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Abstract. This note considers the problems of stability and stabilization for discrete-
time switched nonlinear systems with time-varying delay. The nonlinearity is assumed
to satisfy a special constraint. The purpose of the robust stability problem is to give
conditions such that the discrete-time switched nonlinear delay system is exponentially
stable, while the purpose of stabilization is to design a state feedback control law such
that the resulting closed-loop system is exponentially stable. By applying the average
dwell time approach together with the piecewise Lyapunov function technique, also by
constructing a proper Lyapunov-Krasovskii functional and employing the free-weighting
matrix method, some delay-dependent stability conditions are proposed. A strict linear
matrix inequality (LMI) design approach is developed. An explicit expression for the
desired state feedback control law is also given. Finally, two numerical examples are
provided to demonstrate the application of the proposed methods.
Keywords: Exponential stability, Discrete-time, Switched systems, Average dwell time,
Piecewise Lyapunov function

1. Introduction. Switched systems represent an important class of hybrid systems, and
they consist of a family of subsystems and a switching rule specifying which subsystem
will be activated along the system trajectory at a certain time instant [9, 10, 21, 23].
There are two important factors which can be seen as the main motivation for study-
ing such hybrid systems, that is, first, from a practical point of view, switching among
different system structures is an essential feature of many real-world systems such as
chemical processes, transportation systems, computer controlled systems and communi-
cation industries; second, from a control point of view, multi-controller switching provides
an effective mechanism to cope with highly complex systems and/or systems with large
uncertainties. For example, many intelligent control strategies are designed based on the
idea of switching controllers to improve the system performances.

Discrete time switched systems have received increasing attention in recent years, and a
large amount of results have been reported. In particular, Daafouz et al. investigated the
stability analysis and control synthesis problems for switched systems by using a switched
Lyapunov function approach [1]; Du et al. considered the generalized H2 output feed-
back controller design for uncertain discrete-time switched systems via switched Lyapunov
functions; Geromel and Colanri studied the stability and stabilization problems for dis-
crete time switched systems [5]; Ji et al. addressed the quadratic stabilization problem
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for uncertain discrete-time switched systems via output feedback [8]; Saif et al. consid-
ered a parameterized delay-dependent approach to the control of switched discrete-time
systems with time-delay [11]; Sun et al. investigated the delay-dependent robust stability
and stabilization problems for discrete-time switched systems with mode-dependent time-
varying delays [13]; Wang and Zhao concerned with the exponential stability analysis for
discrete-time switched linear systems with time-delay [14]. On the other hand, in the
past decades, considerable attention has been paid to the problems of robust stability
analysis and synthesis for discrete-time systems with time-delay, see [3, 4, 15, 19, 20] and
references therein.
Stability analysis is an important problem in system science and control engineering.

Recently, the dwell time approach is applied widely to deal with switched systems, see,
for example, [6, 7, 12, 16, 17, 18, 22]. Given a positive constant τd called ‘dwell time’ and
that let S (τd) denote the set of all switching signals with interval between consecutive
discontinuities no smaller than τd, it has been shown that one can pick τd sufficiently
large such that the switched system considered is exponentially stable for any switching
signal belonging to S (τd). Hespanha and Morse investigated the stability of switched
systems with average dwell time approach [6]; Ishii and Francis consider the stabilization
problem for a linear system by switching control with dwell time [7]; Sun et al. addressed
the stability and L2-gain analysis for switched delay systems by the average dwell time
approach [12]; Wu et al. addressed the sliding mode control, guaranteed cost control
and model reduction problems for continuous time switched systems with time delays
[16, 17, 18].
In this paper, we are interested in investigating the stability analysis and stabilization

problems for discrete-time switched nonlinear systems with time delays. The purpose of
the stability problem is to develop conditions such that the discrete-time switched non-
linear delay system is exponentially stable. To reduce the overdesign in the quadratic
framework, this paper also proposes a parameter-dependent analysis procedure, which is
much less conservative than the quadratic approach. By using the average dwell time
approach and the piecewise Lyapunov function technique, a delay-dependent sufficient
condition is proposed to guarantee the exponential stability of the considered system.
Here, to reduce the conservatism of the delay-dependent condition, we shall introduce
some slack matrix variables to seek the relationship between the Newton-Leibniz formula,
instead of applying model transformation. Similarly, the purpose of stabilization is the
design of memoryless state feedback control laws such that the resultant closed-loop sys-
tem is exponentially stable. A strict LMI design approach is proposed and an explicit
expression for the desired state feedback control law is given. Finally, two numerical
examples are provided to illustrate the effectiveness of the proposed theory.
The rest of this paper is organized as follows. The stability analysis and stabilization

