performances. However, in implementing robotic sys-
tem control, few considerations [16,17] are usually entertained to deal with the dynamic
coupling effects between the DOFs of robotic systems.
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As mentioned previously, when the SOFC is used to handle robotic systems, its param-
eters are difficult to choose appropriately and the dynamic coupling effects between the
DOFs of the robotic systems cannot be improved. To eliminate the problem, this study de-
velops a self-organizing fuzzy radial basis function neural-network controller (SFRBFNC)
for robotic systems. The SFRBFNC introduces a radial basis function neural-network
(RBFN) [18-20], as the training algorithm of a neural network, into an SOFC to com-
pensate for the dynamic coupling effects between the DOFs of the robotic system and
overcome the problem encountered by the SOFC with inappropriately selected parame-
ters. Therefore, the use of the SFRBFNC to manipulate robotic systems not only solves
the problem of an SOFC implementation, but also alleviates the dynamic coupling effects
between the DOFs of the robotic systems. Most of the work in this field involves computer
simulations of simple robotic system models. This study explores the control performance
of the SFRBFNC for motion control of a 6-DOF robot experimentally.

2. Robotic System. A 5-DOF robot (type RV-MI), made by the Mitsubishi Company,
had sliding track equipment added to its bottom in order to increase its horizontal move-
ment capability and expand its workspace. Moreover, the robot was retrofitted, allowing
an individual to use a personal-computer-based controller to control it. The retrofitted
robot has 6 DOFs and each of its joints is driven by a direct current servo-motor.

6-DOF Robot
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Figure 1. Experimental set-up of the retrofitted robotic control system.
Digital-to-analog (D/A); digital-input (DI)

Figure 1 presents an experimental set-up of the retrofitted robotic control system. To
evaluate the performance of the proposed controller for the control of the robotic system,
an appropriate reference trajectory was first planned to convert the points θi(k) into a
continuously desired trajectory θri(k). This study used the joint-space trajectory for a
cubic interpolation polynomial [21] to plan the desired smooth motion for each joint of
the robot.

Table 1. Coordinate parameters of the 6-DOF robot

Joint i µi (deg.) di (mm) ai (mm) ®i (mm) 

1 0 148 300 0 

2 90 152 0 90 

3 90 0 250 0 

4 ¡90 0 ¡160 0 

5 0 0 ¡72 ¡90 

6 0 0 0 0 
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Figure 2. Coordinate system of the 6-DOF robot

Figure 2 shows the defined coordinate system and the joint parameters for the 6-DOF
robot using the Denavit-Hartenberg (D-H) indicative method [22]. To determine the
control performance of the robotic trajectory tracking, the kinematics equation and the
inverse kinematics equation are first established for the relationship between the joint-
space and the Cartesian-space. The joint parameters, defined as per the rules established
by the D-H representation, are listed in Table 1. Similar to the derived process from Fu
et al. [22] and Huang and Lian [16], the kinematics equation and the inverse kinematics
equation of the 6-DOF robot can be determined.
The 6-DOF robotic system, in this study, exhibits nonlinear, time-varying characteris-

tics because of backlash, friction, Coriolis coupling, gravity force, saturation of the actu-
ator, and other factors. Traditional model-based controllers are difficult to implement on
this complex robotic system. Although a model-free SOFC can be employed to control
such systems, its learning rate and weighting distribution are arduous to select appropri-
ately. When the SOFC with inappropriately chosen parameters is used to manipulate a
robotic system, it may excessively modify its fuzzy rules during the control process so that
the system’s output response generally results in oscillatory phenomena or becomes un-
stable. In addition, the use of the SOFC to handle robotic systems, the dynamic coupling
effects between the DOFs of the robotic systems cannot be compensated. To solve these
problems, this study developed an SFRBFNC to control the 6-DOF robot for improving
the control performance of the robot.

