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Abstract. We consider a randomized policy to control the M/G/1 queueing system
with an unreliable server, second optional service and general startup times. The server
is subject to breaking down according to a Poisson process, and the repair time obeys a
general distribution. All arrived customers demand the first required service, and only
some of the arrived customers demand the second optional service. After all the cus-
tomers are served in the system, the server immediately takes a vacation and operates
the (T , p)-policy. For this queueing system, we employ maximum entropy approach with
several constraints to develop the probability distributions of the system size and the ex-
pected waiting time in the queue. Based on the accuracy comparison between the exact
and approximate methods, we show that the maximum entropy approach is quite accurate
for practical purpose, which is a useful method for solving complex queueing systems.
Keywords: Accuracy comparison, Maximum entropy, Sever breakdowns, Second op-
tional service, Startup, (T , p)-policy

1. Introduction. Queueing theory is a helpful tool to deal with real cases (some liter-
ature can be found in Ma et al. [1] and Nakashima [2]). However, in many queueing
problems, the exact steady-state solutions for the service times or repair times or startup
times of the general type have not been disclosed. It is rather difficult to obtain the
explicit formulae such as the steady-state probability of the number of customers. In this
paper, we consider the (T , p)-policy M/G/1 queue with an unreliable server, a second
optional service (here abbreviated as SOS) and general startup times. We elaborate an
information theoretic technique based on the maximum entropy principle to give a feasible
solution for deriving probability distributions in this queueing model. The (T , p)-policy
is characterized by the following requirements: (i) switch the server off when the system
becomes empty; (ii) if the server is turned off, the server takes a vacation of time T when-
ever the system becomes empty. If at least one customer is present in the system, then
switch the server on with probability p and leave the server off with probability (1 − p).
After the server is turned off, the server will take another vacation of time T until the
system becomes empty; and (iii) do not switch the server on/off at other epochs. In other
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words, the (T , p)-policy is to control the server randomly at the beginning epoch of the
service when at least one customer appears. Based on the definition of (T , p)-policy, the
(T , 1)-policy coincides with the T -policy introduced by Heyman [3], and the (T , 0)-policy
is identical to the 2T -policy.
In real world applications, one encounters numerous examples of the queueing situations

where all arrivals require the main service and only some may require the subsidiary service
provided by the server. There is an extensive literature on the M/G/1 queue in which
the server may provide a second phase of service. From the practical point of view, this
system can be modeled to build a scheduling problem, where all ships arriving at a port
may need unloading service but only some of them may require reloading service soon after
the unloading. Madan [4] was the first to study the M/G/1 queue with SOS in which the
first essential service time obeys a general distribution but second optional service time
follows an exponential distribution. Also Madan [4] referred some practical applications
of this model. Medhi [5] extended Madan’s model [4] that the second optional service
time follows a general distribution. Using the supplementary variable technique, Wang
[6] investigated the reliability behavior in an M/G/1 queue with SOS and an unreliable
server. Recently, Wang and Zhao [7] examined a discrete-time Geo/G/1 retrial queue
with an unreliable server and SOS. The main results in Wang and Zhao [7] are to obtain
explicit formulae for the stationary distribution and some performance measures of the
system in steady state.
The M/G/1 queue involving the randomized control problem has been considered by

Feinberg and Kim [8]. They considered either (p, N)- or (N , p)-policy M/G/1 queue with
a removable sever at first and performed the optimal control policy is of the randomized
form. Subsequently, Kim and Moon [9] considered the system with the (p, T )-policy,
exploited its properties and obtained the optimal values of T and p for a constrained
problem. Most recently, Ke et al. [10] utilized bootstrap methods to investigate the
estimation of the expected busy period of an M/G/1 queueing system under (p, N)-
policy.
Queueing systems with server vacations are very practical as the server may employ