problems for discrete-time switched delay systems is formulated in Sections 2. Section 3
presents our main results. Numerical examples are given in Section 4 and we conclude
this paper in Section 5.
Notations. Rn denotes the n-dimensional Euclidean space; P > 0 means that P is real

symmetric and positive definite; I and 0 represent an identity matrix and a zero matrix,
respectively; and ∥·∥ denotes the Euclidean norm of a vector and its induced norm of
a matrix. In symmetric block matrices or long matrix expressions, we use a star (⋆)
to represent a term that is induced by symmetry. Matrices, if their dimensions are not
explicitly stated, are assumed to be compatible for algebraic operations.
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2. System Description and Preliminaries. Consider a discrete-time nonlinear switch-
ed system with time-delays, which can be described by the following dynamical equation:

x(k + 1) = A(αk)x(k) + Ad(αk)x(k − d(k)) + Aτ (αk)f (x(k − τ)) +B(αk)u(k),

x(θ) = ϕ(θ), −max{τ, d2} ≤ θ ≤ 0, (1)

for k = 1, 2, . . ., where x(k) ∈ Rn is the state vector; u(k) ∈ Rm represents the control
input; ϕ(θ), −max{τ, d2} ≤ θ ≤ 0 are the initial conditions; {(A(αk), Ad(αk), Aτ (αk),
B(αk)) : αk ∈ N} is a family of matrices parameterized by an index setN = {1, 2, . . . , N}
and αk : Z+ → N is a piecewise constant function of time, called a switching signal, which
takes its values in the finite set N . At an arbitrary discrete time k, the value of αk, de-
noted by α for simplicity, might depend on k or x(k), or both, or may be generated by any
other hybrid scheme. We assume that the sequence of subsystems in switching signal αk is
unknown a priori, but its instantaneous value is available in real time. For the switching
time sequence k0 < k1 < k2 < · · · of switching signal α, the holding time between [kl, kl+1)
is called the dwell time of the currently engaged subsystem, where l ∈ N . The delay d(k)
satisfying 1 ≤ d1 ≤ d(k) ≤ d2, where d1 and d2 are constant positive scalars representing
the minimum and maximum delays, respectively. In addition, f(·) : Rn → Rn is nonlinear
function, which satisfies the following assumption.

Assumption 2.1. For the nonlinear function f(·), there exist matrices Π1 and Π2 such
that

(f(x)− Π1x)
T (f(x)− Π2x) ≤ 0, x ∈ Rn. (2)

Remark 2.1. For each possible value αk = i, i ∈ N , we will denote the system ma-
trices associated with mode i by A(i) = A(αk), Ad(i) = Ad(αk), Aτ (i) = Aτ (αk) and
B(i) = B(αk), where A(i), Ad(i), Aτ (i) and B(i) are constant matrices. Corresponding to
the switching signal α, we have the switching sequence {(i0, k0), (i1, k1), . . . , (il, kl), . . . , |il
∈ N , l = 0, 1, . . .} with k0 = 0, which means that the ilth subsystem is activated when
k ∈ [kl, kl+1).

In this paper, we design a stabilization controller with the following general structure:

u(k) = K (αk) x(k), (3)

where K (αk) ∈ Rm×n are parameter matrices switching with the same switching signal
as the original system.

Substituting u(k) in (3) into the system (1), we obtain the closed-loop stabilization
system as

x(k + 1) = Â(αk)x(k) + Ad(αk)x(k − d(k)) + Aτ (αk)f (x(k − τ)) ,

x(θ) = ϕ(θ), −max{τ, d2} ≤ θ ≤ 0. (4)

where Â(αk) = A(αk) +B(αk)K (αk).
The following definitions and lemma are introduced, which will play key roles in deriving

our main results.

