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ABSTRACT. This paper mainly investigates fuzzy control with affine T-S delayed mod-
els, which can be applied to some monlinear systems. Motivated from performing the
linearization process associated with distinct operating points for nonlinear systems, an
affine T-S fuzzy model with delayed state is addressed. The overall control then can be per-
formed by the fuzzy inference mechanism, in which the consequent parts are represented
by the locally linear affine subsystems with delayed state. Sufficient stability conditions
for the unforced T-S affine models with delayed state are first derived. By involving the
parallel distributed compensator (PDC), design conditions for the resulting closed-loop
systems are further investigated. Since all the proposed criteria are formulated by the
linear matriz inequalities (LMIs), we thus can perform the stability analysis or the PDC
synthesis via current LMI solvers. A nonlinear numerical example and an applicable
physical model with TCP/RED flowing control mechanism are given to demonstrate the
validity and effectiveness of the proposed approach.

Keywords: T-S fuzzy model, Delayed state, Affine systems, Linear matrix inequality
(LMI)

1. Introduction. Model based fuzzy control has been successfully applied to miscella-
neous systems, which are mathematically poorly modeled and where the knowledge and
the experience of operators can achieve the control object well. It can approximately
represent the states’ behaviors of nonlinear systems or uncertain systems by appropriate
transformation [1-4]. To date, Tanaka and Sugeno [5,6] first proposed a T-S fuzzy model
and discussed its stability issue, where the consequent parts presented the locally linear
models. By performing the fuzzy control, the model can be associated with the so-called
“parallel distributed compensation (PDC)” [3]. Thereafter, the stability analysis and the
controller synthesis for the T-S fuzzy model have attracted a great deal of research (e.g.,
[7-10] and the references therein). Recently, the linear matrix inequality (LMI) technique
[11] was involved for deriving some explicit stability analysis and design criteria [12-16],
and they could be readily evaluated by some commercial software [17].

In most physical and engineering systems, such as circuit systems, chemical processes,
and long transmission lines in network systems, delay states cannot be neglected [18-21].
Since they in industrial plant are main sources of instability, oscillations, or degraded
performances, the stability analysis and the PDC synthesis are extended to tackle the
T-S fuzzy models with delayed state [22-30]. Moreover, for nonlinear system control, we
can perform the linearization process on some distinct operating points and consequently
obtain a set of the locally linear affine subsystems. Then, the overall control law can be
implemented by the fuzzy inference system [31,32]. However, to the best of our knowledge,
the stability analysis and the PDC synthesis for the T-S fuzzy affine model subjected to
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the delayed state seem not to be addressed in the past works, and the concerned control
problems are still open.

In this work, we originally present an affine T-S fuzzy model with delayed state and
discuss its stability analysis and PDC synthesis issues. Based on the Lyapunov stability
theory, the stability and design criteria can be derived and objectively expressed in terms
of LMIs. Then, we can readily verify the proposed conditions directly via LMI solver [17].
Demonstratively, the proposed results are illustrated by a numerical nonlinear system
and a physical TCP/RED network flowing model [33]. The involved TCP/RED flows
model indeed is a nonlinear system. By performing the linearization on some operating
points, we can obtain a set of the locally affine linear models with delayed state; where
it elaborately coincides with the proposed affine fuzzy models. Comparing with the past
works, the main contributions of our method can be summarized as follows:

i) In the past, it seems that there are no results on the fuzzy T-S affine model with
the time varying delayed-state. This work mainly focuses on the stability analysis
and the PDC synthesis for the regarded affine systems subjected to the time varying
delayed-state.

ii) Since all the proposed criteria can be formulated in terms of LMIs, the stability
analyzing and the PDC synthesis for the considered systems are readily achieved by
LMI solvers [17].

iii) The superiority and practicability of the proposed approach are demonstrated by a
numerical nonlinear system and a physical TCP/RED network flowing model [33].

The rest of content is organized as follows. In Section 2, the concerned problem is
formulated. Based on the Lyapunov-Krasovskii theorem, the stability analysis and the
PDC controller synthesis are mainly discussed in Section 3. In Section 4, two nonlinear
systems are given to verify the effectiveness and applicability of the proposed approach.
Finally, concluding remarks are collected in Section 5.