the idle time for additional tasks. There are many researches in the literature which
deals with vacation queueing models, such as Chen et al. [11], Doshi [12], Takagi [13]
and Wei et al. [14]. For control queueing systems with server vacation and a reliable
server, Heyman [3] first introduced the concept of a T -policy which is defined as follows:
when the system is empty, the server deactivates and leaves for a vacation with fixed
length of time T (a vacation). After a vacation period of time with length T , the server
returns to the system. It begins to serve if there is at least one customer in the waiting
line; otherwise, the server waits for another period of time length T until at least one
customer is present. Tadj [15] derived the probability generating function of queue length
and system characteristics in an M/G/1 quorum queueing system under T -policy. Hur
et al. [16] analyzed M/G/1 queue with Min (N , T )-policy, the probability distribution of
the number of customers at a steady state condition, and a cost function was constructed
to find the optimal operating policy. For queueing systems with an unreliable server,
Wang and Ke [17] analyzed an M/G/1 queue with server breakdowns operating under the
N -policy, T -policy and Min (N , T )-policy. When operating a system, the server often
requires a startup time before starting the service. The server startup corresponds to the
pre-work of the server before starting the service. Doshi [12] and Takagi [13], respectively,
studied GI/G/1 and M/G/1 queueing systems where the server requires a startup time
before providing service. Recently, Wang et al. [18] compared the operating cost of the
two bicriterion policies, (T , p) and (p, N), for an M/G/1 queue with an unreliable server,
SOS and startup.
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The maximum entropy principle (MEP) has been shown to give a self-consistent method
of inference for estimating an unknown but true probability distribution, which is based
on information in terms of some given mean value constraints. We note that MEP is not
to replace the classical queueing solutions such as embedded Markov chains and matrix-
geometric techniques. The basic idea of the MEP is to provide the most probable or
the least biased probability distribution complying with the available mean constraints.
The maximum entropy principle aims to provide a uniquely correct method of inference
for estimating an unknown probability distribution. Several authors have extensively
used the MEP to analyze the different queueing models, such as Shore [19], Tadj and
Hamdi [20], Lopez-Herrero [21]. Tadj and Hamdi [20] utilized MEP to obtain the ap-
proximate solutions to a quorum qeueing system. Lopez-Herrero [21] applied the MEP to
analyze the busy period of a single server queue with exponentially distributed repeated
attempts. Based on the principle, Wang et al. [22] used the same method to study the N
policy M/G/1 queue with an unreliable server and derived the approximate steady-state
probability distribution of the system size. Later, the N -policy M/G(G)/1 queue, which
investigated in Wang et al. [22], was extended to the N -policy M/G(G, G)/1 queue (see
Wang et al. [23]). Recently, Ke et al. [24] applied the same approach to approximate the
steady-state probability distributions for the NT vacation M/G/1 queueing system with
server breakdowns and startup time. To the best of our knowledge, very little work has
focused on the steady-state probability distributions of vacation queueing systems with
combining a randomized control policy, SOS and general startup time through the MEP.
This paper is motivated by the use of the MEP to estimate the queue length distribution
for the (T , p)-policy M/G/1 queue with server breakdowns, SOS and startup times.

The entropy serves as a measure of the uncertainty of knowledge about the answer
to a well-defined equation. A Lagrangian method is applied to maximize the entropy
subject to various known constraints. For the queueing model considered in this paper,
MEP provides approximation of the steady-state probability distributions based on dif-
ferent system characteristics. The purpose of this paper is fourfold. First, we present
some important system characteristics for the (T , p)-policy M/G/1 queue with server
breakdowns, SOS and startup times. Next, we construct the maximum entropy formal-
ism for this queueing system. Thirdly, the maximum entropy approximate solutions are
developed through the Lagrange’s method. Finally, we perform an accuracy comparison
between the exact results and the corresponding approximate results obtained through
the MEP.

2. Basic Assumptions for the (T , p)-policy M/G/1 Queue. We consider the (T ,
p)-policy M/G/1 queue with the following assumptions. It is assumed that customers
arrive according to a Poisson process with rate λ. Arrived customers form a single waiting
line at a server based on the order of their arrivals; that is, in a first-come, first-served
(FCFS) discipline. A single server is needed to serve all arrived customers for the first
required service (here abbreviated as FRS). As soon as FRS of a customer is completed, a
customer may leave the system with probability 1−θ or may opt for SOS with probability
θ. The service times (denoted by S1 for FRS and S2 for SOS) are independent and
identically distributed (i.i.d.) random variables obeying a general distribution function
Si(t) (t ≥ 0), i = 1, 2, mean service time µSi

, i = 1, 2, Laplace-Stieltjes transforms (LSTs)
f̄Si

(s) i = 1, 2, and the k-th moment E[Sk
i ], k ≥ 1, i = 1, 2, where the sub-index i = 1

(respectively i = 2) denotes the FRS (respectively the SOS). Further, the same server is
assumed to serve both service channels. Thus, a total service time provided to a customer
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is defined as:

S =

{
S1 + S2, with probability θ,
S1, with probability (1− θ),

and its LST f̄S(s) = (1− θ) f̄S1
(s) + θ f̄S1

(s) f̄S2
(s) with the first two moments of S are

E[S] = E[S1] + θE[S2] = µS1 + θµS2 , (1)

E[S2] = E[S2
1 ] + 2θE[S1]E[S2] + θE[S2

2 ]. (2)

When the server is working, it may break down at any time but is immediately repaired.
We assume that a server’s breakdown time has an exponential distribution with rate α1

in the FRS channel. In the SOS channel, the server fails at an exponential rate α2. When
the server fails, it is immediately repaired at a repair facility. The repair times of FRS
and SOS channels are independent general distributions with distribution functions R1(t),
R2(t), (t ≥ 0), mean repair times µR1 , µR2 and the k-th moments E[Rk