Definition 2.1. The discrete-time switched time-delay system in (1) with u(k) = 0 is
said to be exponentially stable under α(k) if the solution x(k) satisfies

∥x(k)∥ ≤ ηρ(k−k0) ∥x(k0)∥C , ∀k ≥ k0,

for constants η ≥ 1 and 0 < ρ < 1, and

∥x(k0)∥C , {∥x(k + θ)∥ , ∥ξ(k + θ)∥ , ∥f(ξ(k + θ))∥}︸ ︷︷ ︸
sup−max{τ,d2}≤θ≤0

,
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where ξ(θ) , x(θ + 1)− x(θ).

3. Main Results. First, we will use the piecewise Lyapunov technique and the average
dwell time approach to propose a sufficient condition for the exponential stability of the
discrete-time switched time-delay system in (1) with u(k) = 0.

Theorem 3.1. Given a constant 0 < β < 1, supposed that there exist matrices P (i) > 0,
Q(i) > 0, R(i) > 0, Z(i) > 0, S1(i) > 0, S2(i) > 0 and matrices L(i), M(i), N(i) such
that for i ∈ N ,

β−(d2+1)Φ(i) d2L(i) (d2 − d1)M(i) d2N(i)
⋆ −d2S1(i) 0 0
⋆ ⋆ − (d2 − d1)S1(i) 0
⋆ ⋆ ⋆ −d2S2(i)

 < 0, (5)

where

Φ(i) ,


Φ11(i) 0 0

ΠT
1 +ΠT

2

2
0

⋆ −βd2+1Q(i) 0 0 0
⋆ ⋆ −βd2+1R(i) 0 0
⋆ ⋆ ⋆ βZ(i)− I 0
⋆ ⋆ ⋆ ⋆ −βτ+1Z(i)



+


AT (i)
AT

d (i)
0
0

AT
τ (i)

P (i)


AT (i)
AT

d (i)
0
0

AT
τ (i)


T

+


AT (i)− I
AT

d (i)
0
0

AT
τ (i)

 d2β (S1(i) + S2(i))


AT (i)− I
AT

d (i)
0
0

AT
τ (i)


T

+2βd2+1

L(i)


I
−I
0
0
0


T

+M(i)


0
I
−I
0
0


T

+N(i)


I
0
I
0
0


T ,

Φ11(i) , −βP (i) + βR(i) + β(d2 − d1 + 1)Q(i)− ΠT
1Π2 +ΠT

2Π1

2
. (6)

Then, the discrete-time switched time-delay system in (1) with u(k) = 0 is exponentially

stable for any switching signal with average dwell time satisfying Ta > T ∗
a = ceil

(
− lnµ

ln β

)
,

where µ ≥ 1 satisfies

P (i) ≤ µP (j), Q(i) ≤ µQ(j), R(i) ≤ µR(j),

Z(i) ≤ µZ(j), S1(i) ≤ µS1(j), S2(i) ≤ µS2(j), ∀i, j ∈ N . (7)

Proof: Choose a Lyapunov function candidate of the form:
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

V (xk, αk) ,
6∑

i=1

Vi(xk, αk),

V1(xk, αk) , xT (k)P (αk)x(k),

V2(xk, αk) ,
k−1∑

l=k−d(k)

βk−lxT (l)Q(αk)x(l),

V3(xk, αk) ,
k−1∑

l=k−d2

βk−lxT (l)R(αk)x(l),

V4(xk, αk) ,
−d1∑

s=−d2+1

k−1∑
l=k+s

βk−lxT (l)Q(αk)x(l),

V5(xk, αk) ,
−1∑

s=−d2

k−1∑
l=k+s

βk−lξT (l) (S1(αk) + S2(αk)) ξ(l),

V6(xk, αk) ,
k−1∑

l=k−τ

βk−lfT (x(l))Z(αk)f(x(l)),

(8)

where ξ(k) , x(k + 1) − x(k), and P (αk) > 0, Q(αk) > 0, R(αk) > 0, Z(αk) > 0,
S1(αk) > 0 and S2(αk) > 0 are real matrices to be determined.

