
International Journal of Innovative
Computing, Information and Control ICIC International c⃝2012 ISSN 1349-4198
Volume 8, Number 3(A), March 2012 pp. 1987–2000

A NOVEL APPROACH OF AN FPGA DESIGN TO IMPROVE
MONOCULAR SLAM FEATURE STATE COVARIANCE

MATRIX COMPUTATION

Mohd. Yamani Idna Idris1, Hamzah Arof2, Noorzaily Mohamed Noor1

Emran Mohd. Tamil1, Zaidi Razak1 and Ainuddin Wahid1

1Faculty of Computer Science and Information Technology
2Faculty of Engineering (Electrical)

University of Malaya
Kuala Lumpur 50603, Malaysia

{ yamani; ahamzah; zaily; emran; zaidi; ainuddin }@um.edu.my

Received December 2010; revised April 2011

Abstract. Monocular SLAM is a study which concentrates on deriving the position
and motion estimation information from tracked features using a single camera. In this
paper, a novel approach to improve the computation speed of a Monocular SLAM is
proposed. The research concentrates on the feature initialization process which takes
place before the standard Extended Kalman Filter (EKF). In order to find the most time
consuming process at the initialization stage, a software profiling tool is used. From the
result, the section of a program which demands high processing computation is identified.
Following that, a specialized design is proposed to improve the computation speed. An
FPGA approach is chosen with the intention to offload software processing to a dedicated
hardware for overall performance acceleration. In order to accomplish this goal, the
section demanding high processing computation is carefully studied. From the studies, it
is found that the original approach can be improved by reducing the multiplication process
and incorporating parallel processing capability of an FPGA. At the end of the paper, the
comparison results of the software and hardware processing are presented.
Keywords: Simultaneous localization and mapping (SLAM), Parallel design, Matrix
multiplication landmark initialization, Inverse depth parameterization

1. Introduction. Simultaneous Localization and Mapping (SLAM) is a process where
a mobile robot can build a map of the surrounding environment and concurrently use
this map to compute its own location. Due to the promising advantages of vision sensor
such as being compact, accurate, noninvasive, cheap, well understood and ubiquitous
[1,2], various vision SLAM algorithms [3] have been studied. Monocular SLAM is a
Bearing-Only SLAM which utilizes a single vision sensor to measure the bearing of image
features. From the measured bearings, the depth information is estimated using feature
parallax. In this context, parallax is a measured angle of an object or captured rays viewed
from two different lines of sight. One of the frequent problems occurring in the Bearing
Only SLAM is the robustness of the new feature initialization process in determining
the depth information [4]. This initialization problem is commonly addressed by using
Delayed and Undelayed approaches. Both approaches have their own advantages and
disadvantages. The Delayed approach has an advantage whereby it is able to reject
weak features. However, the Delayed approach has to wait until the sensor movement
generates sufficient degrees of parallax. On the other hand, the Undelayed approach
benefits from the information about the sensor orientation from the beginning. The
downside of the Undelayed approach is that the depth estimation is modeled with huge

1987

1988 M. Y. I. IDRIS, H. AROF, N. M. NOOR, E. M. TAMIL, Z. RAZAK AND A. WAHID

uncertainty. Moreover, its computational load grows exponentially with the number of
landmarks [4].

2. Feature Initialization. Feature Initialization is a process in SLAM (Figure 1) which
reduces the landmark range uncertainty and helps to ensure that the location of landmarks
can be inferred from a single bearing measurement. In 2000, Deans et al. [5] proposed
a Delayed initialization approach, which makes use of bundle adjustment techniques to
compute the optimal least square estimates. The bundle adjustment technique ensures
that the Kalman filter is initialized with a good estimate of the robot state and landmark
locations. Another delayed initialization approach is suggested by Bailey et al. [6] which
modifies the constraint initialization procedure introduced by Williams et al. [7]. Bailey
initialization is delayed in a sense that the system will wait until a sufficient base-line is
reached before permitting Gaussian initialization, and becomes well-conditioned by using
the Kullback distance. Other work related to the Delayed approach is presented in the
paper Real-Time 3D SLAM with Wide-Angle Vision by Davison et al. [8]. This paper
shows that real time SLAM with a single camera is feasible using an EKF framework.
They also employed a Particle Filter to estimate the features depth, which is uncorrelated
with the rest of the map. The distribution of possible depths is updated based on each new
observation until the variance range is small enough to consider a Gaussian estimation.
The problem with such an approach is that the initial particles distribution has to cover
the entire possible depth of values for a landmark. This would be complicated when there
are many detected features or when the features are far. A particle filter is also utilized
by Minoru et al. [9] and Masahiro et al. [10].

