
International Journal of Innovative
Computing, Information and Control ICIC International c©2012 ISSN 1349-4198
Volume 8, Number 4, April 2012 pp. 2513–2532

ROBUSTNESS IN DYNAMIC CONSTRAINT
SATISFACTION PROBLEMS

Laura Climent, Miguel A. Salido and Federico Barber

Instituto de Automática e Informática Industrial
Universidad Politécnica de Valencia

Camino de Vera s/n 46022, Valencia, Spain
{ lcliment; msalido; fbarber }@dsic.upv.es

Received January 2011; revised May 2011

Abstract. Constraint programming is a successful technology for solving combinatorial
problems modeled as constraint satisfaction problems (CSPs). Many real life problems are
dynamic, which means that the initial description of the problem may change during its
execution. These problems can be modeled as dynamic constraint satisfaction problems
(DynCSPs), which are an important extension of the CSPs. In this paper, we focus our
attention on the concept of robustness. Our aim is to find robust solutions which have a
high probability of remaining valid faced with possible future changes in the constraints of
the problem. We introduce the informed DynCSPs, proposing an approach to solve them
by the weighted CSP (WCSP) modeling. Thus, the best solution for the modeled WCSP
will be a robust solution for the original DynCSP. Furthermore, this technique has been
evaluated in order to analyze the robustness of the solutions obtained.
Keywords: Constraint satisfaction problem, Robustness, Dynamic constraints

1. Introduction. Constraint programming (CP) is a powerful paradigm for solving com-
binatorial problems [18]. CP was born as a multi-disciplinary research area that embeds
techniques and notions coming from many other areas, among which artificial intelligence,
computer science, databases, programming languages, and operations research play an im-
portant role. Constraint programming is currently applied with success to many domains
such as scheduling, planning, vehicle routing, configuration, networks and bioinformatics.
More information about constraint programming can be found in [1, 18, 22].

Many real life problems can be modeled as constraint satisfaction problems and are
solved using constraint programming techniques. Much effort has been spent to increase
the efficiency of the constraint satisfaction algorithms: filtering [18], learning and dis-
tributed techniques [20], the use of efficient representations and heuristics [4, 15, 16], etc.
This effort resulted in the design of constraint reasoning tools which were used to solve
numerous real problems.

However, many of these techniques assume that the set of variables, domains and
constraints involved in the CSP is completely known and fixed when the problem is
modeled. This is a strong limitation when we deal with real situations where the DynCSP
under consideration may evolve because of the environment, the user or other agents [23].
Thus, the solution found for a problem can become invalid after changes in the parameters
of the DynCSP.

We consider the importance of preventing the loss of a solution because it could entail
several negative effects in the modeled problem. For example, in a scheduling problem
composed of several machines, the loss of a solution could cause the stop of the production
system, the breakage of machines, the loss of the material/object in production, etc. In

2513

2514 L. CLIMENT, M. A. SALIDO AND F. BARBER

addition, these negative effects probably will have associated an economic loss. Thus, the
main objective of this paper is to find robust solutions that have a high probability of
remaining valid despite changes in the initial formulation of the modeled problem.
A DynCSP [5] is an extension of a static CSP that models addition and retraction of

constraints and hence it is more appropriate for handling dynamic real-world problems. It
is indeed easy to see that all possible modifications in constraints or domains of a DynCSP
can be expressed in terms of constraint additions or removals [23].

2. Problem Statement and Preliminaries. By following standard notations and def-
initions in the literature we summarize the basic definitions that will be used in the rest
of the paper.

2.1. CSP preliminaries.

Definition 2.1. A Constraint Satisfaction Problem (CSP) is represented by a triple P =
〈X ,D, C〉 where:

• X is the finite set of variables X = {x1, x2, ..., xn}.
• D is a set of domains D = {D1, D2, ..., Dn} such that for each variable xi ∈ X there
is a set of values that the variable can take.

• C is a finite set of constraints C = {C1, C2, ..., Cm} which restrict the values that the
variables can simultaneously take.

The number of tuples of a constraint Ci is composed by the elements of the Cartesian
product of the domains of the variables involved in Ci. The tightness of a constraint is
the relation of the number of forbidden tuples to the number of all possible tuples. The
tightness is defined in the interval [0,1].
The constraints of the CSP determine the convex hull of the solution space (for linear

constraints). Ideally, one would like to use as a relaxation the convex hull of the feasible
solutions. However, in general, this polytope will have exponentially many facets and be
difficult to construct [28].
The constraints of a CSP can be classified in two types: hard or soft constraints. The

hard constraints have to be satisfied in all cases. However, the soft constraints do not
have to be satisfied in all cases, so they can be relaxed but with a certain cost.
There are two main constraint representations, which are equivalent [2]:

• Intensional constraint representation: Constraints are represented as mathematic or
logical function.

Example 2.1. x1 ≥ 3 is a unary intensional constraint.

• Extensional constraint representation: Constraints are represented as a set of valid
or invalid tuples.

Example 2.2. The set of tuples {(3), (4), (5)} is the extensional representation of
the constraint x1 ≥ 3 by means of valid tuples, considering the domain D1 : {0..5}
for x1.

Definition 2.2. A Dynamic Constraint Satisfaction Problem (DynCSP) [5, 9] is a se-
quence of static CSPs 〈CSP(0), CSP(1), ..., CSP(i+1)〉, each CSP(i) resulting from a change
in the previous one (CSP(i−1)), representing new facts about the dynamic environment be-
ing modeled. As a result of such incremental change, the set of solutions of each CSP(i)

can potentially decrease (in which case is considered a restriction) or increase (in which
case is considered a relaxation).

ROBUSTNESS IN DYNAMIC CONSTRAINT SATISFACTION PROBLEMS 2515

Restrictions occur when new constraints are imposed on a subset of existing variables
(e.g., forcing a variable to assume a certain value). Relaxations occur when constraints
that were assumed to hold are removed from the CSP.

Definition 2.3. A Weighted Constraint Satisfaction Problem (WCSP) is a specific sub-
class of valued CSP [8, 13, 21]. A WCSP is defined as P = 〈X ,D, S(k), C〉, where:

• X and D are the set of variables and domains respectively, as in standard CSP.
• S(k) is the valuation structure, where k ∈ N+ denotes the maximum cost.
• C is the set of constraints as cost functions (namely, Ci :

∏
j∈var(Ci)

Dj → {0, 1, ..., k}),
where Ci ∈ C is defined over a subset of variables var(Ci).

Definition 2.4. A valuation structure is defined as S(k) = ({0, 1, ..., k},⊕, >) where

• {0, 1, ..., k} is the set of costs, which are natural numbers bounded by k and totally
ordered by >.

• ⊕ is the sum of costs.
∀a, b ∈ {0, 1, ..., k}, a⊕ b = min{k, a+ b}

A tuple t is an assignment to an ordered set of variables Xt ⊆ X . For a subset B of
Xt, the projection of t over B is noted as t ↓B.