3. Controller Design.

3.1. Self-organizing fuzzy algorithm. The self-organizing part is introduced into an
FLC to constitute an SOFC, as depicted in Figure 3, and consists of three steps: perfor-
mance measure, model estimation, and rule modification [7-10]. A generalized form for
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the self-organizing fuzzy algorithm has been proposed [9,10] as

ul(k + 1) = ul(k) + ∆ul(k)

= ul(k) + wl
ew

l
ec

γ

M
× [(1− ς)e(k) + ςec(k)] (1)

where ul(k+1) is the control input of the lth fuzzy rule on k+1 -step sampling interval.
ul(k) and ∆ul(k) are the control input and the control input correction of the lth fuzzy
rule on k -step sampling interval, respectively. w is an excitation strength of each fuzzy
rule. It is represented as a triangular membership function and is calculated using a linear
interpolation algorithm [7]. e(k) and ec(k) are the output error and the error change of
the system on k -step sampling interval, respectively. M is the direct forward system gain
in the control system. It is generally set as 1 to eliminate the identification procedure of
the system and to reduce the computational time required during implementation [7-10].
γ is a learning rate; ς is a weighting distribution.

For a multiple DOF self-organizing fuzzy control system, Equation (1) can be modified
as

ul
i(k + 1) = ul

i(k) + ∆ul
i(k)

= ul
i(k) + wl

ei
wl

eci

γi
M

× [(1− ςi)ei(k) + ςieci(k)] (2)

where i is used for indicating the DOF of the control system. A more complete description
and discussion concerning the self-organizing fuzzy algorithm can be found in [9,10].
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Figure 3. SFRBFNC for a robotic manipulator

3.2. RBFN algorithm. The RBFN has a feed forward structure consisting of an input
layer with m inputs, a single hidden layer with s locally tuned neurons, and an output
layer with n linear neurons. The s locally tuned neurons of the single hidden layer
are fully interconnected to the n linear neurons of the output layer. All hidden neurons
simultaneously receive the m-dimensional input vector X (see Figure 4). After the hidden
layer receives the data from the input layer, the Gaussian basis function in the hidden layer
is used to transform the data nonlinearly, and the function responses are then linearly
combined to construct the output layer data.
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Figure 4 shows a structural diagram of the RBFN. The algorithm of the RBFN can be
described [18-20] as

Oj =
s∑

i=1

wijhi =
s∑

i=1

wijR (∥X − Zi∥) , j = 1, 2, · · · , n (3)

and

hi = R (∥X − Zi∥) , i = 1, 2, · · · , s

R (∥X − Zi∥) = exp

(
−∥X − Zi∥2

2σ2
i

)
, i = 1, 2, · · · , s

X =
[
x1 x2 · · · xm

]T
Zi =

[
zi1 zi2 · · · zim

]T
, i = 1, 2, · · · , s

where wij is a weighting, representing the strength of the connection from the hidden
neuron hi to the output neuron Oj; the jth output neuron of the output layer is a nonlinear
function of the output value of the hidden layer neurons. The index i runs over all
connections to the jth neuron. Zi and σi are the central position and the standard
deviation of the ith neuron receptive field, respectively; the norm, ∥·∥, is the 2-dimensional
Euclidean space; R(·) is a Gaussian function.
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Figure 4. RBFN

The desired output is T ⋆
j and the corresponding output of the output layer is Oj. Then,

a cost function of the RBFN is defined as

E =
1

2

n∑
j=1

(
T ⋆
j −Oj

)2
=

1

2

n∑
j=1

v2j (4)

To accelerate the convergence rate for the correction value of the weighting in the neural
network, this study proposes a Levenberg-Marquardt (LM) algorithm [17,23,24], instead
of the steepest descent method, to minimize the cost function of the neural network.
A generalized form for the LM algorithm has been proposed [23,24] as

∆xk = −[JT(xk)J(xk) + µkI]
−1JT(xk)v(xk) (5)

where ∇E(x)|x=xk
= JT(xk)v(xk). J(xk) is the Jacobian matrix of v(x) at xk; E(x) is

an objective function, v(xk) is a residual error, µk is a parameter, and I is an identity
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matrix. The LM algorithm has a very useful feature. It approaches the steepest descent
algorithm with a small convergence rate as µk is increased,

xk+1 = xk −
1

µk

JT(xk)v(xk) = xk −
1

µk

∇E(x) for large µk (6)

When µk is decreased to zero, the LM algorithm becomes a Gauss-Newton method. The
LM algorithm begins from a small µk value (such as µk = 0.01). If a step does not yield a
smaller value for E(x), the step will be repeated with µk multiplied by some factor η > 1
(such as η = 10). Ultimately, E(x) should be reduced because a small step is taken in
the direction of the steepest descent. If a step does not produce a smaller value for E(x),
µk will be divided by η for the next step. This is done so that the LM algorithm will
approach the Gauss-Newton method, which should provide faster convergence [23].