For k ∈ [kl, kl+1), as in the previous section, we define ∆Vj(xk, αk) , Vj(xk+1, αk) −
Vj(xk, αk), j = 1, 2, 3, 4, 5, 6, thus ∆V (xk, αk) =

∑6
i=1∆Vi(xk, αk) with

∆V1(xk, αk) = xT (k + 1)P (αk)x(k + 1)− xT (k)P (αk)x(k), (9)

∆V2(xk, αk) ≤ −(1− β)
k−1∑

l=k−d(k)

βk−lxT (l)Q(αk)x(l) +

k−d1∑
l=k+1−d2

βk+1−lxT (l)Q(αk)x(l)

+βxT (k)Q(αk)x(k)− βd2+1xT (k − d(k))Q(αk)x(k − d(k)), (10)

∆V3(xk, αk) = −(1− β)
k−1∑

l=k−d2

βk−lxT (l)R(αk)x(l)

+βxT (k)R(αk)x(k)− βd2+1xT (k − d2)R(αk)x(k − d2), (11)

∆V4(xk, αk) = −(1− β)

−d1∑
s=−d2+1

k−1∑
l=k+s

βk−lxT (l)Q(αk)x(l)

+β(d2 − d1)x
T (k)Q(αk)x(k)−

k−d1∑
l=k+1−d2

βk+1−lxT (l)Q(αk)x(l), (12)

∆V5(xk, αk) ≤ −(1− β)
−1∑

s=−d2

k−1∑
l=k+s

βk−lξT (l) (S1(αk) + S2(αk)) ξ(l)

+d2βξ
T (k) (S1(αk) + S2(αk)) ξ(k)− βd2+1

k−1∑
l=k−d2

ξT (l)S2(αk)ξ(l)

−βd2+1

k−1∑
l=k−d(k)

ξT (l)S1(αk)ξ(l)− βd2+1

k−d(k)−1∑
l=k−d2

ξT (l)S1(αk)ξ(l), (13)

∆V6(xk, αk) ≤ −(1− β)
k−1∑

l=k−τ

βk−lfT (x(l))Z(αk)f(x(l)) + βfT (x(k))Z(αk)f(x(k))
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−βτ+1fT (x(k − τ))Z(αk)f(x(k − τ)). (14)

Moreover, for ζ(k) ,
[
xT (k) xT (k − d(k)) xT (k − d2) fT (x(k)) fT (x(k − τ))

]T
and

any appropriately dimensioned matrices L(αk), M(αk) and N(αk), αk ∈ N , the following
equations are true:

2βd2+1ζT (k)L(αk)

x(k)− x(k − d(k))−
k−1∑

l=k−d(k)

ξ(l)

 = 0, (15)

2βd2+1ζT (k)M(αk)

x(k − d(k))− x(k − d2)−
k−d(k)−1∑
l=k−d2

ξ(l)

 = 0, (16)

2βd2+1ζT (k)N(αk)

[
x(k)− x(k − d2)−

k−1∑
l=k−d2

ξ(l)

]
= 0. (17)

Assumption 2.1 gives

[
xT (k) fT (x(k))

]  ΠT
1Π2 +ΠT

2Π1

2
−ΠT

1 +ΠT
2

2

−Π1 +Π2

2
I

[
x(k)

f(x(k))

]
≤ 0. (18)

Consider (9)-(18), we have

∆V (xk, αk) + (1− β)V (xk, αk)

≤ ζT (k)
{
Φ(αk) + βd2+1

[
d2L(αk)S

−1
1 (αk)L

T (αk)

+ (d2 − d1)M(αk)S
−1
1 (αk)M

T (αk) + d2N(αk)S
−1
2 (αk)N

T (αk)
]}

ζ(k)

−βd2+1

 k−1∑
l=k−d(k)

ΓT
1 S

−1
1 (αk)Γ1+

k−d(k)−1∑
l=k−d2

ΓT
2 S

−1
1 (αk)Γ2+

k−1∑
l=k−d2

ΓT
3 S

−1
2 (αk)Γ3

 , (19)

where Φ(αk) is defined in (6) and

Γ1 ,
[
S1(αk)ξ(l) + LT (αk)ζ(k)

]
, Γ2 ,

[
S1(αk)ξ(l) +MT (αk)ζ(k)

]
,

Γ3 ,
[
S2(αk)ξ(l) +NT (αk)ζ(k)

]
.