2. Problem Formulation. Consider an affine T-S fuzzy model with the time varying
delayed-state in each rule described by
Rule i: If 2 (t) is M} and x9(t) is M3 and ... z,(t) is M, then

r(s)=T(s), d<s<0 i=1,2,...,r (1)

where M is a fuzzy set, y; € R™ is a constant affine term, x(t) € R" is the state
vector, u(t) € R is a single control input, and A; € R™™™ Ay € R"™ ™ are the system
matrices. The input matrices B; € R™ Vi are assumed to have the form B; = [ b; 0 ]T (or
B;=[0 b ]T, respectively). The bounded time-delay function d(t), satisfying d(t) < 1,
is continuous and nonnegative; there are some constants d and § such that 0 < d(t) < d

and d(t) < & < 1. The initial term ¥(s), s € [—d,0] is a continuous vector function.
Thus, the overall fuzzy model is inferred as

; wi(w()[Agz(t) + Ag(t — d(t)) + Byu(t) + i

z wilw (1)) (2)

= Z hi(x () [Aix(t) + Agia(t — d(1)) + Biu(t) + pl,

i(t) =
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where

wi(w(t)) = T Mi(z;(8)) > 0
i=1 i=1,2,...,1,

mla() = 22D
> wi(z(t)) i=1,2,...

iéhi(x(t)) —1

and M (z;(t)) is the grade of membership of z;(t) in M;.

Based on the notion of PDC, the following control law is involved into the fuzzy system
(2).
Control inputs:
Rule i: If 21 (t) is M| and x5(t) is M3 and ... x,(t) is M}, then

u(t) = Kiz(t) + Kgz(t —d(t)) +a;, i=1,2,...,7,
where M ; Vi, j are the same fuzzy sets asin (2). The overall fuzzy control can be integrated
by
Z wi(z(t)) [Kiz(t) + Kgx(t — d(t)) + a;]
u(t) = = :

> wilz(1)) (3)

=1

. ; hi( (1)) (K (t) + Kyt — d(1)) + a;] .

Substituting (3) into (2), the resulting closed-loop fuzzy system thus can be represented
by

(t) = Y hie(®)h;(@()[(Ai + BiEj)z(t) + (As + BiKg)a(t — d(t)) + pi + a;By).

ij=1
(4)
Assumption 2.1. Let Iy be the set of indexes for the fuzzy rules that contain the origin
point x = 0 and satisfy h,(0) # 0. The affine terms p; in (2) or (4) are assumed to be 0
when i € Iy, and the corresponding bias input a; in (3) or (4) will be set to 0.

3. Stability Analysis and PDC Controller Synthesis. A sufficient condition for the
unforced fuzzy system (4), i.e., u(t) = 0 in (4), is first derived in the following.

Theorem 3.1. The equilibrium of the unforced fuzzy system (/) is asymptotically stable
in the large, if there exist positive definite symmetric matrices P, (Q and scalars t;; > 0
Vi, such that

ATP+PA +Q PAg

<0 i¢€l, 5
AT p —(1-9)Q ' ®)
AP+ PA+Q—>mTy  PAy  Pui— > Tava
I l
AT P —(1-0)Q 0 <0 i¢ly, (6)
pIP =3 rold 0 — > Taril
1 l

where parameters Ty, vy, and ry satisfy Fy(z) = 2" Tyx + 2v jx +ry <0,1=1,2,...,n.
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Proof: Assume that there exist positive definite symmetric matrices P, () and scalars
i1 > 0 satisfying (5) and (6). Choose a candidate quadratic Lyapunov function as