Feature

Extraction

Feature

Initialization

Prediction

Measurement
 Prediction

Matching Update

Figure 1. SLAM process

Another initialization method which is commonly used by researchers is called the Un-
delayed approach. One of the earliest Undelayed approaches was presented by Kwok
et al. [11]. They propose that the initial representation is in the form of multiple hy-
potheses distributed along the direction of the bearing measurement. For the subsequent
measurements, Sequential Probability Ratio Test (SPRT) based on likelihood has been
utilized to validate the hypotheses. In Sola et al. [12], two drawbacks of the Delayed
approach are addressed. The first drawback is the need of criteria to decide whether or
not the baseline is sufficient to permit Gaussian initialization. Another drawback is that
the initialization has to wait until the criteria are validated. To ensure the delay is below
reasonable limits, the camera motion cannot be close to the direction of the landmark.
This would be unpractical for outdoor navigation since straight trajectories are common.
In overcoming the problem, Sola et al. [12] utilizes Gaussian Sum approximation which
permits Undelayed initialization. Since approximation representation has the tendency
to be inconsistent and diverge, their work proposes the use of the Federated Information
Sharing (FIS) method to minimize the risk. In a more recent study, Monteil [13] and

A NOVEL APPROACH OF AN FPGA DESIGN 1989

Civera et al. [14] put forward a concept called Inverse Depth Parameterization (IDP).
The key idea of the concept is to produce a measurement equation with a high degree of
linearity. Their paper discusses the drawback implied by the work done by Davison et
al. [1,15] whereby it is only applicable for features that were close to the camera. The
drawback is caused by the Euclidean XYZ feature parameterization for low parallax fea-
ture. This parameterization is not well represented by the Gaussian distribution implied
in the EKF. On the other hand, inverse depth claimed to allow Gaussian distribution to
cover uncertainty for both low and high parallax features. Despite this advantage, IDP
suffers from computational issues since it requires six state vector parameters (Equation
(2)) instead of three as in Euclidean XYZ coding (Equation (1)).

xi= (Xi Yi Zi)
T
 (1)

yi=(xi yi zi θi øi ρi)
T
 (2)

where:

xi yi zi = camera optical center

θi = azimuth

øi = elevation

ρi = inverse depth

2.1. Feature initialization software profiling result and discussion. In order to
improve the performance of the initialization process, a software profiling tool is utilized.
Software profiling is a form of dynamic programming analysis tool to determine which
section of a program demands a high processing computation. Since an inverse depth
Parameterization technique by Civera et al. [14] is considered to be one of the highly
rated methods in a SLAM system, it is chosen for analysis. The software profiling result
is shown in Figure 2.

Figure 2. Inverse depth parameterization software profiling result

Based on the result acquired, it can be seen that the calculation to determine state
covariance matrix (PRES) consumes the most processing time after several iterations.
The reason for the slow processing time is caused by the increasing matrix size when
PRES = J ∗P ∗J ′ calculation is performed. Covariance matrix (Pk|k) computation starts
with 13×13 diagonal matrixes. The thirteen values consist of three (x, y, z) camera optical
center positions (rwc), four (qR, qx, qy, qz) values of quaternion defining orientation (qwc),

1990 M. Y. I. IDRIS, H. AROF, N. M. NOOR, E. M. TAMIL, Z. RAZAK AND A. WAHID

v

CC

k

WW

k

CC

k

WC

k

W

k

W

k

WC

k

C

k

W

k

WC

k

WC

k

v x
Vv

tqq

tVvr

v

q

r

f =





















Ω+

+

∆Ω+×

∆++

=





















=

+

+

+

+

ω

ω

ω

))((

)(

1

1

1

1

 (3)

three values of linear velocity relative to the world frame (vw) and another three values
of angular velocity relative to the camera frame (wc) (Equation (3)).
When features are inserted, another six values (as in yi in Equation (2)) will be added

into the full state vector, x = (xT
v yT1 yT2 . . . yTn). The insertion of more features will

increase the size of the full state vector which leads to the increment of the matrix size. For
instance, if one hundred features are tested, a covariance matrix with a size of 613× 613
will be entailed in the computation, (i.e., 100 (from number of features) × 6 (from yi; 6-D
vector) + 13 (i.e., from fv) = 613). The increase in matrix size means a larger matrix
multiplication has to be performed on the PRES = J ∗P ∗ J ′ which eventually increases
the execution time.

3. Inverse Depth Parameterization and Matrix Multiplication. Matrix multipli-
cation has long been studied by many researchers to increase the computational speed of
their proposed application. Based on several studies, there are two main approaches em-
ployed by researchers to improve matrix multiplication performance. The first approach
is by improving the mathematical formula of the classical matrix multiplication, which
leads to the introduction of several algorithms such as Winograd’s and Strassen’s algo-
rithm. The second approach is by manipulating the hardware design architecture using
technology such as multi-processor and FPGA. Among researchers utilizing the FPGA to
improve matrix multiplication are Prasanna et al. [16], Mencer et al. [17], Amira et al.
[18], Jang et al. [19], Bravo et al. [20], Zhuo et al. [21,22] and Idris et al. [23,24].
Both approaches have shown significant improvements of the overall matrix multipli-

cation process. However, the approaches are not specialized to cater for Inverse Depth
Parameterization matrix multiplication. For that reason, a study to identify how the
original state covariance matrix formula effects the overall computation is carried out.