Moreover, from (5), it follows that

Φ(αk) + βd2+1
[
d2L(αk)S

−1
1 (αk)L

T (αk) + (d2 − d1)M(αk)S
−1
1 (αk)M

T (αk)

+d2N(αk)S
−1
2 (αk)N

T (αk)
]
< 0.

Then one can easily achieve

∆V (xk, αk) + (1− β)V (xk, αk) < 0, ∀k ∈ [kl, kl+1). (20)

Now, for an arbitrary piecewise constant switching signal αk, and for any k > 0, we
let k0 < k1 < · · · < kl < · · · , l = 1, . . ., denote the switching points of αk over the
interval (0, k). As mentioned earlier, the ilth subsystem is activated when k ∈ [kl, kl+1).
Therefore, for k ∈ [kl, kl+1), it holds from (20) that

V (xk, αk) < βk−klV (xkl , αkl). (21)

Using (7) and (8), at switching instant tk, we have

V (xkl , αkl) ≤ µV (xkl , αkl−1
). (22)
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Therefore, it follows from (21) and (22) and the relationship ϑ = Nα(0, k) ≤ (k − k0)/Ta

that

V (xk, αk) ≤ βk−klµV (xkl , αkl−1
)

≤ · · ·
≤ β(k−k0)µϑV (xk0 , αk0)

≤ (βµ1/Ta)(k−k0)V (xk0 , αk0). (23)

Notice from (8) that there exist two positive constants a and b (a ≤ b) such that

V (xk, αk) ≥ a ∥x(k)∥2 , V (xk0 , αk0) ≤ b ∥x(k0)∥2C . (24)

Combining (23) and (24) yields

∥x(k)∥2 ≤ 1

a
V (xk, αk) ≤

b

a
(βµ1/Ta)(k−k0) ∥x(k0)∥2C . (25)

Furthermore, letting ρ ,
√

βµ1/Ta , it follows that

∥x(k)∥ ≤
√

b

a
ρ(k−k0) ∥x(k0)∥C . (26)

By Definition 2.1, we know that if 0 < ρ < 1, that is, Ta > T ∗
a = ceil

(
− lnµ

ln β

)
, the

discrete-time switched time-delay system in (1) with u(k) = 0 is exponentially stable,
where function ceil(h) represents rounding real number h to the nearest integer greater
than or equal to h. The proof is completed.

Remark 3.1. In Theorem 3.1, we propose a sufficient condition for the exponential sta-
bility condition for the considered the discrete-time switched time-delay system in (1) with
u(k) = 0. Here, β plays a key role in controlling the low bound of the average dwell time,

which can be seen from Ta > T ∗
a = ceil

(
− lnµ

ln β

)
, specifically, if β is given a smaller value,

the low bound of the average dwell time becomes smaller with a fixed µ, which may result
in the unstability of the system.

Remark 3.2. Note that when µ = 1 in Ta > T ∗
a = ceil

(
− lnµ

ln β

)
we have Ta > T ∗

a = 0,

which means that the switching signal α(k) can be arbitrary. In this case, (7) turns out
to be P (i) = P (j) = P , Q(i) = Q(j) = P , R(i) = R(j) = P , Z(i) = Z(j) = Z,
S1(i) = S1(j) = S1, S2(i) = S2(j) = S2, ∀i, j ∈ N , and the proposed approach becomes
quadratic one thus conservative. In this case, the system in (1) with u(k) = 0 turns out
to be

x(k + 1) = Ax(k) + Adx(k − d(k)) + Aτf (x(k − τ)) ,

x(θ) = ϕ(θ), −max{τ, d2} ≤ θ ≤ 0. (27)

And we have the following result for the system in (27).