V(z(t),t) = 27 (t)Px(t) + /t_d(t) 27(8)Qx(6)ds

The time derivative of V(z(t),t) along the trajectories of the unforced fuzzy system (4) is
V.0
2 i(#(1) |7 () (AT P + PAy) a(t) + 227 (1) PAgia(t — d(1)) + 2u;fFPx(t)]
2T ()Qu(t) — (1~ d(t)2" (t — d(t))Qu(t — d(1))
< z hilw() |27 (£) (ATP + PA)a(t) + 207 (1) PAg(t — d(t)) + 247 Pa(t) ]
2 (D)Qu(t) — (1 — d)z" (t — d(t))Qu(t — d(2))
< Z hi(w(t)) |7 () (A7 P+ PA; + Q = 2 mTu)x(t) + 227 (8) PAgia(t — d(t))
+2 (Mz P — zl:Til’Uil> l‘(t) — (1 — 5)1‘T(t — d(t))Ql‘(t — d(t)) — zl:mm]

- o | [0 0] L]

i€lo —(1-9)Q z(t — d(t))
o)

+ 2 hi(x(t) | ot —d(t))

i¢lo 1

ATP + PA; +Q — Y T PAy Ppi — Y mvy (1)

ALP l —(1-0)Q Ol z(t — d(t))
pul P — > vl 0 — D Tari 1
I I

By (5) and (6), the above equation implies V(x(t),t) < 0. Thus, the unforced fuzzy
system (4) is asserted to be asymptotically stable in the large according to the Lyapunov-
Krasovskii theorem.

The parameters Tj;, vy, and r; in (6) can be initially determined in the following.

Remark 3.1. [32] Assume that the region in which the inferred fuzzy rule h;(x) # 0.
The range of the individual entices x; of x can be divided by three scalar regions with two
corresponding bounds oy and By, oy < By as

for x1, z1 < ap orxy > B or iy <y < i

for ma, my < ayp or 12 > Big or g < g < P,

for xy, 0 < Qin o1 Ty > Bin o7 iy <y < Pin.
Thus, for z;, the Ty, vy, and ry satisfying Fy(x) = 2" Tyx + 21)3;1‘ +ry; <0 are evaluated
as

Case x; < ayy:

T;lzonxm
vy=1[0 0 --- —=1/2 - O}T, Ith element,

Ty = —Qy.
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Case x; > By:
T;l = Onxna
vg=[0 0 - —=1/2 -+ 0 }T, Ith element,
T = Bi-
Case ay < mp < By
Ty =diag( 0 --- 1 --- 0), lth element,
va=1[0 0 -+ =1/2(aq+fu) --- 0 ]T,lth element,
ra = By

Based on Theorem 3.1, the PDC synthesis for the resulting closed-loop fuzzy system
(4) is mainly deduced in the sequel.

Theorem 3.2. Assume B; = [ b; 0 ]T in (4). The equilibrium of the closed-loop fuzzy
system (4) is asymptotically stable in the large, if there exist positive definite symmetric

. P, . . . . .
matrices P = [ 01 Ig ], Q with appreciate dimensions and scalars t;; > 0 Vi, such that
3

[AiTP+PAZ-+bj[FiT 0]+bj[€i]+Q pAdhLbj[F(’;zi} 1

<0,
ATP+b; [ F 0] —(1-6)Q J
vel,, j=1,2, (7)

ATP+PA;+b; | Ff 0]‘*‘51‘[13]4‘@—2%17}1 PAdi+bj|:ng:| Pﬂri‘ai{boj}—ZTuUu
1 1

A£P+bj[F£ 0} —(1-0)Q 0 <0,
prP+a; [ by 0] =Y mwd 0 — > Tali
1 1
i¢ly, j=1,2 (8)
T

T
= max[ b; 0 } , parameters Ty, v,
7

where [bl O}sz_in[bi O]T and[bg 0}

and ry satisfy Fy(z) = 2T Tyx + 20z +ry <0, 1= 1,2,...,n. Then, the equilibrium
of the system (4) with the control gains K; = F;P[', Ky = FuP"', a; = a;P7" Vi is
asymptotically stable in the large.