1 ], E[Rk
2 ], k ≥ 1,

respectively. Although no service occurs during the repair period of the server, customers
continue to arrive following a Poisson process. Once the failed server is repaired, it
immediately returns to serve a customer until the system is empty.
The server operates the (T , p)-policy when the system is empty. The server requires

a startup time with random length before starting FRS. Again, the startup times are
independent and identically distributed random variables obeying a general distribution
function U(t) (t ≥ 0) and the k-th moment E[Uk], k ≥ 1. As soon as the server completes
startup, it begins serving the waiting customers until the system is empty. Let us suggest
to the usual independence assumptions between inter-arrival times, service times, break-
down times, vacation times, startup times and repair times. Conveniently, we present
this queueing model as the (T , p)-policy M/G(G, G)/1 queue, where the second symbol
denotes service time distributions for both FRS and SOS channels, the third symbol de-
notes the repair time distributions for both FRS and SOS channels and the fourth symbol
is the startup time distribution.

3. Existing Exact Results for the (T , p)-policy M/G(G, G)/1 Queue. We will
develop the maximum entropy solutions for steady-state probabilities of the (T , p)-policy
M/G(G, G)/1 queue. Some basic known results can be obtained from the literature.
These important results facilitate the application of the maximum entropy formalism to
study the (T , p)-policy M/G(G, G)/1 queue. Steady-state probabilities PI(n), PS(n),
P1(n), P2(n), Q1(n) and Q2(n) for the entropy formalism are defined as follows.
PI(n) ≡ probability that there are n customers in the system when the server is turned

off, where n = 0, 1, 2, ...
PS(n) ≡ probability that there are n customers in the system when the server is startup,

where n = 1, 2, 3, ...
P1(n) ≡ probability that there are n customers in the system when the server is pro-

viding FRS, where n = 1, 2, 3, ...
P2(n) ≡ probability that there are n customers in the system when the server is pro-

viding SOS, where n = 1, 2, 3, ...
Q1(n) ≡ probability that there are n customers in the system when the server is pro-

viding FRS but found to be broken down, where n = 1, 2, 3, ...
Q2(n) ≡ probability that there are n customers in the system when the server is pro-

viding SOS but found to be broken down, where n = 1, 2, 3, ...
According to the results of Yang et al. [25], we obtain the following seven results for

the (T , p)-policy M/G(G, G)/1 queue.
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The first result is the probability that the server is idle given by

∞∑
n=0

PI(n) =
T (1− ρH)(2− p)

T (2− p) + µU

. (3)

The second result is the probability that the server is startup given by

∞∑
n=1

PS(n) =
µU(1− ρH)

T (2− p) + µU

. (4)

The third result is the probability that the server is busy of providing FRS given by

∞∑
n=1

P1(n) = λµS1 . (5)

The fourth result is the probability that the server is busy of providing FRS given by

∞∑
n=1

P2(n) = λθµS2 . (6)

The fifth result is the probability that the server is broken down of providing FRS given
by

∞∑
n=1

Q1(n) = λα1µS1µR1 . (7)

The sixth result is the probability that the server is broken down of providing SOS
given by

∞∑
n=1

Q2(n) = λθα2µS2µR2 . (8)

The seventh result is the expected number of customers in the system given by

LT,p =
[
λT 2(2− 3p/2) + TλµU(2− p) + λE(U2)/2

]/
T (2− p) + µU + LH , (9)

where H is a random variable representing the (total) completion time of a customer,

LH = ρH + λ2E[H2]/2(1− ρH), (10)

ρH = λE[H] = λµS1(1 + α1µR1) + λθµS2(1 + α2µR2), (11)

E[H2] = (1 + α1µR1)
2E[S2

1 ] + α1µS1E[R2
1] + 2θµS1µS2(1 + α1µR1)(1 + α2µR2)

+θ(1 + α2µR2)
2E[S2

2 ] + θα2µS2E[R2
2]. (12)

Note that ρH is a traffic intensity and assumed to be less than unity.

4. Maximum Entropy Approach. Exact probability distributions of the (T , p)-policy
M/G(G, G)/1 queue have not been discussed. Consequently, the maximum entropy prin-
ciple is helpful to estimate probability distributions for a complex queueing system. In
this section, we will develop the maximum entropy formalism by using several well-known
constraints. These constrains are basic known results shown in the previous section. In
order to derive the approximate steady-state probabilities PI(n), PS(n), Pi(n) (i = 1, 2),
Qi(n) (i = 1, 2), it starts to formulate the maximum entropy model in the following.
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4.1. The maximum entropy model. Following El-Affendi and Kouvatsos [26], the
entropy function y of an (T , p)-policy M/G(G, G)/1 queue can be formed as

y = −
∞∑
n=0

PI(n) lnPI(n)−
∞∑
n=1

PS(n) lnPS(n)−
∞∑
n=1

P1(n) lnP1(n)−
∞∑
n=1

P2(n) lnP2(n)