When Ci assigns a cost k to a tuple t (composed by var(Ci)), it means that t is a
invalid tuple for Ci. Otherwise (the cost assigned is lower than k) t is a valid tuple for Ci

with the corresponding associated cost.
The cost of a tuple t, noted V(t), is the sum of all the applicable costs:

V(t) =
⊕

Ci∈C,var(Ci)⊆Xt

Ci(t ↓var(Ci))

The tuple t is consistent if V(t) < k. The main objective is to find a complete assign-
ment with the minimum cost.

Example 2.3. Figure 1 shows a WCSP P = 〈{x, y}, {{v1, v2}, {v1, v2}}, S(5), {C1, C2}〉.
Observe that the set of costs is [0,...,5]. Let’s assume var(C1) = {x, y} and var(C2) =
{x, y}. The costs assigned by the constraints are represented as labeled edges connecting
the values of the tuples involved in the corresponding constraint. The cost assignment of
the constraint C1 is represented in Figure 1(a) and for the constraint C2, it is represented
in Figure 1(b).

Figure 1. WCSP P

2516 L. CLIMENT, M. A. SALIDO AND F. BARBER

Table 1 shows the set of tuples of P with their corresponding assigned costs by the
constraints and their V(t) values. In addition, it shows which tuples are solutions for P .
The tuples (x = v1, y = v2) and (x = v2, y = v2) are not solutions of P due to their values
of V(t) are not lower than 5. However, the tuples (x = v1, y = v1) and (x = v2, y = v1) are
solutions of P . The best solution for P is (x = v2, y = v1) because V(x = v2, y = v1) = 1,
which is the minimum global cost of the problem.

Table 1. Set of tuples of P and their corresponding costs

x y Cost C1 Cost C2 V(t) Solution?
v1 v1 0 3 3 Yes
v1 v2 4 1 5 No
v2 v1 0 1 1 Yes
v2 v2 5 0 5 No

2.2. Stability and robustness. Regarding the concept of robustness and stability of the
solutions of the DynCSPs, there is a misunderstanding between the two concepts. Some
researchers talk about stability and others about robustness. But, What is the difference
between stable and robust? It is the first question that comes to mind, especially for
researchers who work with quantitative models or mathematical theories.
In general, a solution is stable in a dynamic system, if by means of a few changes in

the solution we can obtain a new solution that is similar to the original one. However,
the robustness concept is broader than the stability concept. Robustness is a measure
of feature persistence in systems that compels us to focus on perturbations because they
represent changes in the composition or topology of the system. The perturbations are
small differences in the actual state of the system [12].
Taking into account all these concepts, we can classify the nature of the solutions as:

Definition 2.5. The stability (also called flexibility) of a solution is the ability of a solu-
tion to share as many values as possible with a new solution if a change occurs [10]. It is
measured in terms of similarity of the new solution with the original one.

Definition 2.6. The robustness of a solution is the measure of the persistence of the
solution after modifications in the original DynCSP. Thus, a solution of a DynCSP is
robust if it has a high probability of remaining valid faced with changes in the problem. It
is measured in terms of the persistence of the solution.

2.3. A toy example of a scheduling problem.

Example 2.4. Following, we present a toy example of a scheduling problem. It can be
considered a dynamic problem since constraints may change. We model this problem as
a DynCSP and we present different solutions with different robustness degree. In this
scheduling problem, two activities A and B have to finish in 8 hours or sooner: Aend ≤ 8;
Bend ≤ 8. In addition, the activity B has to start at least 3 hours after the end of the
activity A: Bbegin − Aend ≥ 3. The duration of the activity A is greater than or equal to
2 hours: Aend − Abegin ≥ 2. The duration of the activity B is greater than or equal to
1 hour: Bend − Bbegin ≥ 1. The original DynCSP that models the scheduling problem is
P = 〈X ,D, C〉, where:

• X = {Abegin, Aend, Bbegin, Bend}
• D = {DAbegin

: [0, 8], DAend
: [0, 8], DBbegin

: [0, 8], DBend
: [0, 8]}

ROBUSTNESS IN DYNAMIC CONSTRAINT SATISFACTION PROBLEMS 2517

• C = {C1 : Aend ≤ 8
C2 : Bend ≤ 8
C3 : Bbegin − Aend ≥ 3
C4 : Aend − Abegin ≥ 2
C5 : Bend −Bbegin ≥ 1}

A solution for P is: S1 = {Abegin = 0, Aend = 2, Bbegin = 5, Bend = 6}. Figure 2 shows
the schedule that represents this solution.

Figure 2. Schedule that represents the solution S1

In real life problems, delays can occur in activities of the schedule. Let’s consider a delay
of 1 hour over the minimum expected duration of the first activity (Aend − Abegin = 3).
After this change, the initial solution S1 becomes invalid since it does not satisfy the
constraint C3 : Bbegin − Aend ≥ 3.

Following the initial modeling of the scheduling problem, and considering that the
duration of all the activities might be extended, we can restrict the problem, by restricting
the constraints associated to the duration of the activities. In this instance, we restrict
the constraints C4 and C5 in: C ′

4 : Aend − Abegin ≥ 3; C ′
5 : Bend − Bbegin ≥ 2. A solution

for the restricted P could be S2 = {Abegin = 0, Aend = 3, Bbegin = 6, Bend = 8}. Figure
3 shows the schedule that represents this solution. The new solution obtained S2 can be
considered more robust than the original one S1 because if a delay occurs (≤ 1 hour) in
any activity, the solution S2 remains valid.

Figure 3. Schedule that represents the solution S2

In scheduling problems, the most common way to generate robust schedules is by includ-
ing buffers between activities. These buffers can absorb delays and avoid their propagation
over the schedule [3]. However, the buffers also decrease the optimality of the schedule,
due to they increase the makespan (the time difference between the start and finish of the
sequence of activities).

Figure 2 shows the first schedule, whose makespan is 6 hours. Figure 3 shows the second
schedule, whose makespan is 8 hours because it is composed of two buffers of one hour
each one. Therefore, the second schedule is more robust than the first one, although the
first one has the optimal makespan.

In many dynamic problems, there exists also an optimality criterion. That is why it is
necessary to find a trade-off between robustness and optimality.

2518 L. CLIMENT, M. A. SALIDO AND F. BARBER

3. Related Work. Real world is dynamic and uncertain in its nature. It is common to
find dynamic systems with time delays, failures, etc. [14, 27]. In addition, a complete
knowledge about the dynamism in the system is unknown. In many cases, there exists
uncertain data about possible changes from the real world [24]. The modeling of these sys-
tems is a hard task due to the uncertainty of these systems. However, the DynCSPs offer
us the possibility of modeling this uncertainty. Thus, new techniques have been proposed
to solve DynCSPs [24]. They can be classified in: reactive and proactive strategies.

3.1. Reactive strategies. The reactive methods reuse the original solutions once they
are not valid because of the changes in the dynamic problem. These strategies are oriented
to find a new solution which is as similar as possible to the invalid original solution or to
repair it by making the minimum changes in it.
The reactive strategies can be classified in two groups:

• Heuristic methods, which use information about the affected parts of any previous
consistent assignment (complete or not) as a heuristic for solving the current DynCSP
[26].

• Local repair methods, which use any previous consistent assignment (complete or
not) and repair it, by means of a sequence of local modifications [19, 23].