According to Equations (3)-(6), the weighting correction (∆wij), central position cor-
rection (∆Zi), and standard deviation correction (∆σi) of the RBFN can be separately
determined as

∆wij = −
[
J(wij)

TJ(wij) + µkI
]−1

JT(wij)vj(wij) (7)

∆Zi = −
[
J(Zi)

TJ(Zi) + µkI
]−1

JT(Zi)vj(Zi) (8)

∆σi = −
[
J(σi)

TJ(σi) + µkI
]−1

JT(σi)vj(σi) (9)

The output value of the RBFN has to be maintained within an appropriate range for
this control strategy implementation, so a nonlinear transformation layer is introduced
between the hidden layer and the output layer of the RBFN to regulate the output value
of the RBFN to achieve the aforementioned goal. The procedure for determining the
weighting correction ∆wij of the nonlinear transformation layer is similar to the procedure
for determining that of the RBFN between the hidden layer and the output layer.

To derive the weighting correction of the aforementioned RBFN, a batch learning
method [25] was employed and an objective function of the RBFN for the step p was
defined as

E⋆
p =

1

2

∑
j

(θrpj − θypj)
2 =

1

2

∑
j

e2pj (10)

where θrpj and θypj express the desired set-points and the system outputs in the step
p, respectively. When E⋆

p approaches zero, the mapping between inputs and outputs of
each step p is realized. Similar to the derived process of Equations (7)-(9), the weighting
correction, central position correction, and standard deviation correction of the RBFN in
the step p can be individually determined as

∆wij = −
∑
p

[
Jp(wij)

TJp(wij) + µkpI
]−1

JT
p (wij)epj(wij)

∆Zi = −
∑
p

[
Jp(Zi)

TJp(Zi) + µkpI
]−1

JT
p (Zi)epj(Zi)

∆σi = −
∑
p

[
Jp(σi)

TJp(σi) + µkpI
]−1

JT
p (σi)epj(σi)

If the input data at k -step is X(k), the updated rules for the aforementioned corrections
can be separately described as

wij(k + 1) = wij(k) + ∆wij(k) (11)

Zi(k + 1) = Zi(k) + ∆Zi(k) (12)

σi(k + 1) = σi(k) + ∆σi(k) (13)
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3.3. Design of an SFRBFNC. The SOFC is composed of a self-organizing part and an
FLC, as shown in Figure 3. Its learning algorithm was presented in the preceding section.
Design procedure of an FLC is described here. The structure of an FLC design consists
of the following: the definition of input-output fuzzy variables, decision-making related to
fuzzy control rules, fuzzy inference logic, and defuzzification. From Figure 3, the control
variables of the system are defined as

ei(k) = θri(k)− θyi(k) (14)

eci(k) = ei(k)− ei(k − 1) (15)

where ei(k) and ei(k − 1) are the output errors of the system on k -step and k − 1 -
step sampling intervals, respectively; eci(k) is the error change of the system on k -step
sampling interval; θri(k) and θyi(k) represent the reference input and the output response
of the system on k -step sampling interval respectively. The subscript (i = 1, 2, . . . , 5) is
employed to represent each joint of the robot.
A triangular membership function, depicted in Figure 5, is employed to convert these

input variables (ei(k) and eci(k)) and the output variable (ui(k)) into linguistic control
variables (NB, NM, . . ., PB), where βj

i is a scaling factor. The subscript i has been
described previously. The superscript (j = 1, 2, 3) is used to express the system’s output
error, error change, and control input.