−
∞∑
n=1

Q1(n) lnQ1(n)−
∞∑
n=1

Q2(n) lnQ2(n). (13)

The maximum entropy solutions for the (T , p)-policy M/G(G, G)/1 queue are obtained
by maximizing Equation (13) subject to the following seven constraints:
1. normalizing condition:

∞∑
n=0

PI(n) +
∞∑
n=1

PS(n) +
∞∑
n=1

P1(n) +
∞∑
n=1

P2(n) +
∞∑
n=1

Q1(n) +
∞∑
n=1

Q2(n) = 1, (14)

2. the probability that the server is startup:

∞∑
n=1

PS(n) = µU(1− ρH)/T (2− p) + µU , (15)

3. the probability that the server is busy of providing FRS:

∞∑
n=1

P1(n) = λµS1 , (16)

4. the probability that the server is busy of providing SOS:

∞∑
n=1

P2(n) = λθµS2 , (17)

5. the probability that the server is broken down when FRS is provided:

∞∑
n=1

Q1(n) = λµS1α1µR1 , (18)

6. the probability that the server is broken down when SOS is provided:

∞∑
n=1

Q2(n) = λθµS2α2µR2 , (19)

7. the expected number of customers in the system:

∞∑
n=0

nPI(n) +
∞∑
n=1

nPS(n) +
∞∑
n=1

n[P1(n) + P2(n) +Q1(n) +Q2(n)] = LT,p. (20)

In Equations (14)-(20), Equation (14) is multiplied by ξ1, Equation (15) is multiplied
by ξ2, Equation (16) is multiplied by ξ3, Equation (17) is multiplied by ξ4, Equation (18)
is multiplied by ξ5, Equation (19) is multiplied by ξ6, Equation (20) is multiplied by ξ7.
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Thus, the Lagrangian function Ψ is given by

Ψ = −
∞∑
n=0

PI(n) lnPI(n)−
∞∑
n=1

PS(n) lnPS(n)−
∞∑
n=1

P1(n) lnP1(n)−
∞∑
n=1

P2(n) lnP2(n)

−
∞∑
n=1

Q1(n) lnQ1(n)−
∞∑
n=1

Q2(n) lnQ2(n)− ξ1

[
∞∑
n=0

PI(n) +
∞∑
n=1

PS(n) +
∞∑
n=1

P1(n)

+
∞∑
n=1

P2(n) +
∞∑
n=1

Q1(n) +
∞∑
n=1

Q2(n)− 1

]
− ξ2

[
∞∑
n=1

PS(n)− µU(1− ρH)/T (2− p)

+µU

]
− ξ3

[
∞∑
n=1

P1(n)− λµS1

]
− ξ4

[
∞∑
n=1

P2(n)− λθµS2

]
− ξ5

[
∞∑
n=1

Q1(n)

−λµS1α1µR1

]
− ξ6

[
∞∑
n=1

Q2(n)− λθµS2α2µR2

]
− ξ7

[
∞∑
n=0

nPI(n) +
∞∑
n=1

nPS(n)

+
∞∑
n=1

n (P1(n) + P2(n) +Q1(n) +Q2(n))− LT,p

]
, (21)

where ξ1 − ξ7 are the Lagrangian multipliers corresponding to constrains (14)-(20), re-
spectively.

4.2. The maximum entropy solutions. To find the maximum entropy solutions PI(n),
PS(n), Pi(n) (i = 1, 2) and Qi(n) (i = 1, 2), maximizing in Equation (13) subject to
constrains (14)-(20) is equivalent to maximizing (21). The maximum entropy solutions
are obtained by taking the partial derivatives of y with respect to PI(n), PS(n), Pi(n)
(i = 1, 2), Qi(n) (i = 1, 2) and setting the results equal to zero, namely,

∂Ψ

∂PI(n)
= −1− lnPI(n)− ξ1 − nξ7 = 0, n ≥ 0, (22)

∂Ψ

∂PS(n)
= −1− lnPS(n)− ξ1 − ξ2 − nξ7 = 0, n ≥ 1, (23)

∂Ψ

∂P1(n)
= −1− lnP1(n)− ξ1 − ξ3 − nξ7 = 0, n ≥ 1, (24)

∂Ψ

∂P2(n)
= −1− lnP2(n)− ξ1 − ξ4 − nξ7 = 0, n ≥ 1, (25)

∂Ψ

∂Q1(n)
= −1− lnQ1(n)− ξ1 − ξ5 − nξ7 = 0, n ≥ 1, (26)

∂Ψ

∂Q2(n)
= −1− lnQ2(n)− ξ1 − ξ6 − nξ7 = 0, n ≥ 1. (27)