Some reactive strategies from the literature, focus their attention on the analysis of dy-
namic scheduling problems and they have been designed to minimally reconfigure sched-
ules in response to a dynamic environment [19, 23]. In these environments, external factors
have caused that the existent schedule becomes invalid, it may be due to the withdrawal
of resources, the arrival of new resources or because of changes in the set of the scheduled
activities. These techniques search a new schedule that differs minimally from the original
one, since it is no longer valid after changes that have occurred in the problem. Thus,
these methods firstly, model the problem as a DynCSP and secondly, apply heuristics or
local repair methods. Some examples of this type of techniques are:

• An example of a technique applied to dynamic scheduling problems is based on the
reduction of the contention in the constraints [19]. A constraint has contention when
certain combinations of domain values of the variables may violate the constraint.
For some constraints, contention can be measured, so that the search can be oriented
to regions where the contention is small. Once the feasibility phase of the resources
has been completed, the makespan optimization phase is executed.

• An example of a technique applied to dynamic scheduling problems in which new
activities are introduced [23]. It is based on the idea that it is possible to enter a
new task t iff there exists for t a location such that all the tasks whose location is
incompatible with t’s location can be removed and entered again one after another,
without modifying t’s location.

In addition, there are other reactive strategies that focus their attention on the DynC-
SPs in a general area of application. Thus, they simulate possible changes in the DynCSPs,
trying to find solutions as similar as possible to the previous ones (solutions found before
changes occur) [26].
The main advantage that our technique presents over the reactive strategies is that our

technique prevents the loss of the original solution, by finding robust solutions. Limiting
as much as possible the need of finding new solutions is an important issue, specially in
dynamic problems that undergo frequent changes.

3.2. Proactive strategies. The proactive strategies use associated knowledge about the
dynamism of the problem in order to find stable or robust solutions. They can be classified
depending on the kind of solutions that they produce:

ROBUSTNESS IN DYNAMIC CONSTRAINT SATISFACTION PROBLEMS 2519

3.2.1. Searching for stable solutions. In the field of searching for stable solutions, there
exist techniques [10, 11] that search for super-solutions. They perform a search task
before changes occur in the problem, in order to be able to repair the invalid solution
after changes occur. Informally, a solution is a super-solution if it is possible to repair
the solution with only a few changes when a small number of variables lose their values.
Formally, a solution is a (a, b)-super-solution if the loss of values of a variables at most,
can be repaired by assigning other values to these variables, and changing the values of b
variables at most. Deciding if a CSP has a (a, b)-super-solution is NP-complete for any
a fixed. Mainly, the works developed in this area, focus their attention in the search of
(1,0)-super-solutions.

Example 3.1. Let’s consider the following CSP:
x0, x1 ∈ {1, 2, 3}
C1 : x0 ≤ x1

• The solution (x0 = 1, x1 = 1) is not a (1,0)-super-solution, because if the variable
x0 loses its value 1, it is not possible to find another value for the variable that is
consistent with x1, since (x0 = 2, x1 = 1) and (x0 = 3, x1 = 1) are not solutions of
the problem.

• The solution (x0 = 1, x1 = 2) is a (1,0)-super-solution, because if any variable loses
its value can be found at least one value to be compatible with the other variable.
If x0 loses its value 1, a value of 2 can be assigned to x0, since (x0 = 2, x1 = 2) is
solution of the problem. If x1 loses its value 2, a value of 1 or 3 can be assigned to
x1, since (x0 = 1, x1 = 1) and (x0 = 1, x1 = 3) are solutions of the problem.

In order to find super-solutions, these techniques develop search algorithms based on
super-consistency (adaptations of arc-consistency techniques for super-solutions). How-
ever, finding (1,0)-super-solutions can be very difficult because (1) the existence of a
backbone variable (a variable that takes the same value in all solutions) ensures that there
not exist (1,0)-super-solutions, and (2) it is strange to find (1,0)-super-solutions where
all the variables can be repaired. In this way, these points represent a disadvantage with
respect to the technique developed in this paper.

3.2.2. Searching for robust solutions. The frameworks that have been proposed for finding
robust solutions differ mainly in the assumption of the changes that may occur. On the
one hand, some techniques focus their attention in possible changes in the variables and
the values that they can take. On the other hand, other techniques focus their attention
in possible changes in the constraints.

An example of the first set of approaches can be seen in [25]. This technique solves a
restricted class of recurrent DynCSPs in which the values of the variables could be lost
temporarily. A recurrent DynCSP is a DynCSP whose changes are temporal, so they
may occur repeatedly and with different frequencies. The technique consists basically
on penalizing the values that are no longer valid due to changes in the problem. Thus,
although these values can be used later, the algorithm will try to find solutions that do
not include them. This idea is incorporated in a technique of hill-climbing, where the
penalties are used by min-conflicts to make the selection of values for the variables.

An example of the second set of approaches can be seen in [6], where there is a probabil-
ity of existence associated with each constraint. The most robust solution is the solution
that maximizes the probability of satisfying the constraints.

The technique explained in this paper, is a proactive strategy that searches for robust
solutions and it focus its attention in possible future changes in the constraints. The
main difference with respect to [6] is that we consider restrictive modifications over the

2520 L. CLIMENT, M. A. SALIDO AND F. BARBER

original constraints as possible changes. Our model is able to capture many changes that
undergo real problems: incidences, delays, the decrease of resources, etc. Because these
changes in the problem represent restrictive changes in the constraints. For example, in
the railway timetabling field could be applied in order to generate timetables that can
absorb incidences/delays of trains.
In this way, depending on the associated information about the dynamism to the prob-

lem, some approaches could be used and others not. Note that regarding the concept of
robustness, there is not a general measure of it. Depending on the knowledge about the
possible changes, the robustness measure will differ.

4. Modeling Informed DynCSPs as WCSPs. The aim of modeling DynCSPs as
WCSPs is for obtaining robust solutions that have a high probability of remaining valid
faced with future changes in the initial formulation of the modeled DynCSP. In this
paper, we focus our attention on DynCSPs whose constraints are dynamic. As it has
been explained previously, the DynCSP captures the constraint additions and removals
over the original formulation of the problem. The constraint deletion can not invalidate
a solution because it only can relax the problem. That is why this kind of changes in
the constraints of the problem is not analyzed in the search process of robust solutions.
However, a modification in a constraint could invalidate a solution if it is a restrictive
modification over an original constraint. A modification in a constraint can be expressed
as a deletion of the original constraint and the addition of a more restricted constraint.
In order to find robust solutions for these kind of DynCSPs, a set of new modified con-

straints is generated. They represent possible future changes in the original constraints.
The new constraints are considered soft constraints, since they can be unsatisfied. How-
ever, the more new constraints satisfies a solution, the more robust it is. Because this
solution will remain valid even if these restrictive modifications over the original con-
straints happen.
In order to clarify the explanation of our approach and without loss of generality, we

will show a DynCSP with one dynamic constraint. Figure 4 shows a DynCSP called R,
which it is composed of two variables x0 and x1 with domains D0 : {3..7} and D1 : {2..6}
respectively (discontinuous lines), and four constraints (continuous lines):

• C1 : x0 + x1 − 12 ≤ 0 (dynamic constraint).
• C2 : x1 − x0 − 2 ≤ 0 (static constraint).
• C3 : x1 + x0 − 6 ≥ 0 (static constraint).
• C4 : x0 − x1 − 4 ≤ 0 (static constraint).