NB NM NS PS PM PB
ZO

1

0¡6¯
j

i ¡4¯
j

i ¡2¯
j

i 2¯
j

i 4¯
j

i 6¯
j

i

Figure 5. Membership function of the FLC. Negative big (NB), negative
medium (NM), negative small (NS), positive big (PB), positive medium
(PM), positive small (PS), and zero (ZO)

This study employed fuzzy control rules of the state evaluation [26] for controlling the
inherently complicated and nonlinear robot. To prevent the change of the antecedent
suitability of the fuzzy-inference logic to be unsmooth, the fuzzy-inference logic used an
algebraic product [27], instead of the Max−Min product composition [26], to operate
the fuzzy rules. Finally, this study applied the height method [26] to defuzzify the output
variables to obtain accurate control inputs for controlling this system. The aforemen-
tioned design process yields the following actual control input of the actuator for this
self-organizing fuzzy control system,

ui(k) = ui(k − 1) + ∆ui(k) (16)

where ∆ui(k) indicates the control input increment of the system on k -step sampling
interval. ui(k) and ui(k − 1) represent the control inputs of the system on k -step and
k − 1 -step sampling intervals, respectively.
Figure 3 shows an SFRBFNC for a robotic manipulator, in which the variables of the

input layer of the RBFN are θri(k) and ei(k). The variable of the output layer of the
RBFN is uR

i (k), which represents the control effort generated from the RBFN operation,
to compensate for the dynamic coupling effects between the DOFs of the robotic system
and to solve the problem caused by the inappropriate selection of the parameters in
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designing an SOFC. Accordingly, the total control input of each DOF of a robotic system
u⋆
i (k), obtained by combining an SOFC with an RBFN, can be represented as

u⋆
i (k) = ui(k) + uR

i (k) (17)

Moreover, it is important to determine the stability and robustness of the proposed
controller for control applications. However, the stability and robustness of the SFRBFNC
are difficult to demonstrate using a rigorously mathematical proof. This is because the
proof requires complex mathematical operations and might be impossible to obtain at
present. One of the methods such as the state-space approach [17], which does not need
complicated mathematical operations, can be employed to determine the stability and
robustness of the proposed controller. Therefore, the stability and robustness of the
SFRBFNC can be demonstrated and guaranteed by following the derived process from
Lin and Lian [17] using the state-space approach.

4. Experimental Results. Figure 1 presents an experimental set-up of the retrofitted
robotic control system. This retrofitted robot was controlled using a compatible IBM
PC Pentium IV (2.6 GHz) central processing unit for processing all of the system input-
output data, as well as the control parameters. The requisite interface is a PCI-8136
card comprising a digital-to-analog part with 6 channels, an analog-to-digital part with 6
channels, a digital-input part with 19 channels, and 6 decoding channels. The card came
from the ADLINK Company.

This study introduced an RBFN into the SOFC to construct an SFRBFNC for robotic
systems. To conveniently manipulate the robotic manipulator in practical industrial ap-
plications, a controller with a friendly graphical-user-interface (GUI) should be developed.
To achieve this goal, this study used the Borland C++ Builder programming language to
code the proposed controllers (SOFC and SFRBFNC) with friendly GUIs. The coding
and the experimental tests were done under a Windows XP operating system.

The following experiments were performed to evaluate the effectiveness and feasibility
of the proposed control strategy. The learning rate and the weighting distribution of the
SOFC was selected as γi = 0.7 and ςi = 0.5 (i = 1, 2, . . . , 5), respectively, according to
the experience in previous experiments on robotic system control. Figure 5 presents the
membership function of the FLC. According to the dynamic characteristics of the system,
the scaling factor βj

i (i = 1, 2, . . . , 5; j = 1, 2, 3) for the parameters of both FLCs (within
the SOFC and within the SFRBFNC, respectively) was chosen separately in Table 2. The
sampling frequency in the experiments was 200 Hz during all control processes.