From Equations (22)-(27), it gives that

PI(n) = e−(1+ξ1+nξ7), n ≥ 0, (28)

PS(n) = e−(1+ξ1+ξ2+nξ7), n ≥ 1, (29)

P1(n) = e−(1+ξ1+ξ3+nξ7), n ≥ 1, (30)

P2(n) = e−(1+ξ1+ξ4+nξ7), n ≥ 1, (31)

Q1(n) = e−(1+ξ1+ξ5+nξ7), n ≥ 1, (32)

Q2(n) = e−(1+ξ1+ξ6+nξ7), n ≥ 1. (33)
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Let ν1 = e−(1+ξ1) and νj = e−ξj for 2 ≤ j ≤ 7. We transform Equations (28)-(33) in terms
of νj (1 ≤ j ≤ 7) given by

PI(n) = ν1ν
n
7 , n ≥ 0, (34)

PS(n) = ν1ν2ν
n
7 , n ≥ 1, (35)

P1(n) = ν1ν3ν
n
7 , n ≥ 1, (36)

P2(n) = ν1ν4ν
n
7 , n ≥ 1, (37)

Q1(n) = ν1ν5ν
n
7 , n ≥ 1, (38)

Q2(n) = ν1ν6ν
n
7 , n ≥ 1. (39)

Substituting Equations (35)-(39) into Equations (15)-(19), respectively, yields

ν1ν2 =
µU(1− ρH)(1− ν7)

[T (2− p) + µU ]ν7
, (40)

ν1ν3 =
λµS1(1− ν7)

ν7
, (41)

ν1ν4 =
λθµS2(1− ν7)

ν7
, (42)

ν1ν5 =
λµS1α1µR1(1− ν7)

ν7
, (43)

ν1ν6 =
λθµS2α2µR2(1− ν7)

ν7
. (44)

Inserting Equations (15)-(19), Equation (34) in Equation (14) and execute some algebraic
manipulations, we may obtain ν1 given by

ν1 =
T (2− p)(1− ρH)(1− ν7)

T (2− p) + µU

. (45)

Substituting (34)-(39) into (20), it yields

ν7 =
[LT,p − τ(1− ρH)− ρH ] · [T (2− p) + µU ]

T (2− p)(1− ρH) + LT,p[T (2− p) + µU ]
, (46)

where τ = µU/[T (2− p) + µU ].
From Equations (34)-(45), we finally obtain

PI(n) =
T (2− p)(1− ρH)(1− ν7)ν

n
7

T (2− p) + µU

, n ≥ 0, (47)

PS(n) =
µU(1− ρH)(1− ν7)ν

n−1
7

[T (2− p) + µU ]
= τ(1− ρH)(1− ν7)ν

n−1
7 , n ≥ 1, (48)

P1(n) = λµS1(1− ν7)ν
n−1
7 , n ≥ 1, (49)

P2(n) = λθµS2(1− ν7)ν
n−1
7 , n ≥ 1, (50)

Q1(n) = λµS1α1µR1(1− ν7)ν
n−1
7 , n ≥ 1, (51)

Q2(n) = λθµS2α2µR2(1− ν7)ν
n−1
7 , n ≥ 1. (52)

5. Expected Waiting Time in the Queue. In this section, we derive the exact and
the approximate formulae of the expected waiting time in the queue for the (T , p)-policy
M/G (G, G)/1 queue.
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5.1. The exact expected waiting time in the queue. Let EWT , EW2T and EWTP

denote the exact expected waiting time in the queue for the T -, 2T - and (T , p)-policies,
respective. Using the results of Yang et al. [25] and Equation (10) in Little’s formula, we
have

EWT =
LT

λ
− E[H] =

1

(T + µU)

[
T 2

2
+ µUT +

E(U2)

2

]
+

λE(H2)

2(1− ρH)
, (53)

EW2T =
L2T

λ
− E[H] =

1

(2T + µU)

[
2T 2 + 2TµU +

E(U2)

2

]
+

λE(H2)

2(1− ρH)
, (54)

EWTP =
LT,p

λ
−E[H] =

1

T (2− p) + µU

[
T 2(2− 3

2
p) + TµU(2− p) +

E(U2)

2

]
+

λE(H2)

2(1− ρH)
.

(55)
After some algebraic manipulation, we know that EWTP is a convex combination of

EWT and EW2T which represented as follows

EWTP =
p(T + µU)

(2− p)T + µU

EWT +

[
1− p(T + µU)

(2− p)T + µU

]
EW2T . (56)

Substituting Equations (53)-(54) into Equation (56), the result is equal to Equation (55).
Thus, we demonstrate that the relationships given by Equations (55)-(56) are seen to
hold.