Proof: Assume that there exist positive definite symmetric matrices P = [ ];1 Ig ],
3

() and parameters 7; > 0 satisfying (7) and (8).
Define B = min [ b; 0 ]T, B = max [ b; 0 ]T, and a polytypic set

QBE{B;B:5§+(1_5)§,5e[0,1]}, (9)

where there exist B; € 2 Vi, and choose a candidate quadratic Lyapunov function as

V(z(t), t) = 2" (t)Px(t) + /td(t) 27 (8)Qx(8)ds.
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By (9), the time derivative of V(z(t),t) along the trajectories of the closed-loop fuzzy
system (4) is

+zhj<m<t>>[ TP 3 hle(t) B(Kye(t) + Kyalt - d(e) + )

T (OQe(E) — 3 (L h(D)aT (¢ dE)Qe(t — d(1)

< 3 hula(t) [zT(t)(A;P + PA)(t) + 227 () PAg(t — d(t)) + Qu,.TPx(t)]

2(t) [227 (O PB(Ka(t) + Kgo(t — d(t)) + a;)|

— (L =0)z"(t — d(t))Qx(t — d(t))

< z h; ( ( N2 (t)(ATP + PA; + KT BTP + PBK;)x(t) + 227 (t)(PAg + PBK ) x(t — d(t)) + 2uT Pas(t)
+2azBPx<t>] + T ()Qu(t) = (1= 8)a (¢ - d(1))Qu(t — d(t))

< Z hi(z(t)) [zT(t)(ATP + PA;+ KTBTP + PBK; + Q — Z muTy)x(t) + 227 (t)(PAg + PBKg)x(t — d(t))

#2 (WP aBP - S ) o) (1 9"t~ HO)Qa(t - ) - ]

iy z(t —d) ALP+ K5B"P —(1-9)Q x(t — d)
w0 1"
+ 22 hia(t) | x(t —d)
i¢lo 1
ATP 4+ PA;+ KTB"P + PBK; + Q — Y. 7aTy PAg4 + PBKy Pp;+a;BP — Y vy 0
- l 1 xr
X ALP+ K B'P —(1-0)Q 0 z(t — d)
pIP + a;PBT — Y myvd 0 — > Tur 1
l !

P 0

When substituting the matrices P =
0 P

], F, = K; Py, Fy = K4 Pr, and o; = a; Py

into the above equation, we obtain

ATP+PA+b] FT 0}+B{§}+Q PAdL+b[Fd’}

. vt (1) 1"
V(z(®),t) = 3 hi((1)) {x(t—d)} ALP+b[ FE 0] -(1-90)Q

i€lp

—
8
—~
~
=
—
~

+ 22 hix(1)) | x(t—d)
i¢Io [
ATP-FPAZ-O-B[F;T 0}+b|: :|+Q ZTlezl PAd,+b|: Z:| Pul+al|:8:| ZTilvil I(t)
!
AL +b [ FE 0] —(1-6)Q 0 [x(t—d)]
/I,’Z-TP+(Y,' [ b 0 } - ZTHUZ; 0 ZT”’/‘H 1
1 1

By (7) and (8), it implies V(z(t), t) < 0. Thus, the resulting closed-loop fuzzy system
(4) with the control gains K; = F;P[', K4 = Fy P!, and a; = a;P[" Vi is asserted to
be asymptotically stable in the large according to the Lyapunov-Krasovskii theorem.

Corollary 3.1. Assume B; = [ 0 b ]T in (4). The equilibrium of the closed-loop fuzzy
system (4) is asymptotically stable in the large, if there exist positive definite symmetric
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. P 0 . . . . .
matrices P = [ 01 p ], Q with appreciate dimensions and scalars t; > 0 Vi, such that
3
_ATP+PA-+b-[0 FI ] +b; 014Q Pag+b| 0
¢ ! J ¢ J E d J Fdi <Oa iEIO, j:1727
A?;Z-P—l—bj[o qu;] —(1-0)Q
AZTP-FPA,—Fb][O F;T]+bj|:}(;)’.:|+szTilEl PAdZ+bJ|:F?1:| P/v‘i+ai|:l?‘:|*z7-il”il
i 1 2 J l
AEPerj[O Fg;] —(1-0)Q 0 <0,
p'P+a; [0 by | = mol 0 — > Talil
l l
i¢107 j:1727
T . T T T
where [ 0 b ] = mm[ 0 b ] and [ 0 by ] = max[ 0 b ] , parameters Ty, vy,
(3 (3

and ry satisfy Fy(z) = 2" Tyx + 20}z + ry
of the system (4) with the control gains K;
asymptotically stable in the large.