Table 2. Parameters of the FLC within both the SOFC and SFRBFNC

¯1

1
= 100 ¯2

1
= 1 ¯3

1
= 0:5

¯1

2
= 10 ¯2

2
= 0:5 ¯3

2
= 0:5

¯1

3
= 50 ¯2

3
= 0:8 ¯3

3
= 0:5

¯1

4
= 10 ¯2

4
= 2 ¯3

4
= 0:3

¯1

5
= 10 ¯2

5
= 2 ¯3

5
= 1

There is no special method that can be used to select an appropriate number of hidden
neurons of the RBFN in practical applications. Thus, according to the dynamic char-
acteristics of the system and the experimental tests, this study selected the number of
hidden neurons of the RBFN as 40. Therefore, the RBFN has 10 input neurons, 40 hidden
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neurons, and 5 output neurons. Its input vector, X(k), can be expressed as

X(k) =
[
θr1(k) e1(k) θr2(k) e2(k) · · · θr5(k) e5(k)

]T
and its output neuron Oj, for j = 1, 2, . . . , 5, can be expanded and represented as O1 =
uR
1 (k), O2 = uR

2 (k), . . ., O5 = uR
5 (k), whose initial values are all set to 0 to represent

the beginnings of the dynamic coupling effects of the robotic system control from zero.
According to the dynamic characteristics of the system, this study set all initial values of
the central position Zi to 25, the standard deviation σi to 20, and the weighting wij(k)
to 0.2.
Case 1: Motion control of the joint-space trajectory planning. The desired motion tra-

jectory is a cubic interpolation polynomial based on five desired positions on a sinusoidal
curve. Because the desired trajectory and the output response of the joint-space of the
robot are too close to be differentiated from each other, this study shows only tracking
errors of the joint-space trajectory planning for the robotic motion control. Figures 6(a)
and (b) displays the tracking errors of the learning process of the 3rd joint-space trajec-
tory planning using the SOFC and the SFRBFNC, respectively. It can be seen that the
SOFC needs five learning cycles to achieve reasonable control performance for the control
of the joint-space trajectory planning; however, the SFRBFNC needs only two learning
cycles.
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Figure 6. Tracking error histories of the 3rd joint-space trajectory plan-
ning: (a) with the SOFC and (b) with the SFRBFNC

To compare the control performance between the SOFC and the SFRBFNC further,
Figure 7(a) plots the tracking errors of the 3rd joint-space trajectory planning using the
SOFC with five learning cycles and the SFRBFNC with two learning cycles. Figure
7(b) shows their corresponding control efforts. From Figure 7(a), the maximum tracking
error of the 3rd joint-space trajectory planning is 0.0781◦ with the use of the SOFC, as
compared with 0.0178◦ with the use of the SFRBFNC. The control effort of the SFRBFNC
is smoother than that of the SOFC, as seen in Figure 7(b). This implies that the use of the
SFRBFNC to manipulate the robot provides longer actuator service life than the use of
the SOFC. Moreover, the root-mean-square (RMS) error of the 3rd joint-space trajectory
planning using the SOFC is 0.0215◦, while the use of the SFRBFNC reduced the RMS
error to 0.0068◦. Clearly, the use of the SFRBFNC exhibits better control performance
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Figure 7. (a) Tracking errors and (b) control voltages of the 3rd joint-
space trajectory planning using the SOFC (with five learning cycles) and
the SFRBFNC (with two learning cycles)

than the use of the SOFC for manipulating the joint-space trajectory planning, in terms
of reducing the maximum tracking errors and RMS errors of the joint-space trajectory,
reducing the number of learning cycles, and producing fewer control command variations.

In this study, the SOFC is used to control the robotic system. It needs five learning
cycles. This is in contrast to the use of the SFRBFNC, which needs only two learning
cycles. Although an SFRBFNC with more than two learning cycles can be employed
to control the robotic system, its control performance is almost the same as that of the
SFRBFNC with two learning cycles. Noticeably, the SFRBFNC’s performance cannot be
improved significantly by adding more learning cycles because the two initial cycles are
sufficient to achieve a reasonable performance.

Case 2: Joint-space trajectory tracking for point-to-point control in the workspace. The
desired motion trajectory is a cubic interpolation polynomial from one point (300, −240,
300) mm to another point (500, −480, 570) mm in the workspace. The trajectories of
the reference joints were calculated using the inverse kinematics equation based on this
polynomial. The robotic manipulator was moved rapidly to the objective point (within
2.5 s). Subsequently, the robot was kept at that position for 2.5 s.