5.2. The approximate expected waiting time in the queue. The idle state, the
startup state, the busy state, and the repair state are defined as follows:

(1) Idle state denoted by I: the server is turned off, and the number of customers waiting
in the system is greater than or equal to 0.

(2) Startup state denoted by U : the server begins startup, and the number of customers
waiting in the system is greater than or equal to 1.

(3) Busy state when FRS is provided denoted by B1: the server is busy and provides FRS
to a customer.

(4) Busy state when SOS is provided denoted by B2: the server is busy and provides SOS
to a customer.

(5) Repair state when FRS is provided denoted by R1: the server is broken down when
FRS is provided and being repaired.

(6) Repair state when SOS is provided denoted by R2: the server is broken down when
SOS is provided and being repaired.

We wish to find the expected waiting time of an arbitrary customer C at the state I,
U , B1, B2, R1 and R2. Suppose an arbitrary customer C finds n customers waiting in the
queue for service in front of him, while the system is at any one of the states I, U , B1,
B2, R1 and R2 are described, respectively, as follows:

(1) In idle state I: note that the idle state immediately is switched to startup state
after an arbitrary customer C arrives and n customers in front of him are waiting for
service. Applying the results of Borthakur et al. [27], the mean remaining residual
vacation time is p(E[T 2]/2E[T ]) + (1 − p)(E[(2T )2]/2E[2T ]) = T − pT/2. Hence,
customer C must wait (i) the mean residual vacation time, (ii) the service time of
n customers in the queue and (iii) the startup time before providing FRS. From the
inferences of (i)-(iii), the expected waiting time of customer C at the idle state I is
(T − pT/2 + nE[S] + µU).

(2) In startup state U : the expected waiting time of customer C at the startup state can
be derived in the following. Using the same arguments as Borthakur et al. [27] again,
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it indicates that the expected waiting time of customer C at the startup state U is
nE[S] + E[U2]/2µU .

(3) In busy states B1 and B2: since the server is busy and keeps working, the customer
C only waits n customers who demand the server in front of him. Furthermore, the
server is subject to breakdowns occurring at any time when the server operates. The
expected waiting time at the busy state B1 and B2 are discussed in the following.
(i) In busy state B1: there are n customers in front of customer C will be served for

FRS. The server is unpredictable breakdowns with rate α1. Consequently, the
expected waiting time of customer C at the busy state B1 is nE[S] + α1µR1 .

(ii) In busy state B2: this state means that one of n customers in front of customer
C has finished FRS and ready for SOS. The remaining (n−1) customers are still
waiting for service. Again, the server also could be breakdown with rate α2. It
implies that the expected waiting time of an arbitrary customer C at the busy
state B2 is (n− 1)E[S] + µS2 + α2µR2 .

(4) In repair states R1 and R2: according to the same argument as (3), we have the
expected waiting time of an arbitrary customer C at the repair states R1 and R2 are
nE[S] + E[R2

1]/2µR1 and (n− 1)E[S] + µS2 + E[R2
2]/2µR2 , respectively.

Utilizing the listed above results yields the following approximate expected waiting time
in the queue.

AWTP =
∞∑
n=0

(T − pT/2+nE[S]+µU)PI(n)+
∞∑
n=1

(
nE[S]+E[U2]/2µU

)
PS(n)

+
∞∑
n=1

(nE[S]+α1µR1)P1(n)+
∞∑
n=1

((n− 1)E[S]+µS2+α2µR2)P2(n) (57)

+
∞∑
n=1

(
nE[S]+E[R2

1]/2µR1

)
Q1(n)+

∞∑
n=1

(
(n− 1)E[S]+µS2+E[R2

2]/2µR2

)
Q2(n),

where PI(n), PS(n), P1(n), P2(n), Q1(n) and Q2(n) are given in Equations (47)-(52),
respectively.

6. Accuracy Analysis of the Entropy Solutions. This section aims to carry out
comparison to examine the accuracy for the maximum entropy results. We perform an
accuracy comparison between the exact and the maximum entropy solutions, based on
the mean waiting time in the queue. Numerical comparisons are based on the following
assumptions:

• service time of FRS channel is a 3-stage Erlang distribution with mean µS1 = 1/µ1

and second moment E[S2
1 ] = 4/(3µ2

1);
• service time of SOS channel is an exponential distribution with mean µS2 = 1/µ2

and second moment E[S2
2 ] = 2/µ2

2;
• repair time of FRS channel is a 4-stage Erlang distribution with mean µR1 = 1/β1

and second moment E[R2
1] = 5/(4β2

1);
• repair time of SOS channel is a 2-stage Erlang distribution with mean µR2 = 1/β2

and second moment E[R2
2] = 3/(2β2

2);
• startup time is a deterministic distribution with mean 1/γ and second moment
E[U2] = 1/γ2.