3.1. Conventional state covariance calculation using classical matrix multipli-
cation approach. From the pseudocode of state covariance (P) calculation as presented
in Figure 3, the matrix size can be seen to increase every time a new feature is inserted.
For each feature, dydxv (i.e., dy/drwc, dy/dqwc, 0, . . ., 0) and dydhd (i.e., dy/dh, dy/dρ)
value of the Jacobian (J) are calculated. Each dydxv has a matrix size of 6 × 13 and
dydhd has a matrix size of 6 × 3. The matrix size increment as shown in Table 1 and
Figure 4 illustrates how many multiplications are needed when classical matrix multi-
plication approach is used. For three iterations or three features, it can be seen that
4864 + 5776 + 12100 + 13750 + 24304 + 26908 = 87702 multiplication operations are
needed.

3.2. Proposed state covariance matrix computation. Based on the pseudocode
in Figure 3, it can be seen that several problems could affect the processing time. The
insertion of zero and identity matrix into the matrix J and P to suit the covariance matrix
formula increases the number of operations in the program. The problem was addressed
by Zienkiewicz et al. [25] by proposing a typical approach which avoids multiplication with
zero. The abstaining from immaterial multiplication has resulted in reduced execution
time. Another problem perceived is the self matrix multiplication in P = JPJ ′ which will
cause matrix size to expand (as illustrated in Figure 4) every time the program iterates.

A NOVEL APPROACH OF AN FPGA DESIGN 1991

 dydxv=[dydxv1 dydxv2 dydxv3 …… dydxv_k]; % each dyddxv_k has constant 6x13 matrix size
dydhd=[dydhd1 dydhd2 dydhd3 …… dydhd_k]; % each dyddxv_k has constant 6x3 matrix size

for k=1:numfeat % number of features/iterations
 J = [eye(size(P,2)) zeros(size(P,1),3); % Initial P is 13x13 & will increase following iterations
 dydxv(1:6,k*13-12:k*13) zeros(6,(size(P,2)-13))dydhd(1:6,k*3-2:k*3)];

 P = [P zeros(size(P,2),3);
 zeros(3,size(P,2)) Padd]; % Padd has constant 3x3 matrix size

 P = J*P*J';
end

Figure 3. Pseudocode for calculating state covariance (P)

Table 1. Matrix size increment

Matrix

1
st

Feature/Iteration

Matrix Size

2
nd

Feature/Iteration

Matrix Size

3
rd

Feature/Iteration

Matrix Size

n
th

 Iteration

Matrix Size

J 19x16 25x22 31x28 19+(6)(n-1)x16+(6)(n-1)

P 16x16 22x22 28x28 16+(6)(n-1)x16+(6)(n-1)

J’ 16x19 22x25 28x31 16+(6)(n-1)x19+(6)(n-1)

 19

16

J

 16

16

P

 19

16

JP

19*16*16 = 4864 X

 19

16

JP

 16

19

J’

 19

19

JPJ’

19*19*16 = 5776 X

 25

22

J

 22

22

P

 25

22

JP

25*22*22 = 12100 X

 25

22

JP

 22

25

J’

 25

25

JPJ’

25*25*22 = 13750 X

 31

28

J

 28

28

P

 31

28

JP

31*28*28 = 24304 X

 31

28

JP

 28

31

J’

 31

31

JPJ’

31*31*28 = 26908 X

1
st

 feature/

Itera!on

2
nd

 feature/

Itera!on

3
rd

 feature/

Itera!on

+

+

+

Figure 4. Number of multiplication operations needed to solve state co-
variance matrix using classical approach

1992 M. Y. I. IDRIS, H. AROF, N. M. NOOR, E. M. TAMIL, Z. RAZAK AND A. WAHID

This will lead to a huge exponential growth problem involving the number of multiplication
operations. Furthermore, the function P = JPJ ′ is a recursive function, which depends
on solutions with smaller instances of the same problem. This will inevitably cause the
process to come to a halt until the computation process for value P is completed.
In the proposed design, the aforementioned problems will be reduced by modifying

the conventional state covariance matrix calculation. The pseudocode and diagram to
illustrate the proposed design are depicted in Figures 5 and 6. The original state covari-
ance matrix formula is altered to avoid multiplication with zero. The proposed design
also avoids matrix size expansion caused by self matrix multiplication (i.e., P = JPJ ′).
Instead, a memory look up approach is utilized to reduce the multiplication operation.
The number of multiplication involved in the proposed approach is illustrated in Fig-
ure 7. An example with reference to the number of multiplication operations needed for
calculating three features is shown in Figure 8. As can be seen in the figure, the mul-
tiplication of dvP or Pdv′ (i.e., number of multiplication = 1014) starting from column
2 and row 2 is not counted in the multiplication process. This is because the proposed
design has stored the result of dvP and Pdv′, which has been multiplied before into a
memory. Therefore, there is no need to redo the same multiplication all over again and
thus reducing the number of multiplication processes. By using the proposed design, only
(1014+ 1014+ 54+ 108)× 3+ 468× 3× 3 = 10, 782 multiplication operations are needed
to process three features.