Corollary 3.1. The discrete-time time-delay system in (27) is asymptotically stable if
there exist matrices P > 0, Q > 0, R > 0, Z > 0, S1 > 0, S2 > 0, and matrices L, M , N
such that 

Ψ d2L (d2 − d1)M d2N
⋆ −d2S1 0 0
⋆ ⋆ − (d2 − d1)S1 0
⋆ ⋆ ⋆ −d2S2

 < 0,
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where

Ψ ,


Ψ11 0 0

ΠT
1 +ΠT

2

2
0

⋆ −Q 0 0 0
⋆ ⋆ −R 0 0
⋆ ⋆ ⋆ Z − I 0
⋆ ⋆ ⋆ ⋆ −Z

+


AT

AT
d

0
0
AT

τ

P


AT

AT
d

0
0
AT

τ


T

+


AT − I
AT

d

0
0
AT

τ

 d2 (S1 + S2)


AT − I
AT

d

0
0
AT

τ


T

+2

L


I
−I
0
0
0


T

+M


0
I
−I
0
0


T

+N


I
0
I
0
0


T ,

and Ψ11 , −P +R + (d2 − d1 + 1)Q− ΠT
1Π2 +ΠT

2Π1

2
.

To prove the above result, the following Lyapunov function is chosen:

V̂ (xk) , xT (k)Px(k) +
k−1∑

l=k−d(k)

xT (l)Qx(l) +
k−1∑

l=k−d2

xT (l)Rx(l)

+

−d1∑
s=−d2+1

k−1∑
l=k+s

xT (l)Qx(l) +
−1∑

s=−d2

k−1∑
l=k+s

ξT (l) (S1 + S2) ξ(l)

+
k−1∑

l=k−τ

fT (x(l))Zf(x(l)),

where ξ(k) , x(k + 1) − x(k), and P > 0, Q > 0, R > 0, Z > 0, S1 > 0 and S2 > 0
are real matrices to be determined. The remainder processes can be followed by the same
lines of the proof of Theorem 3.1, and we omit the details.
Notice that there exist two product terms between the Lyapunov matrices (that is, P (i)

and S1(i)+S2(i)) and the system dynamic matrix A(i) in the LMI condition proposed in
Theorem 3.1, which will bring some difficulties in the solution of the stabilization control
synthesis problem. In the following, a subsequent result is given in order to facilitate the
control design procedure.

Corollary 3.2. Given a constant 0 < β < 1, supposed that there exist matrices P (i) > 0,
Q(i) > 0 and Z(i) > 0 such that for i ∈ N ,

Φ11(i) 0
ΠT

1 +ΠT
2

2
0

⋆ −βd2+1Q(i) 0 0
⋆ ⋆ βZ(i)− I 0
⋆ ⋆ ⋆ −βτ+1Z(i)

+


AT (i)
AT

d (i)
0

AT
τ (i)

P (i)


AT (i)
AT

d (i)
0

AT
τ (i)


T

< 0,(28)
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where Φ11(i) , −βP (i) + β(d2 − d1 + 1)Q(i) − ΠT
1Π2 +ΠT

2Π1

2
. Then, the discrete-time

switched time-delay system in (1) with u(k) = 0 is exponentially stable for any switching

signal with average dwell time satisfying Ta > T ∗
a = ceil

(
− lnµ

ln β

)
, where µ ≥ 1 satisfies

P (i) ≤ µP (j), Q(i) ≤ µQ(j), Z(i) ≤ µZ(j), ∀i, j ∈ N . (29)

Next, we are in a position to consider the stabilization of the system (1) and design the
desired controller.

Theorem 3.2. Given a constant 0 < β < 1, the system in (1) is stabilizable, that is, the
closed system in (4) is exponentially stable under the control input u(t) in (3), if there

exist matrices X(i) > 0, Q̂(i) > 0, Z(i) > 0 and Y (i) such that for i ∈ N ,
Φ̃11(i) 0 X(i)

ΠT
1 +ΠT

2

2
0 X(i)AT (i) + Y T (i)BT (i)

⋆ −βd2+1Q̂(i) 0 0 X(i)AT
d (i)

⋆ ⋆ βZ(i)− I 0 0
⋆ ⋆ ⋆ −βτ+1Z(i) AT

τ (i)
⋆ ⋆ ⋆ ⋆ −X(i)

 < 0, (30)

where Φ̃11(i) , −βX(i) + β(d2 − d1 + 1)Q̂(i) − 2X(i) +

(
ΠT

1Π2 +ΠT
2Π1

2

)−1

. Then,

the discrete-time switched time-delay system in (1) is exponentially stabilizable for any

switching signal with average dwell time satisfying Ta > T ∗
a = ceil

(
− lnµ

ln β

)
, where µ ≥ 1

satisfies

X(i) ≤ µX(j), Q̂(i) ≤ µQ̂(j), Z(i) ≤ µZ(j), ∀i, j ∈ N . (31)