First, we fix λ = 2.0, µ1 = 6.0, µ2 = 4.0, γ = 3.0, α1 = 0.05, α2 = 0.1, β1 = 8.0,
β2 = 5.0, θ = 0.5, and choose various values of (T , p). Numerical results are summarized
in Table 1. The relative error percentage, denoted by REP, is used to measure the
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accuracy of the approximate values in the following:

REP =

∣∣∣∣EWTP − AWTP

EWTP

∣∣∣∣× 100%.

One observes from Table 1 that the approximations are good because the REPs are
very small (0-4.6%). Next, choosing T = 8 and different values p = 0.2, 0.5, 0.8. The
values of λ, µ1, µ2, γ, α1, α2, β1, β2 and θ are considered in the following six cases:

Case 1. µ1 = 6.0, µ2 = 4.0, γ = 3.0, α1 = 0.05, α2 = 0.1, β1 = 8.0, β2 = 5.0, θ = 0.5, and
varying the values of λ.

Case 2. λ = 2.0, γ = 3.0, α1 = 0.05, α2 = 0.1, β1 = 8.0, β2 = 5.0, θ = 0.5, and varying
the values of (µ1, µ2).

Case 3. λ = 2.0, µ1 = 6.0, µ2 = 4.0, γ = 3.0, β1 = 8.0, β2 = 5.0, θ = 0.5, and varying the
values of (α1, α2).

Case 4. λ = 2.0, µ1 = 6.0, µ2 = 4.0, γ = 3.0, α1 = 0.05, α2 = 0.1, θ = 0.5, and varying
the values of (β1, β2).

Case 5. λ = 2.0, µ1 = 6.0, µ2 = 4.0, α1 = 0.05, α2 = 0.1, β1 = 8.0, β2 = 5.0, θ = 0.5, and
varying the values of γ.

Case 6. λ = 2.0, µ1 = 6.0, µ2 = 4.0, γ = 3.0, α1 = 0.05, α2 = 0.1, β1 = 8.0, β2 = 5.0, and
varying the values of θ.

Table 1. The relative error percentages for the (T , p)-policy queue with
server breakdowns, SOS and startup under different values of (T , p). (λ =
2.0, µ1 = 6.0, µ2 = 4.0, γ = 3.0, α1 = 0.05, α2 = 0.1, β1 = 8.0, β2 = 5.0,
θ = 0.5).

p
T 0.01 0.1 0.3 0.5 0.7 0.9 0.99
1 0.771 0.304 0.553 1.048 0.947 0.243 1.409
2 0.145 0.484 1.680 2.460 2.502 1.047 0.584
3 0.126 0.828 2.182 3.102 3.232 1.684 0.166
4 0.277 1.021 2.466 3.468 3.655 2.062 0.086
5 0.374 1.144 2.648 3.705 3.930 2.313 0.254
6 0.441 1.230 2.775 3.871 4.124 2.491 0.375
7 0.490 1.293 2.868 3.993 4.268 2.624 0.465
8 0.527 1.341 2.940 4.087 4.379 2.727 0.536
9 0.557 1.379 2.996 4.161 4.467 2.810 0.592
10 0.582 1.411 3.042 4.222 4.538 2.877 0.638

Numerical results of the (T , p)-policy queue with server breakdowns, SOS and startup
are presented in Table 2 for the above six cases. From Table 2, it appears that (i) REP
decreases as λ increases; (ii) REP increases as µ1 or µ2 increases; (iii) REP increases as
α1 or α2 increases; (iv) REP decreases as β1 or β2 increases; (v) REP increases in γ; (vi)
REP decreases as θ increases; (vii) λ and µ1 affect REP sensitively, but REP is rarely
effected by γ. A close look at Table 2, we conclude that the accuracy of approximate is
quite good because the REP is remarkably small (below 6.3%). The numerical results
also indicate that the entropy solution is sufficient accurate for practical purpose. In this
light, the maximum entropy method can be regarded as a helpful method for analyzing
complex queueing system.
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Table 2. Comparison of the exact EWTP and the approximate AWTP for
the (T , p)-policy queue with server breakdowns, SOS and startup

EWTP AWTP REP (%)
p = 0.2 p = 0.5 p = 0.8 p = 0.2 p = 0.5 p = 0.8 p = 0.2 p = 0.5 p = 0.8

λ Case 1: µ1 = 6.0, µ2 = 4.0, γ = 3.0, α1 = 0.05, α2 = 0.1, β1 = 8.0, β2 = 5.0, θ = 0.5
1.2 7.850 6.951 5.618 7.606 6.517 5.275 3.105 6.249 6.100
1.4 7.889 6.990 5.657 7.662 6.591 5.342 2.873 5.706 5.553
1.6 7.936 7.037 5.704 7.726 6.674 5.418 2.642 5.165 5.007
1.8 7.995 7.096 5.763 7.802 6.768 5.506 2.411 4.625 4.464
2.0 8.071 7.172 5.839 7.895 6.879 5.610 2.182 4.087 3.924