 dydxv=[dydxv1 dydxv2 dydxv3 …… dydxv_k]; % each dyddxv_k has constant 6x13 matrix size

dydhd=[dydhd1 dydhd2 dydhd3 …… dydhd_k]; % each dyddxv_k has constant 6x3 matrix size

for n=1:numfeat % number of features

 left=dydxv(1:6,n*13-12:n*13)*P(1:13,1:13); % dv_n X P

 right=P(1:13,1:13)*dydxv(1:6,n*13-12:n*13)'; % P X dv_n'

 rightdd=dydhd(1:6,n*3-2:n*3)*Padd*dydhd(1:6,n*3-2:n*3)'; %dd_n X Pad X dd_n'

 % Pad has constant 3x3 matrix size

 for k=1:numfeat

 dvPdvp=left*dydxv(1:6,k*13-12:k*13)'; %dv_n X P X dv_k'

 % store values in memory

 dvPdvp1=[dvPdvp1 dvPdvp];

 end

 % select diagonal from memory

 leftdv=dvPdvp1(1:6,6*numfeat*n-(6*numfeat-1)+m1:(6*numfeat*n-(6*numfeat-1))+5+m1);

 m1=m1+6;

 bottomright=leftdv+rightdd; % (dv X P X dv') + (dd X Pad X dd')

 % store values in memory

 ………

 ………

end

%Rearange P2 addresses

………

………

Figure 5. Pseudocode of the altered state covariance matrix

To accelerate the execution time even further, an independent processing approach is
proposed. Unlike the function P = JPJ ′ in the conventional approach, the proposed
design is not a recursive function. The process in each column and row of the proposed
design in Figure 6 can be executed independently. This will allow for the features to be
processed simultaneously if multiprocessing or parallel architecture is applied.

3.3. Number of multiplication comparison. In general, the number of multiplication
operations for n features can be compared using the pseudocode in Figure 9. The graph
which compares the number of multiplications is shown in Figure 10. From the figure, it
can be seen that the number of multiplications of the conventional state covariance matrix
using classic matrix multiplication increases exponentially. The proposed approach on the

A NOVEL APPROACH OF AN FPGA DESIGN 1993

Figure 6. Altered state covariance matrix

 6

3

dd

 3

3

Pa

d

6*3*3 = 54 X

 6

3

ddPa

d

ddPad

dd’

6*6*3 = 108 X

 6

6

 6

3

ddPa

d

 3

6

dd

’

dvPdv’

6*6*13 = 468 X

 6

6

 6

13

dvP

 13

6

dv

’

Pdv’

 13

13

P

 13

6

dv

’

13*6*13 =

1014

X

 13

6

Figure 7. Number of multiplication operation needed to solve state co-
variance matrix using proposed approach

 P 1014 1014 1014

1014 468+54+108 468 468

1014 468 468+54+108 468

1014 468 468 468+54+108

Figure 8. Number of multiplication operation for three features

 % number of multiplication using normal classical matrix multiplication approach

for n=1:numfeat % number of features

 normal1=((19+6*(n-1))*(16+6*(n-1)) *(16+6*(n-1))) + ((19+6*(n-1))*(19+6*(n-1))*(16+6*(n-1)));

 normal2=normal2+normal1;

 featnum=[featnum n];

 normalmult=[normalmult normal2];

end

% number of multiplication using proposed approach

for k=1:numfeat % number of features

 proposedmult1= (6*13*13+13*6*13+6*3*3+6*6*3+(6*6*13)*k)*k;

 proposedmult=[proposedmult proposedmult1];

end

Figure 9. Number of multiplication comparison pseudocode

1994 M. Y. I. IDRIS, H. AROF, N. M. NOOR, E. M. TAMIL, Z. RAZAK AND A. WAHID

Figure 10. Number of multiplication comparison

other hand, does not show a large increment. This clearly shows that the proposed method
is able to perform state covariance matrix calculations with much less multiplication
operation. The key idea is to reuse the same calculated values stored in the memory.
Furthermore, the suggested approach is designed to avoid multiplication with zero, which
could be affecting the overall cycle time.

4. FPGA Block Diagram. The altered state covariance matrix in Figure 6 is designed
as an FPGA block diagram as shown in Figure 11. There are several matrix multiplier
modules in the implementation. The modules are designed using a specific matrix size to
cater for the needs of each variable. This is indicated by the number besides the Mtrx mult
where the numbers are the multiplicand and multiplier size. For example, to multiply dvk
(i.e., 6 × 13 matrix size) with P (i.e., 13 × 13 matrix size) the Mtrx mult (6,13,13,13) is
used. The matrix multiplier module consists of a Multiplier Accumulator (MAC), which
computes the product of two numbers and adds them together to an accumulator. The
MAC operation is controlled by an address controller to suits the matrix size. The address
controller is divided into write and read mode to ensure the multiplication is processed
correctly. Appendix 1 shows the values of the address which is used to access RAMs and
their time steps. These values are generated by write addr and read addr of the addr ctrl
in Figure 12. Finally, the results of the altered state covariance matrix are stored in a
register to be used by the next process in the feature initialization.