In this case, a robustly stabilizing state feedback control law can be chosen by

u(k) = Y (i)X−1(i)x(k). (32)

Proof: By suing Schur complement and considering the closed-loop system in (4), we
have that the closed-loop system in (4) is exponentially stable if there matrices P (i) > 0,
Q(i) > 0 and Z(i) > 0 such that for i ∈ N ,

Φ11(i) 0
ΠT

1 +ΠT
2

2
0 ÂT (i)P (i)

⋆ −βd2+1Q(i) 0 0 AT
d (i)P (i)

⋆ ⋆ βZ(i)− I 0 0
⋆ ⋆ ⋆ −βτ+1Z(i) AT

τ (i)P (i)
⋆ ⋆ ⋆ ⋆ −P (i)

 < 0, (33)

where the switching signal has an average dwell time satisfying Ta > T ∗
a = ceil

(
− lnµ

ln β

)
,

where µ ≥ 1 satisfies

P (i) ≤ µP (j), Q(i) ≤ µQ(j), Z(i) ≤ µZ(j), ∀i, j ∈ N .
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Performing a congruence transformation to (33) by diag{X(i), X(i), I, I,X(i)} (where
X(i) = P−1(i)), it follows that

Φ̂11(i) 0 X(i)
ΠT

1 +ΠT
2

2
0 X(i)ÂT (i)

⋆ −βd2+1Q̂(i) 0 0 X(i)AT
d (i)

⋆ ⋆ βZ(i)− I 0 0
⋆ ⋆ ⋆ −βτ+1Z(i) AT

τ (i)
⋆ ⋆ ⋆ ⋆ −X(i)

 < 0, (34)

where Φ̂11(i) , −βX(i) + β(d2 − d1 + 1)Q̂(i) − X(i)
ΠT

1Π2 +ΠT
2Π1

2
X(i) and Q̂(i) =

X(i)Q(i)X(i).
On the other hand, the following matrix inequality holds:[
X(i)−

(
ΠT

1Π2 +ΠT
2Π1

2

)−1
](

ΠT
1Π2 +ΠT

2Π1

2

)[
X(i)−

(
ΠT

1Π2 +ΠT
2Π1

2

)−1
]
≥ 0

thus,

X(i)
ΠT

1Π2 +ΠT
2Π1

2
X(i) ≥ 2X(i)−

(
ΠT

1Π2 +ΠT
2Π1

2

)−1

Therefore, matrix inequality (34) holds if the following LMI holds:
Φ̃11(i) 0 X(i)

ΠT
1 +ΠT

2

2
0 X(i)ÂT (i)

⋆ −βd2+1Q̂(i) 0 0 X(i)AT
d (i)

⋆ ⋆ βZ(i)− I 0 0
⋆ ⋆ ⋆ −βτ+1Z(i) AT

τ (i)
⋆ ⋆ ⋆ ⋆ −X(i)

 < 0, (35)

where Φ̃11(i) is defined in (30). Moreover, we define Y (i) = K(i)X(i), we have (30), and
we know that K(i) = Y (i)X−1(i). The proof is completed.

4. Illustrative Examples. In this section, we will give two numerical examples to illus-
trate the effectiveness of the proposed analysis and design methods.

Example 4.1 (Stability Analysis). Consider the system in (1) with N = 2, and its
parameters are given as follows:
Subsystem 1.

A(1) =

 0.20 0.10 −0.01
0.10 0.20 −0.10
0.20 −0.06 −0.13

 , Ad(1) =

 0.06 −0.20 −0.15
0.04 −0.01 0.36
0.20 0.10 −0.07

 , Aτ (1) = Ad(1).

Subsystem 2.