[ IA
o

Proof: Following the same line of Theorem 3.2, the proof can be similarly attained.

4. Tllustrating Examples via Applicable Nonlinear Systems.

Example 4.1. Consider a nonlinear system with delayed state described as
i1 (t) = 2Bsina (t) + azy(t) + (B + V) (t — d(t)) + bu(t),

To(t) = afsinz(t) + Bra(t) + (v — 2)x1 (t — d(t)),
where z;(t) € R™ is the state variables, d(t) = 0.5(1 + cost) is a delayed function, o and
f are two constant parameters, and b € [2,3] is an uncertain input parameter.

When performing the linearization for the nonlinear term sinz(¢) on three divided
intervals: [ =37/2 —n/2 ], [ —=7/2 /2], [ #/2 3m/2 ], the considered system can
be approximately represented as a three rules with second order affine T-S fuzzy model

Rule 1: IF l'l(t) is M1

Then @(t) = Avz(t) + Aqi (t — d(t)) + Bru(t) + w1,

Rule 2: IF z,(t) is My

Then #(t) = Asx(t) + Age(t — d(t)) + Bau(t),

Rule 3: IF z(t) is M;

Then @(t) = Asz(t) + Ags(t — d(t)) + Bsu(t) + us,

"
1
[
=
=
=
]
"
"]
—_—
~+
—

T
b

FIGURE 1. Membership functions of My, Ms, Mj
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where the fuzzy sets M;, My, and Mj are given in Figure 1. The systems’ matrices are

then formed by

[ —48 ] ]
@ +1 2
Ar=1 _Jup o Aa= 5—2 B = O]’ Ml:{
L 7 p ) )
[ 48 ] ]
— @ p+1 2.5
A2: @ B ) Ad2:-a_2 BZZ_O :|7
L 7
[ —48 ] ]
@ +1 3
Ads=1 _Jup o Aw = 5—2 Bs = O]’ M3:{
L 7 P ) )
Denoting the parameters a = 3, § = —1 and the initial condition x(0)

—48
—2a

|

4p
208

|

=[3 1],

U(s) =0, —1 < s < 0in the system, the simulated result with the unforced input u(t) = 0
is first plotted in Figure 2. By observation, this unforced system has unstable states, and
a stabilizing control law needs to be involved. But, by the previous result [32] and other
previous works, they all cannot cope with the PDC synthesis for the delayed T-S model

with the affine terms.

Based on Theorem 3.2 associated with My, Ms, and M3 depicted in Figure 1, we can

previously determine d(t) < § = 0.5 and

o 197
, Ui = 20
0

0 0

—197
T11:T31:[ ], U31:[ 200

|

x10°

x(t)

o 1 2 3 4 5 6 7 8 9 10
Time(sec.)

FIGURE 2. Simulated results for x(¢) with the unforced input

372

' ="Ts = —(/—-

5
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Thus, design conditions for the PDC synthesis can be constructed from (7) and (8). By
the LMI solver [17], we thus obtain a set of feasible solutions as

p— 14.3105 0 S0, Q= 20.1747 —0.4192
N 0 5.9779 ’ | —0.4192 1.2418

Fy=[ —9.7593 —18.2872 |, F, = —266.1028 —12.4131 |,
Fy=[ —320.0335 —15.3828 |, Fy =] —3.8319 —0.2044 | x 10°%,
Fpp =] —1845 0.0001 | x 1072, Fy3 = [ —33.4843 0.0343 | x 1072,
ap = 9.4121, @y = —9.7593, 1 = 66.9702, t3 = 1762.9639.

>0,

The stabilizing PDC gains then be evaluated as

Ki=FP =] -06820 —12779 |, Ky = Fp Py = [ —0.2678 —0.0143 | x 102,
K, = FPt = [ —18.5950 —0.8674 |, Kyg» = Fpp P/t = [ —12.8933 0.0001 | x 107,
K3 = F3P—1=[ —22.3636 —1.0749 | , Ky = FP;' = [ —2.3398 0.0024 | x 1072,
a; = 0.6577, a3 = —4.8797.