X

X
INV

X

X

INV

X

dvk(6,13)

P(13,13)

dv kP

Pdv k’

ddn(6,3)

Pad(3,3)

dvkPdv n_o’

dv k’

ddn’

ddnPad
ddnPaddd n’

reg

reg

+

dvnPdv n’
(dvk=dvn)

dv kPdvn’
(dv k ≠ dvn)

dvnPdv n’
+

ddnPaddd n’

SEL

reg

Mtrx_mult

(6,13;13,13)

reg

reg
Mtrx_mult

(13,13;13,6)

Mtrx_mult (6,3;3,3)

Mtrx_mult

(6,13;13,6)

Mtrx_mult

(6,3;3,6)

Mtrx_add

(6,6;6,6)

Figure 11. FPGA block diagram

A NOVEL APPROACH OF AN FPGA DESIGN 1995

4.1. RTL schematic result after synthesis. The design in Figure 11 is converted into
a hardware block using Xilinx System Generator tools and hardware description language.
Following that, Xilinx ISE tools are used for synthesis, simulation and implementation of
the design into an FPGA. Figure 12 shows the result after synthesis.

addr_cntroller
addr

we

mult

(6,13,13,6)

dv’

dv*P

dv*P*dv’

write_addr

read_addr

counter controller

mux

write_en

we

addr

counter delay delay ctrl delay

convert

mult delay delay RAM
 Mul!pler Accumulator

dv*P dv*P*dvpr

delay

matrx _mult

(6,13,13,13)

matrx_mult

(6,13,13,6)

dd*Padd

dd*Padd*ddpr

matrx_mult

(6,3,3,3)

matrx_mult

(6,3,3,6) matrx_add (6,6)

dv_k*P*dvpr_n

P*dvpr_n

matrx _mult (6,13,13,6)

matrx _mult

(13,13,13,6)

dd*Padd*ddpr +

dv*P*dvpr

Figure 12. RTL schematic after synthesis

4.2. Device utilization and timing summary. A Spartan-3A DSP 34000A FPGA
chip has been chosen for the synthesis. The device utilization and timing summary results
using Xilinx ISE tools are presented in Figure 13. A total of 4496 slices are utilized in
the design which consume 18% of the overall resources of the Spartan-3A DSP 3400A
FPGA. Though it appears larger than a classical matrix multiplication implementation,
the execution speed will be much faster. The maximum frequency that allows the paths
to run is at 133.219 MHz. This signifies that the minimum clock period can reach 7.506
ns. Based on this result, a post route simulation is done to compare both software and
hardware implementation results.

1996 M. Y. I. IDRIS, H. AROF, N. M. NOOR, E. M. TAMIL, Z. RAZAK AND A. WAHID

Device utilization summary:

Selected Device : 3sd3400afg676-5

 Number of Slices: 4496 out of 23872 18%

 Number of Slice Flip Flops: 8292 out of 47744 17%

 Number of 4 input LUTs: 8519 out of 47744 17%

 Number used as logic: 772

 Number used as Shift registers: 7747

 Number of IOs: 166

 Number of bonded IOBs: 165 out of 469 35%

 Number of BRAMs: 21 out of 126 16%

 Number of GCLKs: 1 out of 24 4%

 Number of DSP48s: 9 out of 126 7%

Timing Summary:

Speed Grade: -5

 Minimum period: 7.506ns (Maximum Frequency: 133.219MHz)

 Minimum input arrival time before clock: 1.216ns

 Maximum output required time after clock: 7.156ns

Figure 13. Device utilization and timing summary

5. Software and Hardware Implementation Performance Comparison. Figure
14 shows a post route simulation result using 8 ns or 125 MHz clock input of the proposed
method. For four features, the feature state covariance matrix result is obtained at 77652
ns. For performance comparison, a stopwatch timer tool to capture execution time of the
software implementation is utilized. The software implementation matrix multiplication
uses General Matrix Multiply (GEMM) which is a subroutine in the Basic Linear Algebra
(BLAS). GEMM is a building block for so many other routines and has been often tuned
by High Performance Computing vendors to run as fast as possible. For the GEMM
software implementation test, an Intel (R) Core (TM) 2 Duo CPU E6550 @ 2.23 GHz,
3.32 GB of RAM is used.