In Case 1, the SOFC and the SFRBFNC produced their respective reasonable fuzzy
rule tables for each joint of the robot after the 5th run of the SOFC and the 2nd run of
the SFRBFNC were performed. In this case, the learning processes of both the SOFC
and the SFRBFNC for the control of each joint of the robot began from their respective
reasonable fuzzy rule tables, which were obtained from Case 1, rather than from empty
fuzzy rule tables. The initial values of the central position Zi, the standard deviation
σi, and the weighting wij(k) in the SFRBFNC were obtained from the final step of the
2nd run of the SFRBFNC in Case 1. The SOFC and SFRBFNC require respectively one
learning cycle, in the learning process, for the point-to-point control of the robot.

Figures 8 and 9 illustrate the trajectory tracking errors with control efforts of the 1st
and the 2nd joint, respectively, for the point-to-point control of the robot when the SOFC
and the SFRBFNC were applied separately. From Figures 8(a) and 9(a), it can be seen
that, in the case of the SOFC, the maximum errors and RMS errors of the joint-space
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Figure 8. (a) Errors and (b) control voltages of the joint-space trajectory
tracking at the 1st joint for point-to-point control using the SOFC and the
SFRBFNC

trajectory tracking are 0.0171 mm and 0.0095 mm at the 1st joint, respectively, and
0.0614◦ and 0.0167◦ at the 2nd joint, respectively. However, when the SFRBFNC was
applied, the maximum errors and RMS errors of the joint-space trajectory tracking were
reduced to 0.0105 mm and 0.0021 mm at the 1st joint, respectively, and 0.0131◦ and
0.0049◦ at the 2nd joint, respectively. Furthermore, from Figures 8(b) and 9(b), it can
be observed that the SFRBFNC has fewer control command variations than the SOFC.
Clearly, the use of the SFRBFNC to manipulate the robot supplies longer actuator service
life than that of the SOFC.
For the point-to-point control of the robot, the SFRBFNC is clearly superior to the

SOFC, in terms of reducing the maximum errors and RMS errors of the joint-space tra-
jectory tracking in the workspace and reducing control command variations.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Time (s)

E
rr

or
 (

de
gr

ee
)

 

 

SOFC
SFRBFNC

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

Time (s)

V
ol

ta
ge

 (
V

)

 

 

SOFC
SFRBFNC

(b)

Figure 9. Same as those in Figure 8, except the 2nd joint instead of the 1st joint
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Case 3: Joint-space trajectory tracking for square-path control in the workspace. In
this case, the operating conditions of the system control are similar to Case 2, varying
only in implementation of the square-path control of the robot instead of the point-to-
point control of the robot. The square-path, which is a desired tracking trajectory in the
workspace, has a side length of 10 cm.
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Figure 10. Robotic square-path control in the workspace. (a) The friendly
GUI for the SFRBFNC. (b) Square trajectory output responses (side length
= 10 cm). Trajectory tracking errors of (c) the 4th joint and (d) the 5th
joint

Figure 10(a) displays a friendly GUI for the SFRBFNC, which is one of several interfaces
used in controlling the robotic manipulator. Such an interface facilitates the setting of
the parameters of the proposed controller. It is also capable of monitoring the trajectory
tracking errors and the control effort of each joint of the robot in real time. Figure 10(b)
shows a comparison between the square tracking trajectories with side lengths of 10 cm
using the SOFC and the SFRBFNC. Noticeably, the output responses of the robot using
both the SOFC and the SFRBFNC are too close to be distinguished. Figures 10(c) and
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(d) presents the trajectory tracking errors of the 4th and the 5th joint, respectively, for
the square-path control of the robot in the workspace using the SOFC and the SFRBFNC.
Clearly, the maximum errors and RMS errors of the joint-space trajectory tracking using
the SOFC are 0.2485◦ and 0.0480◦ at the 4th joint, respectively, and 0.2998◦ and 0.0629◦ at
the 5th joint, respectively. However, when the SFRBFNC was applied, the aforementioned
maximum errors and RMS errors were significantly reduced to 0.1370◦ and 0.0186◦ at the
4th joint, respectively, and 0.2258◦ and 0.0239◦ at the 5th joint, respectively.
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Figure 11. Positioning trajectory tracking errors for the square-path con-
trol of the robot in the workspace: (a) X-axis, (b) Y -axis and (c) Z-axis