A(2) =

 0.30 −0.10 −0.30
−.04 0.20 0.20
0.10 −0.05 −0.20

 , Ad(2) =

 −0.04 0.05 −0.20
−0.20 0.10 −0.10
0.06 −0.10 −0.03

 , Aτ (2) = Ad(2),

and f(x) =
[
fT
1 (x) fT

2 (x) fT
3 (x)

]T
with f1(x) = − tanh(x1) + 0.2x1 + 0.1x2 + 0.1x3,

f2(x) = 0.1x1 − tanh(x2) + 0.2x2,
f3(x) = 0.1x1 + 0.2x3 − tanh(x3)
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It is easy to verify that

Π1 =

 −0.8 0.1 0.1
0.1 −0.8 0.0
0.1 0.0 −0.8

 , Π2 =

 0.2 0.1 0.1
0.1 0.2 0.0
0.1 0.0 0.2

 ,

and d1 = 1, d2 = 2, β = 0.8, τ = 0.6. We consider the average dwell time approach pro-

posed in this paper, and set µ = 1.5 > 1, thus Ta > T ∗
a = ceil

(
− lnµ

ln β

)
= 2. Solving LMI

(5) with (7), we can obtain a feasible solution of (P (1), P (2), Q(1), Q(2), R(1), R(2), Z(1),
Z(2), S1(1), S1(2), S2(1), S2(2), L(1), L(2),M(1),M(2), N(1), N(2)). Therefore, we can
conclude that the above discrete-time switched system is exponentially stable.

In addition, for d1 = 1, µ = 1.5 and τ = 0.6, considering different β, the upper bound
of d2 for different cases are listed in Table 1.

Table 1. Upper bound of d2 (denoted by d̂2) for different β

β 0.5 0.6 0.7 0.8 0.9

d̂2 1.3344 1.7345 2.2247 2.9278 4.1299

Example 4.2 (Stabilization). Consider the system in (1) with N = 2, and its param-
eters are given as follows:
Subsystem 1.

A (1) =

 −0.9 0.2 −0.2
0.2 −0.1 0.3

−0.3 0.1 0.3

 , Ad (1) =

 0.2 0 0.1
0.1 0.3 0.1
0.3 0.1 0.2

 ,

Aτ (1) =

 −0.2 0.0 0.1
0.2 0.1 0.1
0.0 −0.2 −0.1

 (36)

Subsystem 2.

A (2) =

 −0.8 −0.1 −0.2
0.2 −0.1 0.3
0.2 −0.1 0.2

 , Ad (2) =

 0.2 0.1 0
0.1 0.2 0.1
0.1 0.1 0.3

 ,

Aτ (2) =

 −0.2 0.0 0.1
0.2 0.1 0.1
0.0 −0.2 −0.1

 ,

B1 = B2 = B =
[
0 0 2

]T
(37)

with d1(k) = d2(k) = 2.5+ (−1)k/2 and f(x) defined in Example 4.1, and d1 = 1, d2 = 3,

µ = 1.5, β = 0.9, τ = 0.5, x(θ) = [−0.3 1 − 0.8]T , θ ∈ [−3, 0].

The switching signal is given in Figure 1 (which is generated randomly, here, ‘1’ and
‘2’ represent the first and the second subsystem, respectively). The states trajectories
of the open-loop system are shown in Figure 2, from which we can see that the open-
loop system is not stable. In this situation, we will design a state feedback stabilization
controller such that the closed-loop system is stable. To this end, by solving the LMI
conditions in Theorem 3.2, we obtain

K1 =
[
0.1480 −0.0307 −0.1965

]
, K2 =

[
−0.2096 0.0475 −0.1501

]
.



1984 G. ZHANG, C. HAN, Y. GUAN AND L. WU

The states trajectories of the closed-loop system are displayed in Figure 3, which demon-
strates the effectiveness of the proposed method in this paper.
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Figure 1. Switching signal
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Figure 2. States of the open-loop system

5. Conclusion. The stability analysis and stabilization problems have been investigated
for discrete-time switched nonlinear systems with time delays. By using the average dwell
time approach and the piecewise Lyapunov function technique, a delay-dependent suffi-
cient condition has been proposed to guarantee the exponential stability of the considered
system. To reduce the conservatism of the delay-dependent condition, we has introduced
some slack matrix variables to seek the relationship between the Newton-Leibniz formula,
instead of applying model transformation. A strict LMI stabilization controller design
approach has developed. An explicit expression for the desired state feedback control law
has also been given. Finally, two numerical examples have been provided to illustrate the
effectiveness of the proposed theory.
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Figure 3. States of the closed-loop system
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