Figure 14. Post route simulation result

The performance comparison also includes four FPGA matrix multiplication implemen-
tation methods as listed in Table 2. In MYI classical FPGA implementation, a simple
multiplier accumulator is used to calculate the matrix multiplication result. The other
three methods utilized a pipelined and parallel architecture of an FPGA to calculate a
4× 4 matrix multiplication.
Figure 15 shows proposed implementation results compared with GEMM (SW), Classi-

cal FPGA, Idris et al., Prasana et al. and Jang et al. implementation. The execution time
to calculate 64 features has been tabulated in Table 3 for clearer comparison. As can be
seen, the proposed approach shows significant advantages over other methods which uti-
lize a conventional approach in performing the Monocular SLAM feature state covariance
matrix computation.

6. Discussion and Conclusions. Feature initialization can be divided into Delayed and
Undelayed initialization approach. Based on the advantages which is weighted opposed to

A NOVEL APPROACH OF AN FPGA DESIGN 1997

Table 2. Prior FPGA implementation for 4× 4 matrix multiplication

Design FPGA Area

(CLBs)

Area

(equivalent)

Speed

(MHz)

Classical FPGA (24) XCV1000E 29 29 249/4=62.5

Ju-wook Jang et al (19) XC2V1500 140 390 166

Prasanna and Tsai (16) XC2V1500 155 420 166

MYI Idris et al (24) XCV1000E 242 242 164

Figure 15. Performance comparison

Table 3. Comparison results when number of features are 64

Design Time (s)

GEMM (Software) 1.017756

Classical FPGA (24) 0.496894130420163

MYI Idris et al (24) 0.240256180007

Prasana et al (16), Jang et al (19) 0.189889329783728

Reduced Multiplication (proposed) 0.015614976

the Delayed approach, the Undelayed Inverse Depth Parameterization (IDP) or specifically
work by Civera et al. [14] is chosen in this paper for further study and improvement.
Though IDP is able to reduce some problems faced by the Delayed approach, it suffers
from exponential computational load growth which is contributed by the increase of the
number of landmarks or features. One of the reasons is the requirement of six state
vector parameters compared with three in Euclidean XYZ coding. In this paper, the
problem is verified by using a software profiling tool. The profiling tool result shows that
the state covariance matrix calculations which include the six state vector parameters
contribute to the increase of the execution time. This is true especially when many
features are involved. For that reason, the conventional state covariance matrix program
as implemented by Civera et al. [14] is studied and tested. Performance to calculate
the conventional state covariance matrix is conducted using various matrix multiplication

1998 M. Y. I. IDRIS, H. AROF, N. M. NOOR, E. M. TAMIL, Z. RAZAK AND A. WAHID

modules. The matrix multiplication module implements GEMM software approach and
other four FPGA approaches (i.e., Classical FPGA, Idris et al. [24], Prasana et al. [16]
and Jang et al. [19]). Based on the results, Prasana et al. [16] and Jang et al. [19]
generate the fastest state covariance matrix computation result. This is because they
implement the parallel and pipeline architecture in their 4 × 4 matrix multiplication
module. Although their implementation is fast compared with the software approach,
their matrix multiplication module is not specifically designed for Monocular SLAM state
covariance matrix calculation. Their implementation still inherited the three conventional
state covariance matrix calculation problems. The first problem is related to the insertion
of the identity matrix and zero matrix to suits the covariance matrix calculation. This
increases the number of multiplication operations. The second problem is due to the
matrix size expansion caused by the self matrix multiplication (i.e., in P = JPJ ′) which
contributes to a huge exponential growth problem. The final problem is associated with
the recursive function of P = JPJ ′ that forces the subsequent process to halt until the
prior P process completed.
In this paper, the three addressed problems are carefully studied and a proposed FPGA

design is put forward. The suggested design proposes a reduced multiplication approach,
which discards matrix zero multiplication by modifying the conventional state covariance
matrix calculation. The original state covariance matrix formula is also altered to avoid
matrix expansion and huge exponential growth problem. By implementing the memory
look up approach, the number of multiplications is reduced. Another important compo-
nent in the proposed design is the independent processing capability. The independent
processing capability will be useful for more parallelism implementations in the future. In
Figure 15 and Table 3, the proposed approach is compared with other implementations.
The result clearly shows the advantage of the proposed design over the other approaches.
The proposed FPGA design is 11 times faster than the 4×4 parallel matrix multiplication
proposed by Jang et al. and 66 times faster than the GEMM software approach.

Acknowledgment. This project is funded by the Malaysian Government, Ministry of
Science Technology and Innovation (MOSTI) and the University of Malaya.

REFERENCES

[1] A. J. Davison, I. D. Reid, N. D. Molton and O. Stasse, MonoSLAM: Real-time single camera SLAM,
IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.29, no.6, pp.1052-1067, 2007.

[2] H. Durrant-Whyte and T. Bailey, Simultaneous localization and mapping: Part I, IEEE Rob. Autom.
Mag., vol.13, pp.99-110, 2006.

[3] M. Y. I. Idris, H. Arof, E. M. Tamil, N. M. Noor and Z. Razak, Review of feature detection techniques
for simultaneous localization and mapping and system on chip approach, Information Technology
Journal, vol.8, no.3, pp.250-262, 2009.