Since C1 is a dynamic constraint, a set of new modified constraints over the constraint
C1, is generated. In this instance, this set is composed by C11 and C12 (see Figure
4). These constraints are considered as soft constraints, since they can be unsatisfied.
However, the solutions that satisfy C11 and C12 have more probability of remaining valid
faced with changes in C1. Note that the solution (x0 = 5, x1 = 4) is more robust than
the solution (x0 = 6, x1 = 6). Because (x0 = 5, x1 = 4) satisfies C11 and C12, but
(x0 = 6, x1 = 6) does not.
In dynamic problems, in which their constraints undergo changes, usually there is

information associated to the problems that shows how much significant are these changes.
We define this type of DynCSP as informed DynCSPs.

Definition 4.1. An informed DynCSP is a dynamic constraint satisfaction problem with
additional information associated to each constraint. This information is related to the
dynamism of the constraints and it is provided by the user.

ROBUSTNESS IN DYNAMIC CONSTRAINT SATISFACTION PROBLEMS 2521

 1 2 3 4 5 6 7 8 9

1

2

3

 4

5

6

7

X0

X1

Hard Constraint

C1: X0 + X1 <= 12

Soft Constraint

C11: X0 + X1 <= 11

Soft Constraint

C12: X0 + X1 <= 10

Figure 4. Example of the DynCSP R and new modified constraints gen-
erated over C1

Figure 5 shows the necessary steps to model and solve an informed DynCSP as a WCSP.
Initially, the dynamic problem is modeled as an informed DynCSP (P). Then, by using
the additional information associated to each constraint, a WCSP is generated (modP).
This modeled WCSP is composed of the original constraints of P and the sets of new
modified constraints generated. The constraints are represented as costs functions that
assign costs to the tuples involved in each constraint. Finally, modP is solved by a general
WCSP solver. The solutions obtained for modP are the solutions of P. Furthermore, the
best solution for modP is considered to be one of the most robust solutions for the original
informed DynCSP.

Modeled as Modeled as
Dynamic

Problem

Informed

DynCSP

(P)

Weighted

CSP

(modP)

Solver

 Robust

Solution

for P

Figure 5. Modeling a DynCSP as a WCSP

4.1. Dynamism functions. We define two functions that model the dynamism of the
constraints of the informed DynCSPs :

• p(Ci): Each constraint Ci has a probability p(Ci) ∈ [0, 1] that measures the prob-
ability of change of this constraint. It is called dynamism likelihood function. The
minimum value (p(Ci) = 0) means that the constraint is static so there is no prob-
ability that it changes. The maximum value (p(Ci) ≈ 1) means that the constraint
is very dynamic so the probability that it changes is very high.

• d(Ci): This function measures the magnitude of change for a dynamic constraint.
Thus, d(Ci) ∈ [0, 1] measures the percentage of tuples that will be invalid after a
future change in the constraint. A value of d(Ci) ≈ 0 means that the constraint Ci

2522 L. CLIMENT, M. A. SALIDO AND F. BARBER

would not change and almost all the valid tuples remain valid, meanwhile d(Ci) ≈ 1
means that almost all valid tuples will be invalid after the change in the constraint.
This function is not defined for static constraints (constraints with p(Ci) = 0).

There are several criterions for selecting the set of valid tuples that will be invalid for
the new constraints generated. In this paper, without loss of generality, the criterion for
intensional constraints is that the nearest tuples from the bounds of a constraint Ci are the
tuples that will become invalid for the new constraints generated over Ci. Because they
have a low probability of remaining valid after a change in Ci. Note that this criterion
can not be used for extensional constraints, due to the nature of their representation.
The function that measures the magnitude of change d(Ci) will be used for the gener-

ation of new modified constraints whereas the function that measures the probability of
change p(Ci) will be used in the cost assignment to the tuples.

4.2. New constraint generation. The algorithm for modeling an informed DynCSP as
a WCSP is described in Algorithm 1. In this algorithm, (lines 6-7) is represented the gen-
eration of the set of new modified constraints ordered by their tightness {Ci1, Ci2, ..., Ciw}
for each original constraint Ci ∈ C, where w is the number of constraints additions for
each Ci of the original informed DynCSP P (P and w are provided by the user). The sets
of new constraints represent possible modifications over each original constraint, based on
their dynamism functions.
The set of valid tuples of a constraint Ci is denoted as T (Ci). Each new generated

constraint Cij is composed of a subset of T (Ci). In this way, Cij is a more restricted
version of Ci. Each original constraint Ci is considered as a hard constraint, meanwhile
the set of new constraints generated {Ci1, Ci2, .., Ciw} are considered as soft constraints.

4.2.1. Properties of the new constraints.

1. ∀i ∈ {1, ..,m} T (Ci1) is a subset of the set of T (Ci), where m is the number of
original constraints.

2. ∀i ∈ {1, ..,m} if Ci1 is consistent then Ci is consistent.
3. ∀i ∈ {1, ..,m} {T (Cij) : j ∈ {2, .., w}} is a subset of T (Ci(j−1)).
4. ∀i ∈ {1, ..,m} if {Cij : j ∈ {2, .., w}} is consistent then Ci(j−1) is consistent.

The number of tuples that become invalid for each generated Cij regarding to Ci(j−1)

is b(d(Ci) ∗ T (Ci))/wc.

4.3. Cost assignment. The associated cost to the tuples of the constraints is determined
by the cost functions. There are two types of cost functions, depending on whether the
constraint is hard (Ci) or soft (Cij). Algorithm 1 shows the cost functions associated to
hard constraints (lines 3-5) and soft constraints (lines 8-11).
The main utility of the cost function applied to an original constraint Ci ∈ C is to forbid

the tuples that do not satisfy an original constraint. Thus, Ci(t ↓var(Ci)) assigns a cost k
to the tuple t if it does not satisfy Ci. The value k is an upper bound cost provided by
the user. The cost assigned to a tuple t ∈ T (Ci) is 0.
The cost function applied to the new constraints Cij(t ↓var(Cij)) allows us to prioritize

among each set of new generated constraints based on p(Ci). Thus, all the constraints
belonging to an ordered set will have the same cost function. The cost assigned to a tuple
t ∈ T (Cij) is 0. Instead, for t /∈ T (Cij), Cij(t ↓var(Cij)) assigns to t a cost of bp(Ci) ∗ 100c,
which is always lower than k, allowing t to be a solution of the problem (because Cij is a
soft constraint). Note that a high cost is assigned to the invalid tuples of the constraints
Cij whose p(Ci) associated is high. Thus, we are penalizing strongly these tuples due to
it is very probable that a constraint Ci undergo changes that invalidate them.