Figure 11 illustrates the positioning trajectory tracking errors, in the X, Y and Z
directions of the Cartesian space, for the square-path control of the robot using the SOFC
and the SFRBFNC. Table 3 summarizes the maximum errors and the RMS errors of the
positioning trajectory tracking shown in Figure 11. It is noted that, for the square-path
control of the robot in the workspace, the SFRBFNC has better control performance
than the SOFC, in reducing the joint-space trajectory tracking errors and the positioning
trajectory tracking errors.
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Table 3. Maximum errors and RMS errors of the positioning trajectory
tracking for the square-path control of the robot in the workspace

 

 SOFC SFRBFNC 

Axis 
Max. error 

(mm) 

RMS error 

(mm) 

Max. error 

(mm) 

RMS error 

(mm) 

X 1.1508 0.2012 0.4690 0.0727 

Y  0.3418 0.0525 0.1538 0.0212 

Z  1.2507 0.1680 0.3665 0.0629 

 

It can be clearly seen from the aforementioned three cases that the SFRBFNC has better
control performance than the SOFC for robotic motion control. Noticeably, it is difficult
to gain a perfect control performance for manipulating robotic systems when applying
the SOFC. Therefore, to achieve the perfect performances at any operating condition, the
use of the SFRBFNC to control the robotic systems is best choice.

In addition, the RBFN, in the proposed SFRBFNC, employs the LM algorithm rather
than the steepest descent method, which was used in the hybrid fuzzy-logic and neural-
network controller (HFNC), designed by Huang and Lian [16], to minimize the objective
function for determining the correction value of the weighting of the RBFN. The HFNC
consists of an FLC, which was designed to control each DOF of a robot individually,
and an additional coupling BP neural network, which was incorporated into an FLC to
compensate for the dynamic coupling effects between the DOFs of the robot. Although the
HFNC also used a BP neural network [16] to compensate for the dynamic coupling effects
between the DOFs of the robot, it needed four learning cycles after training one learning
cycle offline. The required data for training the BP neural network offline was obtained by
the FLC when the FLC had been used to control the robot. As mentioned previously, the
design of the FLC has some limitations. Moreover, the convergence rate of the BP neural
network with the steepest descent method is too slow to compensate for the dynamic
coupling effects between the DOFs of the robot in practical control applications. However,
the LM algorithm has a faster convergence rate than the steepest descent method, so it can
improve the problem of slow convergence rates of neural networks. Although Lin and Lian
[17] suggested a modified HFNC, which used the LM algorithm instead of the steepest
descent method to minimize the cost function of the BP neural network, to improve the
performance of the HFNC proposed by Huang and Lian [16], the problem of the FLC
application still exists. Clearly, the learning capability of the SFRBFNC outperforms
those of the HFNC designed by Huang and Lian [16] and the modified HFNC designed
by Lin and Lian [17] for robotic motion control. Neural networks have been adopted
in several robotic control approaches [11,12] to compensate for the effects of unknown
nonlinearities, but most of their control tests were implemented in simulations instead of
actual experimentations. It is evident that the proposed SFRBFNC for robotic motion
control is efficient in practical applications.

5. Conclusion. This study has successfully retrofitted a 6-DOF robotic manipulator.
Since the SOFC may have inappropriately chosen parameters, being able to produce an
unstable system when it is applied, and the robotic control system is subject to dynamic
coupling effects between its DOFs, this study developed an SFRBFNC to eliminate or
alleviate the problems faced by the practical application of the SOFC in robotic motion
control. Under the Windows XP operating system, the proposed controllers (SOFC and
SFRBFNC) with friendly GUIs were coded using the Borland C++ Builder programming
language to conveniently manipulate the 6-DOF robot. Experimental results verified
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that the SFRBFNC has better control performance than the SOFC for robotic motion
control, in terms of (1) reducing the number of learning cycles, (2) reducing the maximum
tracking errors and RMS errors for the joint-space trajectory planning in the workspace,
(3) decreasing the maximum errors and RMS errors of the joint-space trajectory tracking
for point-to-point control and the positioning trajectory tracking for square-path motion
control in the workspace, and (4) decreasing variations of the control command, thereby
enhancing the actuator service life of the robotic system.
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