[4] R. Mungúıa and A. Grau, Concurrent initialization for bearing-only SLAM, Sensors, vol.10, no.3,
pp.1511-1534, 2010.

[5] M. Deans and M. Hebert, Experimental comparison of techniques for localization and mapping using
a bearing only sensor, International Conference on Experimental Robotics, Honolulu, HI, USA, 2000.

[6] T. Bailey, Constrained initialisation for bearing-only SLAM, Proc. of IEEE International Conference
on Robotics and Automation, 2003.

[7] S. Williams, G. Dissanayake and H. Durrant-Whyte, Constrained initialisation of the simultaneous
localisation and mapping algorithm, International Conference on Field and Service Robotics, pp.315-
330, 2001.

[8] A. J. Davison, Y. G. Cid and N. Kita, Real-time 3D SLAM with wide-angle vision, The 5th
IFAC/EURON Symposium on Intelligent Autonomous Vehicles, Lisboa, Portugal, pp.5-7, 2004.

[9] M. Ito and M. Tanaka, Localization of a moving sensor by particle filters, International Journal of
Innovative Computing, Information and Control, vol.4, no.1, pp.165-174, 2008.

A NOVEL APPROACH OF AN FPGA DESIGN 1999

[10] M. Tanaka, Reformation of particle filters in simultaneous localization and mapping problems, Inter-
national Journal of Innovative Computing, Information and Control, vol.5, no.1, pp.119-128, 2009.

[11] M. Kwok and G. Dissanayake, An efficient multiple hypothesis filter for bearing-only SLAM, Proc. of
2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendal, Japan, 2004.

[12] J. Sola, A. Monin, M. Devy and T. Lemaire, Undelayed initialization in bearing only SLAM, Proc.
of 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.2499-2504, 2005.

[13] J. M. M. Montiel, J. Civera and A. J. Davison, Unified inverse depth parametrization for monocular
SLAM, Proc. of Robotics: Science and Systems, 2006.

[14] J. Civera, A. J. Davison and J. M. M. Montiel, Inverse depth parametrization for monocular SLAM,
IEEE Trans. on Robotics, vol.24, no.5, 2008.

[15] A. J. Davison, Real-time simultaneous localization and mapping with a single camera, Proc. of
International Conference on Computer Vision, 2003.

[16] K. P. Kumar and Y. Tsai, On synthesizing optimal family of linear systolic arrays for matrix multi-
plication, IEEE Trans. on Computers, vol.40, no.6, 1991.

[17] O. Mencer, M. Morf and M. Flynn, PAM-Blox: High performance FPGA design for adaptive com-
puting, Proc. of PDCS, 2001.

[18] A. Amira, A. Bouridane and P. Milligan, Accelerating matrix product on reconfigurable hardware
for signal processing, Field-Programmable Logic and Applications, pp.101-111, 2001.

[19] J. W. Jang, S. Choi and V. K. Prasanna, Area and time efficient implementation of matrix multi-
plication on FPGAs, Proc. of the 1st IEEE Int. Conf. Field Programmable Technology, 2002.

[20] I. Bravo, P. Jimenez, M. Mazo, J. L. Lazaro, J. J. de las Heras and A. Gardel, Different proposals to
matrix multiplication based on FPGAs, IEEE International Symposium on Industrial Electronics,
pp.1709-1714, 2007.

[21] L. Zhuo and V. K. Prasanna, Scalable and modular algorithms for floating-point matrix multiplica-
tion on FPGAs, Proc. of the 18th International Parallel & Distributed Processing Symposium, vol.1,
pp.92, 2004.

[22] L. Zhuo and V. K. Prasanna, Scalable and modular algorithms for floating-point matrix multiplica-
tion on reconfigurable computing systems, IEEE Transactions on Parallel and Distributed Systems,
vol.18, no.4, pp.433-448, 2007.

[23] M. Y. I. Idris, N. M. Noor, E. M. Tamil, Z. Razak and H. Arof, Parallel matrix multiplication design
for monocular SLAM, Proc. of the 4th Asia International Conference on Mathematical/Analytical
Modelling and Computer Simulation, pp.492-497, 2010.

[24] M. Y. I. Idris, H. Arof, E. M. Tamil, N. M. Noor and Z. Razak, Improving monocular SLAM inverse
depth parameterization computation time via software profiling and parallel matrix multiplication,
International Journal of Innovative Computing, Information and Control, 2011 (in press).

[25] O. C. Zienkiewicz, R. L. Taylor and J. M. Too, Reduced integration technique in general analysis
of plates and shells, International Journal for Numerical Methods in Engineering, vol.3, pp.275-290,
1971.