ROBUSTNESS IN DYNAMIC CONSTRAINT SATISFACTION PROBLEMS 2523

4.4. Objective. Given an informed DynCSP P = 〈X ,D, C〉, the generation of new con-
straints and the cost assignment to the tuples of every constraint is carried out in order to
generate the WCSP (modP), which can be solved by a generic WCSP solver. Algorithm 1
(line 12) shows the generation of modP = 〈X ,D, S(k), C ′〉 which is composed of the origi-
nal variables, the initial domains and the set of constraints C ′, being C ′ the union of the
original constraints plus the new generated constraints (C ′ = {Ci ∪ {Ci1, Ci2, .., Ciw}}, i ∈
{1, ..,m}).

We generate modP with the aim of finding solutions that satisfy the maximum number
of new constraints of modP considering their priorities. Thus, these solutions have the
highest probability of remaining valid after modifications in the original constraints of the
informed DynCSP. The priority of each set of new generated constraints is expressed in
terms of the cost assigned to their invalid tuples. A high cost means a high penalization
for the tuples that do not satisfy such constraint.

The set of solutions obtained for modP is the set of solutions of P. In addition, the best
solution for the WCSP modeled is the solution s with the minimum V(s) cost, which it
means that s has the minimum global associated penalization. Algorithm 1 (lines 14-16)
shows the best solution (if it exists) for modP. This solution is considered to be one of
the most robust solutions for the original informed DynCSP, according to its dynamism
functions.

4.5. WCSP file format specification. The format used for the specification of the
WCSPs is the WCSP file format. The following explanation of the format can be found

2524 L. CLIMENT, M. A. SALIDO AND F. BARBER

in [17]. The WCSP format is a simple format which should be easy to parse by WCSP
solvers. It is composed of a list of numerical terms, except for the first one which defines
the problem name, separated by space, tabulation or end of line (see Table 2 (right)).
Instead of using names for making reference to variables, variable indexes are employed.
The same for domain values. All indexes start at zero. All the constraints are defined in
extension, by their list of tuples. A default cost value is defined per constraint in order
to reduce the size of the list. Only tuples with a different cost value should be given.
All the cost values must be positive. The structure of the format is: first, the problem
name and dimensions, then the definition of the variables, and finally, the definition of
the constraints. Files typically have the ending .wcsp.
A file in the wcsp format starts with the prologue:
<Problem name> <N> <K> <C> <UB>, where

• <N> is the number of variables (integer).
• <K> is the maximum domain size (integer).
• <C> is the total number of constraints (integer).
• <UB> is the global upper bound of the problem (long integer).

The prologue is followed by the variable specifications:

<domain size of variable with index 0> ... <domain size of variable with index N-1>

The constraints are specified as follows (in one line):

<Arity of the constraint>
<Index of the first variable in the scope of the constraint>
...
<Index of the last variable in the scope of the constraint>
<Default cost value>
<Number of tuples with a cost different than the default cost>

And for every tuple (again in one line):

<Index of the value assigned to the first variable in the scope>
...
<Index of the value assigned to the last variable in the scope>
<Cost of the tuple>

There can be several constraints with the same scope (the solver should combine them
into one constraint). The arity of a constraint may be equal to zero. In this case, there
are no tuples and the default cost value is added to the total solution cost. This can be
used to represent a global lower bound of the problem. The goal is to find an assignment
of all the variables with minimum cost, strictly lower than the global upper bound UB.
Tuples with a cost greater than or equal to UB are forbidden (hard constraint).

4.6. Computational cost. The complexity of the modeling phase of Algorithm 1 (lines
1-12) is related to the number of valid tuples of the constraints, the number of constraints
of the DynCSP and the w parameter. The WCSP file format allows the assignment of
a default cost to the invalid tuples of a constraint. Thus, it is just necessary to assign a
cost to its valid tuples.
A set of w new modified constraints is generated over each original constraint Ci ∈ C.

The union of the original and new constraints is denoted as C ′. For each constraint of
C ′, a cost is assigned to each valid tuple. Thus, the modeling phase of Algorithm 1 is
O(|T (C)| ∗ |C ′|), which is equivalent to O(|T (C)| ∗ (w + 1) ∗ |C|). The term |C ′| denotes
the number of constraints of C ′ and |T(C)| is the number of valid tuples of the constraints

ROBUSTNESS IN DYNAMIC CONSTRAINT SATISFACTION PROBLEMS 2525

(see Equation (1)). The arity of the original constraints is denoted as |C| and the size of
the domains is denoted as |D|.

|T (C)| = (|D||C|) ∗ (1− tightness) (1)

Following, we present an example of an informed DynCSP and how it is modeled as a
WCSP.

Example 4.1. Let’s P be a DynCSP with two variables x0 and x1 with domains D0 : {3..7}
and D1 : {2..6}, respectively. The dynamic constraints with their corresponding dynamism
functions are:

• C1(0.2, 0.2) : x0 + x1 ≤ 12
• C2(0.8, 0.4) : x1 + x0 ≥ 6
• C3(0.4, 0.3) : x1 − x0 ≤ 2
• C4(0.2, 0.4) : x0 − x1 ≤ 4

Each constraint is labeled with two real numbers. The first number between the paren-
thesis represents the dynamism likelihood p(Ci) and the second the magnitude of change
d(Ci). We assume that w = 1 and k = 100000000.

Figure 6 shows the representation of P. In this specific example, the problem is com-
posed by binary constraints. However, our method can be applied to problems of any
arity.

Figure 6. Example of the informed DynCSP P

Following the steps presented in Figure 5 and Algorithm 1, the initial representation of
P (Table 2 (left)) is translated into a WCSP (modP), which it is composed of 8 constraints.
Table 2 (right) shows the representation of modP . As it has been explained previously,
all the valid tuples of the constraints have an associated cost of 0. The first constraint of
the problem (C1) has 2 variables, being the variable x0 the first one and the variable x1

the last one. This constraint has 24 valid tuples. The rest of the tuples are not allowed

2526 L. CLIMENT, M. A. SALIDO AND F. BARBER

due to their cost is k (default cost). The first valid tuple of C1 is (x0 = 3, x1 = 2) and the
the last one is (x0 = 7, x1 = 5). The last constraint (C41) has also the same 2 variables.
However, C41 has 14 tuples that satisfy it (with an associated cost of 0). The default cost
of C41 is 20.

Table 2. Original informed DynCSP (P) (left) and modP (right)

P modP
Variables: filename.wcsp 2 2 8 8 100000000
X0..X1 8 7
Domain:
D0 : 3− 7
D1 : 2− 6
C1(0.2, 0.2) : x0 + x1 ≤ 12 2 0 1 100000000 24

{(3 2 0), (3 3 0), (3 4 0), (3 5 0), (3 6 0), (4 2 0), (4 3 0), (4 4 0),
(4 5 0),(4 6 0), (5 2 0), (5 3 0), (5 4 0), (5 5 0), (5 6 0), (6 2 0),
(6 3 0), (6 4 0), (6 5 0), (6 6 0), (7 2 0), (7 3 0), (7 4 0), (7 5 0)}

T (C11) = b(0.8 ∗ T (C1))c = 19 2 0 1 20 19
{(3 2 0), (3 3 0), (3 4 0), (3 5 0), (3 6 0), (4 2 0), (4 3 0), (4 4 0),
(4 5 0), (4 6 0), (5 2 0), (5 3 0), (5 4 0), (5 5 0), (6 2 0), (6 3 0),
(6 4 0), (7 2 0), (7 3 0)}