By the given initial condition z(0) =[3 1 ]F, ¥(s) =0, —1 < s < 0, the simulated
results for z(t) and wu(t) are depicted in Figure 3 and Figure 4, respectively. It is shown
that the PDC controller with the obtained gains can stabilize the regarded nonlinear
system indeed.

In the following example, the proposed approach will be demonstrated by a physical
nonlinear model, an AQM-Based TCP flows dynamic model [33].

05} .
X2
x1 ~

Time(sec.)

FIGURE 3. Simulated results for z(¢) with the PDC control
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201 4

-30

T
|

-70

T
1

_80 | [ | 1 1 1 | | 1
0

Time(sec.)

FIGURE 4. Simulated result for u(¢)

Example 4.2. Consider a feedback mechanism of AQM behavior by a time-delayed dy-
namic system described by

1 W(t) Wi(t— Ro)

filt)y =W(t) = - p(t = Ro) (10)
% v, @ + T,
N(t)
—C+—==W(t), ¢>0
£6) = () = B (1)
max {0, —C + WW(t)} , ¢q=0

where W(t) is the average TCP window size (packets), q is the average queue length
(packets), R(t) = q(t)/C + T, is the round-trip time (secs), C is the link capacity (pack-
ets/sec), Tp is the propagation delay (secs), N is the number of TCP sessions, and p(t)
is the probability of dropping/marking.

By letting W(t) =0, ¢(t) = 0, an equivalent point (Wy, go, py) can be obtained as

9 R,C
W, = —

_ 2 BC 0]
we N

C

For conveniently analyzing, we modify the dynamic system (10) and (11) by involving
the biased variables W = W — Wy, dq = q — qo, 0p = p — po; where there is favorably
associated with the system with the new equivalent point at (0,0, 0). Then, a linearization
dynamic model can be formed as

Po Rg == +Tp. (12)

S () = = s (61 0) + 67 (¢ = ) = 7= (5a(t) = Gt = Ro) = "o tye— ) (13)
i(t) = W (1) — (). (14)

Ry Ry
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Define the state-space variables as a7 (t) = [ z1(t) 22(¢)] "= [ dW(t) dq(t)]F and
the controlled input as u(t) = dp(t). The state equations for the original point (0, 0, 0)
and other operator points (W, ¢;, p;) can be represented by

N 1

~ms e N 1 _ RyC?
#(t) = 0 e+ | RC RC |at—Ro)+ | "Nz |ult—R)  (15)
N L 0 0 0
Ry Ry
x(t) = Azx(t) + Aid]?(t — Rl) + Biu(t — R,) + 1271
N, 1
- S - [_ N, 1 ] {_Rin ]
=| B N s+ | TEG BG |t -R)+ | T28E [ ult— R+ p(16)
N e

where p; = [ fi fo ]T w=w; — A; [ WZ ] — Aia [ W_Z ] — Bip;.
9=0; 4q; 4q;

By the linearization procéss, the nonlinear AQM-Based TCP dynamic model (10) and
(11) can be approximately represented as a set of linear affine models in (15) and (16)
corresponding to the different operating points. Thus, we can apply the proposed fuzzy
model-based control to this system.

Numerical illustration. Consider a TCP flows model in (15) and (16) with the given
network parameters: link capacity C = 3750 packets/sec., propagation delay Tp = 0.2
seconds, and three different TCP session and queue pairs: N, = 80, ¢1 = 50, Ny =
70, ¢ = 100, and N3 = 60, q3 = 150. From (12) we then correspondingly denote
three operating points as (Wq,q1,p1) = (10, 50,0.0200), (W, g2, p2) = (12.14,100,0.0136),
(W3, g3, p3) = (15,150, 0.0089).