(µ1, µ2) Case 2: λ = 2.0, γ = 3.0, α1 = 0.05, α2 = 0.1, β1 = 8.0, β2 = 5.0, θ = 0.5
(3.0, 4.0) 11.781 10.882 9.549 11.727 10.814 9.503 0.463 0.627 0.481
(3.0, 6.0) 9.202 8.303 6.970 9.157 8.217 6.915 0.488 1.037 0.788
(4.0, 4.0) 8.601 7.702 6.369 8.494 7.530 6.240 1.243 2.239 2.032
(4.0, 6.0) 8.194 7.295 5.962 8.074 7.082 5.801 1.465 2.915 2.693
(6.0, 4.0) 8.071 7.172 5.839 7.895 6.879 5.610 2.182 4.087 3.924
(6.0, 6.0) 7.907 7.009 5.675 7.715 6.672 5.412 2.428 4.795 4.634
(α1, α2) Case 3: λ = 2.0, µ1 = 6.0, µ2 = 4.0, γ = 3.0, β1 = 8.0, β2 = 5.0, θ = 0.5

(0.05, 0.05) 8.064 7.165 5.832 7.906 6.887 5.615 1.962 3.883 3.724
(0.05, 0.10) 8.071 7.172 5.839 7.895 6.879 5.610 2.182 4.087 3.924
(0.10, 0.05) 8.068 7.169 5.836 7.896 6.879 5.610 2.137 4.043 3.878
(0.10, 0.10) 8.075 7.176 5.843 7.885 6.871 5.604 2.357 4.247 4.078
(0.20, 0.05) 8.076 7.177 5.844 7.875 6.864 5.599 2.485 4.364 4.187
(0.20, 0.10) 8.083 7.184 5.851 7.865 6.856 5.595 2.706 4.568 4.387
(β1, β2) Case 4: λ = 2.0, µ1 = 6.0, µ2 = 4.0, γ = 3.0, α1 = 0.05, α2 = 0.1, θ = 0.5
(6.0, 5.0) 8.073 7.174 5.841 7.892 6.877 5.608 2.240 4.140 3.974
(6.0, 8.0) 8.067 7.168 5.835 7.899 6.882 5.612 2.075 3.987 3.826
(8.0, 5.0) 8.071 7.172 5.839 7.895 6.879 5.610 2.182 4.087 3.924
(8.0, 8.0) 8.065 7.166 5.833 7.903 6.885 5.613 2.017 3.934 3.774
(10.0, 5.0) 8.070 7.171 5.838 7.897 6.881 5.611 2.147 4.055 3.893
(10.0, 8.0) 8.064 7.166 5.832 7.905 6.886 5.614 1.982 3.902 3.744

γ Case 5: λ = 2.0, µ1 = 6.0, µ2 = 4.0, α1 = 0.05, α2 = 0.1, β1 = 8.0, β2 = 5.0, θ = 0.5
1.0 8.389 7.472 6.140 8.217 7.191 5.922 2.053 3.769 3.550
3.0 8.071 7.172 5.839 7.895 6.879 5.610 2.182 4.087 3.924
5.0 8.008 7.113 5.779 7.831 6.817 5.548 2.210 4.156 4.007
7.0 7.980 7.087 5.754 7.803 6.791 5.521 2.222 4.186 4.043
9.0 7.965 7.073 5.740 7.788 6.776 5.507 2.229 4.203 4.063
θ Case 6: λ = 2.0, µ1 = 6.0, µ2 = 4.0, γ = 3.0, α1 = 0.05, α2 = 0.1, β1 = 8.0, β2 = 5.0
0.2 7.858 6.959 5.626 7.652 6.588 5.335 2.621 5.341 5.178
0.4 7.984 7.086 5.752 7.799 6.767 5.503 2.327 4.503 4.339
0.6 8.182 7.284 5.950 8.016 7.016 5.741 2.039 3.673 3.512
0.8 8.538 7.639 6.306 8.388 7.421 6.135 1.759 2.858 2.708
1.0 9.362 8.463 7.130 9.222 8.287 6.990 1.502 2.083 1.958

7. Conclusions. In this paper, we investigated the (T , p)-policy M/G(G, G)/1 queue
for the steady-state probability distribution and the expected waiting time in the queue.
Based on the MPE, an analytical approach was applied to compute the steady-state
probabilities of the system size. We demonstrate that the maximum entropy method is
powerful and is easy to implement. Consequently, the use of the system characteristics is
sufficient to obtain accurate estimations. In addition, an extensive numerical computation
was performed to compare the exact analytical and the approximate expected waiting
time in the queue. The numerical results showed that the relative error percentages are
quite small, which leads to the conclusion that the maximum entropy method is accurate
enough for practical purpose.
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