C2(0.8, 0.4) : x1 + x0 ≥ 6 2 1 0 100000000 24
{(3 3 0), (3 4 0), (3 5 0), (3 6 0), (4 2 0), (4 3 0), (4 4 0), (4 5 0),
(4 6 0), (5 2 0), (5 3 0), (5 4 0), (5 5 0), (5 6 0), (6 2 0), (6 3 0),
(6 4 0), (6 5 0), (6 6 0), (7 2 0), (7 3 0), (7 4 0), (7 5 0), (7 6 0)}

T (C21) = b(0.6 ∗ T (C2))c = 14 2 1 0 80 14
{(4 5 0), (4 6 0), (5 4 0), (5 5 0), (5 6 0), (6 3 0), (6 4 0), (6 5 0),
(6 6 0), (7 2 0), (7 3 0), (7 4 0), (7 5 0), (7 6 0)}

C3(0.4, 0.3) : x1 − x0 ≤ 2 2 1 0 100000000 24
{(3 2 0), (3 3 0), (3 4 0), (3 5 0), (4 2 0), (4 3 0), (4 4 0), (4 5 0),
(4 6 0), (5 2 0), (5 3 0), (5 4 0), (5 5 0), (5 6 0), (6 2 0), (6 3 0),
(6 4 0), (6 5 0), (6 6 0), (7 2 0), (7 3 0), (7 4 0), (7 5 0), (7 6 0)}

T (C31) = b(0.7 ∗ T (C3))c = 16 2 1 0 40 16
{(3 2 0), (4 2 0), (4 3 0), (5 2 0), (5 3 0), (5 4 0), (6 2 0), (6 3 0),
(6 4 0), (6 5 0), (6 6 0), (7 2 0), (7 3 0), (7 4 0), (7 5 0), (7 6 0)}

C4(0.2, 0.4) : x0 − x1 ≤ 4 2 0 1 100000000 24
{(3 2 0),(3 3 0), (3 4 0), (3 5 0), (3 6 0), (4 2 0), (4 3 0), (4 4 0),
(4 5 0), (4 6 0), (5 2 0), (5 3 0), (5 4 0), (5 5 0), (5 6 0), (6 2 0),
(6 3 0), (6 4 0), (6 5 0),(6 6 0), (7 3 0), (7 4 0), (7 5 0), (7 6 0)}

T (C41) = b(0.6 ∗ T (C4))c = 14 2 0 1 20 14
{(3 3 0), (3 4 0), (3 5 0), (3 6 0), (4 3 0), (4 4 0), (4 5 0), (4 6 0),
(5 4 0), (5 5 0), (5 6 0), (6 5 0),(6 6 0), (7 6 0)}

As we have pointed out, the WCSP solver finds as best solution, the solution s with
the minimum value of V(s) associated. The best solution for modP is (x0 = 5, x1 = 4),
because V(x0 = 5, x1 = 4) = 0. This solution satisfies all the set of new modified
constraints (4 constraints). For this reason, it is one of the most robust solutions for
P . However, the solution (x0 = 3, x1 = 3) that is one of the solutions provided by a
usual CSP solver, just satisfies 2 of the 4 new modified constraints of modP . It does not
satisfy the constraints C21 and C31. The cost assigned to a tuple that does not satisfy
C21 is 80. And the cost assigned to a tuple that does not satisfy C31 is 40. That is why,
V(x0 = 3, x1 = 3) = 120. This solution is an unrobust solution for P since it has a low
probability of remaining valid faced with changes in the constraints C2 and C3.

ROBUSTNESS IN DYNAMIC CONSTRAINT SATISFACTION PROBLEMS 2527

5. Evaluation. The evaluation of the technique of modeling informed DynCSPs as
WCSPs, consists in the analysis of the robustness of the solutions obtained for the WCSP
modeled by our technique and solutions obtained by a usual CSP solver. The analyzed
solution of the set of solutions provided by the CSP solver is the solution with the lowest
values for its variables.

Furthermore, we have analyzed the effect of the informed DynCSP parameters and the
dynamism functions in the robustness of the solutions obtained. We have developed the
evaluation with random problems and with benchmarks from the literature.

The level of robustness of a solution s of an informed DynCSP, is indirectly related to
the value of V(s). In addition, the number of new modified constraints satisfied by the
solutions is another robustness measure. The higher this percentage is, the more robust
the solution is, due to the solution is able to remain valid after a high number of changes
in the constraints of the problem.

We have used the WCSP solver ToulBar21 for solving the modeled WCSPs. And the
cut-off time has been 600 seconds for each instance.

5.1. Random problems. The evaluation has been developed by generating 100 random
instances for each problem, by a fixed w = 1. The problems were randomly generated by
increasing the number of variables, the domain size, the number of constraints and the
tightness of the constraints.

Table 3 shows that the percentages of modified constraints satisfied by the solutions for
the WCSPs modeled (WCSP) in comparison with percentages for the solutions found by a
usual CSP solver (Original CSP), increase directly with the number of variables due to the
number of valid tuples per constraint increases also. The technique of modeling DynCSPs
as WCSPs achieves its best robustness results in problems in which the number of valid
tuples of the constraints is high. Nevertheless, we cannot observe another significant
relation with other parameters of the problems.

Table 3. Percentages of modified constraints satisfied for the solutions of
the modeled WCSP and for the solutions found by a usual CSP solver

Modified Constraints Satisfied
Variables Domain Size Constraints Tightness WCSP Original CSP

15 60 30 0.4 70% 46.6%
30 60 30 0.4 93.3% 56%
60 60 30 0.4 96% 50%

30 15 60 0.9 96.6% 65%
30 30 60 0.9 95% 65%
30 60 60 0.9 95% 65%

60 30 15 0.4 93.3% 46.6%
60 30 30 0.4 93.3% 50%
60 30 60 0.4 93.3% 46.6%

60 60 60 0.9 95% 58.3%
60 60 60 0.7 90% 53.3%
60 60 60 0.4 90% 50%

In all the cases, the solutions found by our technique are more robust than the solutions
found by a usual CSP solver, because the solutions found for the WCSP modeled satisfy
a higher number of modified constraints.

1http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/ToolBarIntro

2528 L. CLIMENT, M. A. SALIDO AND F. BARBER

5.2. Benchmarks. In the literature there are not informed DynCSPs benchmarks. There-
fore, we have considered WCSPs benchmarks and we have added dynamism functions to
the constraints of the problems. The used instances are from two WCSPs benchmarks:
Academics and Planning. The benchmarks can be download from [7]. The format of
the benchmarks is the WCSP file format. In this format, the constraints are represented
extensionally. For this reason, the criterion for choosing the valid tuples that become
invalid for a new restricted constraint has been to choose randomly the tuples.
The problems that only have one solution were skipped, because it is only possible

to choose this solution as the most robust solution of the problem. In addition, the
original soft constraints were removed from the problems due to our technique has not
been developed for constraint satisfaction and optimization problems (CSOPs).