Let the state-space variables as 27 (t) = [ x1(t) xa(t)] T = [ W) —Wa q(t) — g
and the controlled input as u(t) = p(t) —pe. The affine linear models with three operating
points can be presented as

(Wb%;pl):
(t) = Ajx(t) + Agre(t — 0.2133) + Byu(t — 0.2133) + g
—0.4688 —0.0059 —0.4688 0.0059
= 75 46875 x(t) + 0 0 z(t — 0.2133)
—234.3750 —0.5005
; [ : } u(t — 0.2133) + [ _ 02005 ]
(WQ,C]Q,M):

#(t) = Apz(t) + Apa(t — 0.2267) + Byu(t — 0.2267)
—0.3633 —0.0052 —0.3633 0.0052
= x(t) +

308.8235 —4.4118 0 0 }fv(t—02267)

+ { _3250'2551 ] u(t — 0.2267)
(W3,Q3,p3)2
#(t) = Ayz(t) + Aga(t — 0.24) + Byu(t — 0.24) + g
_ —02?;78 :2:(1)2;15 o —0.3778 0.0(())46 } o(t — 0.24)
o[ T a0+ [ 50500,
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By surveying the past works, we cannot find an applicable result on the stability issues
of this system. However, by the proposed fuzzy affine model (1) associated with Theorem
3.2, a three rules and second order fuzzy system with delayed state is formed as

Rule 1: IF z4(t) is My

Then #(t) = Ayx(t) + Agi (t — d(t)) + Bru(t — d(t)) + pu,

Rule 2: IF l'Q(t) is M5

Then (t) = Ayz(t) + Age(t — d(t)) + Bou(t — d(t)),
Rule 3: IF x4(t) is Mg
Then &(t) = Asz(t) + Ags(t — d(t)) + Bsu(t — d(t)) + ps,
where d(t) = 0.22 + 0.02sin(t), My, M, and Mg are given in Figure 5.

A
M4 Ms Me

o
-80 -50 -10 10 50 80 Xg(t)

FiGURE 5. Membership functions of My, My, Mg

From Remark 3.1 with My, M5, and Mg, we can first determine the parameters

0 0 0 0
T12:T32:[0 1], U12:[45], U32:{_45], r12 = 132 = 800,

and d(t) < & = 0.02. Thus, a set of LMI conditions for the PDC synthesis can be
constructed from (7) and (8). By the LMI solver, we then obtain a set of feasible solutions
as

[P0 ] [255014 0
P‘{o Pg]_{ 0 0.0014]>0’

7.8548 —0.1291
Q:{—o.um 0.0091 ] 0

Fy = [ —36.8332 0.4834 | x 10~%,
Fpp = [ —24.2141 0.3447 | x 1072,
Fy = [ —19.8474 0.3302 | x 10,
a; = —0.0311, a3=—0.0368, 12 =0.0175, ¢35 =0.0189.
And, the stabilizing PDC gains are thus evaluated by
Ky =FpP =] —14.4436 0.1896 | x 107*, a; =y P, ' = —12.1980 x 10*,
Kipp = FpPT" =] —9.4952 0.1352 | x 107,
Ky =FpP'=[ —-77829 0.1295 | x 107%, a3 = asP; ' = —14.4436 x 10"
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FIGURE 6. Simulated results for W ()
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FIGURE 7. Simulated results for ¢(¢)

For comparison, by the initially condition z(0) =[ 3 70 |¥ and ¥(s) =0, —0.24 < s <
0, the systems equipped with the zero input and the delayed PDC controller u(t — h(t)) =
(hiKg1 + hoKgo + h3Kg3)x(t — h(t)) + hiay + hgaz are both simulated. And, the results
for w(t), q(t), and p(t) are depicted in Figures 6-8, respectively. By observing Figure 6
and Figure 7, the unforced results tend to unexpected parameters’ tent while the results
equipped the PDC are all operating in the allowable network circumstances and well
convergent to the desired points.
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FIGURE 8. Simulated results for p(¢) with the PDC control

5. Conclusions. Motivated from the linearization process for some nonlinear systems
on different operating points, the stability analysis and PDC synthesis for the affine T-S
delayed model had been investigated in this work. Based on the Lyapunov-Krasovskii
theorem, the stability condition for the unforced system was first derived. By involving
the PDC synthesis, we further proposed the PDC synthesis criteria for the resulting closed-
loop system. Since all the proposed criteria were expressed in terms of LMIs, we could
readily perform the stability analyzing and the PDC design via the existing LMI solver.
Finally, the given nonlinear numerical system and the physical TCP/RED flowing model
demonstrated the superiority and applicability of the proposed approach.
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