2000 M. Y. I. IDRIS, H. AROF, N. M. NOOR, E. M. TAMIL, Z. RAZAK AND A. WAHID

Appendix 1

Pdvpr

1014

1

13x

2

13x

78

13x
……

79

13x

80

13x

156

13x
……

1014+1014

157

13x

158

13x

234

13x
……

1014+1014+1014

235

13x

236

13x

312

13x
……

1014+1014+1014+1014

dv

Pdvpr
1 7 13 … 73, 2 8 … 74, , 6 12 18 … 78

Pdv1pr

79 80 81 …. 91

dv2(6x)

1 7 13 … 73, 2 8 … 74, …, 6 12 18 … 78

Pdv1pr

92 93 94 …. 104

dv2(6x)

dv

Pdvpr
1 7 13 … 73, 2 8 … 74, …, 6 12 18 … 78

Pdv1pr

144 145 146… 157

dv2(6x)

1 7 13 … 73, 2 8 … 74, …, 6 12 18 … 78

Pdv1pr

157 158 159 … 169

dv3(6x)

……

……

1014(4)+468

1 7 13 … 73, 2 8 14 … 74, …, 6 12 18 … 78

Pdv1pr

222 223 224 … 234

dv3(6x)

……

……

dv

Pdvpr

Pdv1pr

dv4

79 85 91 … 151, 80 86 92 … 152, … , 84 90 96 … 156

Pdv2pr

1014(4)+468(3)

dv1

dv3

dv4

dv1

dv2

dv4

157 163 169 … 229, 158 164 … 230, … , 162 168 … 234

Pdv3pr

1014(4)+468(2)

1014(4)+468(3+3) 1014(4)+468(9)

……………

……………

dvP

ddPad

ddPadpr

dvPdvpr
1 2 3 4 5 6 7 8 9 10 ………………….. 36

79

13x

80

13x

……………….…………..

1014+468+54

3

3x

2

3x

1

3x

18

3x

1014+468+36

1 2 3 4 5 6 7 8 9 10 ………………….. 36 1 1 1

3x

2 2 2

3x

36 36 36

3x
……………….…….

1014+468+54+108

156

13x
dvP

ddPad

ddPadpr

dvPdvpr xxxxxxxxxxx xxxxxxxxxxx xxxx

1014 +468+1014

………..

1014+468+1014+468

1

13x

2

13x

36

13x
……………….…………………………….

xxxxxxxxxxx xxxxxxxxxxx xxxxxxxxxxx xxxxxxxxxxx xxxxxxxxxxx xxxxxxxxxxx xxxxxxxxxxx xxxxxxxxxxx xxxxxxxxxxx xxxxxxxxxx

xxxxxxxxxxx xxxxxxxxxxx xxxxxxxxxxx xxxxxxxxxxx xxxxxxxxxxx xxxxxxxxxxx xxxxxxxxxxx xxxxxxxxxxx xxxxxxxxxxx xxxxxxxxxx

81

13x
……………….…………………………………………………………………………………….

105 …. 117

6x

79 …. 91

6x

92 …. 104

6x

118 …. 130

6x

131 …. 143

6x

144 …. 156

6x

xxxxxxxxxxx xxxxxxxxxxx xxxxxxxxxxx xxxxxxxxxxx xxxxxxxxxxx xxxxxxxxxxx xxxxxxxxxxx x

xxxxxxxxxxx xxxxxxxxxxx xxxxx

16 17 18

6x
……….

1 2 3

6x

4 5 6

6x

dvP

……………….………..

……………….…….

54 54+108

3

3x

1

13x

2

13x

2

3x

1

3x

18

3x

16 17 18

6x ………. ddPad

1 1 1

3x

2 2 2

3x
36 36 36

3x
……………….…….

1 2 3

6x

4 5 6

6x

ddPadpr

78

13x

dvPdvpr xxxxxxxxxxx xxxxxxxxxxx xxxxxxxxxxx xxxxxxxxxxx xxxxxxxxxxx xxxxxxxxxxx xxxxxxxxxxx xxxxxxxxxxx xxxxxxxxxxx xxxxxxxxxxx

xxxxxxxxxxx xxxxxxxxxxx xxxxxxxxxxx xxxxxxxxxxx xxxxxxxxxxx xxxxxxx

dvP

ddPad

ddPadpr

dvPdvpr xxxxxxxxxxx xxxxxxxxxxx xxxx

1014

………..

1014+468

1

13x

2

13x

36

13x
……………….…………………………….

xxxxxxxxxxx xxxxxxxxxxx xxxxxxxxxxx xxxxxxxxxxx xxxxxxxxxxx xxxxxxxxxxx xxxxxxxxxxx xxxxxxxxxxx xxxxxxxxxxx xxxxxxxxxx

xxxxxxxxxxx xxxxxxxxxxx xxxxxxxxxxx xxxxxxxxxxx xxxxxxxxxxx xxxxxxxxxxx xxxxxxxxxxx xxxxxxxxxxx xxxxxxxxxxx xxxxxxxxxx

27 …. 39

6x

1 …. 13

6x

14 …. 26

6x

40 …. 52

6x

53 …. 65

6x

66 …. 78

6x

Time steps

address

Italics = read mode