5.2.1. Robustness analysis based on the number of constraints additions. In the first de-
veloped analysis our aim has been to determine the effectiveness of our technique and
to analyze the influence of the parameter w (number of new generated constraints over
each original constraint) in the robustness of the solution obtained. For each problem, 10
random instances were generated by choosing random dynamism functions.
Table 4 shows the number of hard constraints (h C) that belong to the problems an-

alyzed. In addition, it can be observed how many new modified constraints have been
generated (m C). This number is directly related to the parameter w. However, there is a
saturation point for the number of new modified constraints that it is possible to create for
each original constraint since it is not allowed to create a new modified constraint which
has the same valid tuples than other ones. For each analyzed problem, it is shown the
number of modified constraints satisfied (s C) for the solutions obtained by a usual CSP
solver (Ori) and for the WCSP modeled by our technique (WCSP), and the difference
(D) between these values.

Table 4. Robustness analysis based on w

w = 1 w = 2 w = 4 w = 8 w = 16 w = 32

Problem Sol m C s C D m C s C D m C s C D m C s C D m C s C D m C s C D

4queens Ori 6 2 1 9 2 1 14 4 0 17 4 1 21 4 1 25 4 2
(h C=4) WCSP 3 3 4 5 5 6

8queens Ori 28 14 5 56 20 9 112 34 15 218 56 32 392 94 58 590 102 99
(h C=28) WCSP 19 29 49 32 152 201

langford 2 4 Ori 29 12 2 54 17 2 87 21 3 103 23 6 106 26 1 97 31 2

(h C=32) WCSP 14 19 24 29 27 33

langford 3 9 Ori 369 176 10 737 275 17 1441 453 19 2643 693 44 4197 957 88 4755 981 89
(h C=369) WCSP 186 292 472 737 1045 1070

16wqueens Ori 120 61 22 240 87 41 476 142 80 903 245 141 1555 351 245 2067 432 314
(h C=120) WCSP 83 128 222 386 596 746

slangford 3 11 Ori 550 270 75 1100 408 117 2180 680 203 4106 1112 351 6960 1656 578 9167 1999 720

(h C=550) WCSP 345 525 883 1463 2234 2719

driverlog01cc Ori 39 14 10 66 16 11 93 17 11 93 15 14 92 15 12 87 16 13
(h C=472) WCSP 24 27 28 29 27 29

logistics01bc Ori 140 41 8 214 52 9 272 52 10 283 52 11 272 48 15 280 51 11
(h C=2222) WCSP 49 61 62 63 63 62

mprime01ac Ori 141 59 12 255 79 20 433 110 29 646 138 40 792 155 60 818 153 63
(h C=12264) WCSP 71 99 139 178 215 216

rovers02ac Ori 63 21 2 98 21 3 130 25 4 138 21 4 138 23 3 134 25 6
(h C=5029) WCSP 23 24 29 25 26 31

The robustness results obtained for the analysis show that for all the problems, the
number of new modified constraints satisfied (s C) for the solutions found for the WCSP
modeled is always bigger than it is for the solutions found by a usual CSP solver. There-
fore, the solutions obtained by our technique are more robust. The difference of the
number of modified constraints satisfied (D) increases in problems where the number of

ROBUSTNESS IN DYNAMIC CONSTRAINT SATISFACTION PROBLEMS 2529

solutions and the number of valid tuples of the constraints is high. For example, for
the problem slangford 3 11 our technique obtains solutions with the biggest D. Figure 7
shows a chart with four of the most representative problems of the Table 4.

Figure 7. Robustness analysis of the benchmarks, based on w

Furthermore, in Table 4 and Figure 7, it can be observed that D is directly related to
w. The bigger w is, the bigger D is. For example, for the problem slangford 3 11 with
w = 32, the solutions obtained by our technique satisfy 720 new modified constraints
more than the solutions obtained by a usual CSP solver.

However, when w takes the value of the saturation point, it is not possible to create
new modified constraints (m C). Thus, in this saturation point, D stops increasing. Each
problem has a different saturation point, depending on the number of valid tuples for the
constraints of the problem. For example, the problem langford 3 9 has a saturation point
of w = 16, because D stops increasing for w > 16 (see Figure 7). Nevertheless, Figure 7
shows that the other three problems do not have a saturation point lower than or equal
to w = 32, because in this point, D has not stopped increasing.

5.2.2. Robustness analysis based on the dynamism functions. In the second developed
evaluation, our aim has been to analyze the effect of the dynamism functions in the robust-
ness of the solutions obtained. For this purpose, we have chosen 2 problems: driverlog01cc
and slangford 3 11, with a fixed w = 1. For each problem, 10 random instances have been
generated by choosing different random valid tuples for the new modified constraints.

Table 5 shows the number of new modified constraints generated (m C), the number
of modified constraints satisfied (s C) and the difference between these values (D). The
dynamism functions p(Ci) and d(Ci) are represented as p and d.

It can be observed in Table 5 that p(Ci) is not related to D. The function p(Ci) is used
in the cost assignment to the invalid tuples of the new modified constraints. Thus, the
function p(Ci) affects in the cost of the solutions obtained (V(s)) but not in the number
of modified constraints satisfied (s C).

Figure 8 shows the difference of new satisfied constraints (D) for the solutions ob-
tained by a usual CSP solver (Ori) and for the WCSP modeled, for the two problems
(driverlog01cc and slangford 3 11) with a fixed p(Ci) = 0.2.

2530 L. CLIMENT, M. A. SALIDO AND F. BARBER

Table 5. Robustness analysis based on p(Ci) and d(Ci)

driverlog01cc p=0.2 p=0.4 p=0.6 p=0.8
d Sol m C s C D s C D s C D s C D
0.2 Ori 26 16 9 18 6 17 7 18 7

WCSP 25 24 24 25
0.4 Ori 43 19 11 20 11 22 8 19 12

WCSP 30 31 30 31
0.6 Ori 49 11 13 14 11 14 10 13 11

WCSP 24 25 24 24
0.8 Ori 49 3 8 4 7 3 8 3 8

WCSP 11 11 11 11
slangford 3 11 p=0.2 p=0.4 p=0.6 p=0.8

d Sol m C s C D s C D s C D s C D
0.2 Ori 550 437 76 437 75 440 72 435 78

WCSP 513 512 512 513
0.4 Ori 550 330 91 331 93 331 89 333 91

WCSP 421 427 420 424
0.6 Ori 550 215 94 217 95 219 91 224 86

WCSP 309 312 310 310
0.8 Ori 550 107 75 108 73 112 65 178 71

WCSP 182 181 117 107

problem 2

Difference

d p=0,2 p=0,4

0.2 76 75 problem1

0.4 91 93 Difference89

94

D
if

fe
re

n
ce

 (
D

)

Slangford_3_11 (p(Ci)=0.2)

12

13

14

D
if

fe
re

n
ce

(D

)

Driverlog01cc (p(Ci)=0.2)

0.4 91 93 Difference

0.6 94 95 d p=0,2

0.8 75 73 0.2 9

0.4 11

0.6 13

0.8 8
74

79

84

89

0.2 0.4 0.6 0.8

D
if

fe
re

n
ce

 (
D

)

d(C)

7

8

9

10

11

12

0.2 0.4 0.6 0.8

D
if

fe
re

n
ce

(D

)

d(C) d(Ci)d(Ci)

Figure 8. Robustness analysis for the benchmarks, based on d(Ci) with a
fixed p(Ci) = 0.2

The difference of new satisfied constraints (D) increases when d(Ci) increases because
the percentage of invalid tuples for a new modified constraint increases also. However,
there is a saturation point which is d(Ci) = 0.8 for both problems. At this point the num-
ber of new satisfied constraints (s C) decreases due to the tightness of the new modified
constraints is so high that it is unlikely that the solutions satisfy a high number of these
constraints. For both problems the maximum level of D is achieved for d(Ci) = 0.6.

6. Conclusions. In this paper, we have presented the informed DynCSP which is a
DynCSP with additional information about the dynamism of its constraints. The main
objective has been to find robust solutions that have a high probability of remaining valid
faced with possible future changes in the constraints. In order to deal with informed
DynCSPs, we have introduced a technique which consists on model informed DynCSPs

ROBUSTNESS IN DYNAMIC CONSTRAINT SATISFACTION PROBLEMS 2531

as WCSPs, by generating new modified constraints and assigning costs to the tuples of
each constraint.

From the robustness evaluation, we can conclude that the solutions obtained for the
WCSP modeled by our technique were more robust than the solutions obtained by a usual
CSP solver.

The method of modeling informed DynCSPs as WCSPs has the main advantage over
the reactive strategies that it prevents the loss of solutions in dynamic problems. In
addition, the informed DynCSP, defined in this paper, has the advantage that is able
to capture many changes that undergo real problems and they can be represented as
restrictive modifications over the original constraints.

Summarizing, the benefits of the informed DynCSPs and the developed method are:

• Reliable. The method of modeling informed DynCSPs as WCSPs ensures obtaining
robust solutions.

• Practical. The proposal uses an efficient algorithm to model informed DynCSPs as
WCSPs, with a low computational cost with respect to the solving phase.

• Specific. The informed DynCSPs allow to specify in the modeling of dynamic prob-
lems that have associated information about possible changes in their constraints.
Thus, the search of robust solutions is oriented according to this information, ob-
taining better results.

Acknowledgments. This work has been partially supported by the research projects
TIN2010-20976-C02-01 (Min. de Ciencia e Innovación, Spain) and P19/08 (Min. de Fo-
mento, Spain-FEDER), and the fellowship program FPU.

REFERENCES

[1] K. R. Apt, Principles of Constraint Programming, Cambridge University Press, 2003.
[2] F. Barber and M. Salido, Introducción a la programación de restricciones, Inteligencia Artificial:

Revista Iberoamericana de Inteligencia Artificial, vol.20, pp.13-29, 2003.
[3] L. Climent, F. Barber, M. Salido and L. Ingolotti, Robustness and capacity in scheduling: Ap-

plication to railway timetabling, Workshop on Planning, Scheduling and Constraint Satisfaction,
pp.87-96, 2008.

[4] R. Dechter and J. Pearl, Network-based heuristics for constraint satisfaction problems, Artificial
Intelligence, vol.34, pp.1-38, 1988.

[5] R. Dechter and A. Dechter, Belief maintenance in dynamic constraint networks, Proc. of the 7th
National Conference on Artificial Intelligence, pp.37-42, 1988.

[6] H. Fargier and J. Lang, Uncertainty in constraint satisfaction problems: A probabilistic approach,
Symbolic and Quantitative Approaches to Reasoning and Uncertainty, pp.97-104, 1993.

[7] S. Givry, Soft CSP Benchmarks, http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/SoftCSP.
[8] S. D. Givry, J. Larrosa, P. Meseguer and T. Schiex, Solving max-sat as weighted CSP, Principles

and Practice of Constraint Programming – CP 2003, LNCS, vol.2833, pp.363-376, 2003.
[9] S. González and P. Meseguer, Open, Interactive and Dynamic CSP, 2008.
[10] E. Hebrard, B. Hnich and T. Walsh, Super CSPs, Technical Report, 2003.
[11] E. Hebrard, B. Hnich and T. Walsh, Super solutions in constraint programming, Integration of AI

and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, pp.157-
172, 2004.

[12] E. Jen, Stable or robust? what’s the difference? Complexity, vol.8, pp.12-18, 2003.
[13] J. Larrosa and T. Schiex, Solving weighted csp by maintaining arc consistency, Artificial Intelligence,

vol.159, pp.1-26, 2004.
[14] Z. Lin, Y. Xia, P. Shi and H. Wu, Robust sliding mode control for uncertain linear discrete systems

independent of time-delay, International Journal of Innovative Computing, Information and Control,
vol.7, no.2, pp.869-880, 2011.

[15] C. Liu, An evolutionary algorithm for solving dynamic nonlinear constrained optimization, ICIC
Express Letters, vol.4. no.3(B), pp.1039-1044, 2010.

2532 L. CLIMENT, M. A. SALIDO AND F. BARBER

[16] T. Nakano and M. Nagamatu, Lagrange neural network for solving constraint satisfaction problem,
International Journal of Innovative Computing, Information and Control, vol.1, no.4, pp.659-671,
2005.

[17] L. Otten, Wcsp File Format Specification, http://graphmod.ics.uci.edu/group/WCSP file format.
[18] F. Rossi, P. Van Beek and T. Walsh, Handbook of Constraint Programming, Elsevier, 2006.
[19] H. Sakkout and M. Wallace, Probe backtrack search for minimal perturbation in dynamic scheduling,

vol.5, pp.359-388, 2000.
[20] M. A. Salido and F. Barber, Distributed CSPs by graph partitioning, Applied Mathematics and

Computation, vol.183, pp.491-498, 2006.
[21] T. Schiex, H. Fargier and G. Verfaillie, Valued constraint satisfaction problems: Hard and easy

problems, Proc. of the 14th IJCAI, pp.631-637, 1995.
[22] E. Tsang, Foundation of Constraint Satisfaction, Academic Press, 1993.
[23] G. Verfaillie and T. Schiex, Solution reuse in dynamic constraint satisfaction problems, Proc. of the

12th National Conference on Artificial Intelligence, pp.307-312, 1994.
[24] G. Verfaillie and N. Jussien, Constraint solving in uncertain and dynamic environments: A survey,

Constraints, vol.10, no.3, pp.253-281, 2005.
[25] R. Wallace and E. Freuder, Stable solutions for dynamic constraint satisfaction problems, Proc. of

the 4th International Conference on Principles and Practice of Constraint Programming, pp.447-461,
1998.

[26] R. Wallace, D. Grimes and E. Freuder, Solving dynamic constraint satisfaction problems by identi-
fying stable features, International Joint Conferences on Artificial Intelligence, pp.621-627, 2009.

[27] L. Wang and C. Shao, State feedback controller design for a class of uncertain systems with time-
varying delays and controller failures, International Journal of Innovative Computing, Information
and Control, vol.6, no.5, pp.2055-2064, 2010.

[28] X. Zhang, Z. Tang, Y. Cui and L. Jiang, A real-time convex hull algorithm, ICIC Express Letters,
vol.4, no.3(A), pp.623-628, 2010.

