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Abstract. The paper presents a novel feedforward neural network and feedback lin-
earization control of BILSAT-1 satellite system for the almost disturbance decoupling
performance. The proposed controller guarantees exponentially global uniform ultimate
bounded stability and the almost disturbance decoupling performance without using any
learning or adaptive algorithms. The proposed approach provides the architecture of the
neural network and the weights among the layers in order to guarantee stability of the
system. Moreover, the new approach renders the system to be stable with the almost
disturbance decoupling property at each step of selecting weights to enhance the perfor-
mance if the proposed sufficient conditions are maintained. One example, which cannot
be solved by the first paper on the almost disturbance decoupling problem, is proposed
in this paper to exploit the fact that the tracking and the almost disturbance decoupling
performances are easily achieved by the proposed approach.
Keywords: BILSAT-1 satellite system, Feedforward neural network, Almost distur-
bance decoupling, Multi-input multi-output system, Feedback linearization approach,
Composite Lyapunov approach

1. Introduction. A considerable amount of research focused on the field of nonlinear
control using neural network [8,21,33]. Neural Network has been motivated by their po-
tential of improving system performance through learning using parallel approach. Some
of these learning algorithms [2,30,39] apply the error back propagation approach to min-
imizing an objective function described as the sum of the square errors. However, the
learning algorithms investigated so far are not capable of solving the inherent drawbacks
of neural network. These drawbacks include how to determine the range within which
the weights of the neural network should be adjusted to guarantee the stability of the
controlled system and the stability types of the overall system, i.e., if the overall system
is asymptotically stable or exponentially stable, or if it is locally stable or globally stable.

In the famous NN-based adaptive algorithms, since the desired or ideal weights are
unknown, they are adapted real-time utilizing appropriately constructed adaptation rules.
Gradient approaches are widely adopted [8,33]. However, in [8], there is no guarantee
of error and weight convergence. [33] guarantees the weight convergence by a dead-
zone scheme. However, setting of an optimal dead-zone parameter to fit unexpected
situations is difficult and smaller parameter may result in divergence [21]. Our proposed
new approach renders the system to be stable with the almost disturbance decoupling
property at each step of selecting weights to enhance the performance via Matlab software
if the proposed sufficient conditions are maintained.
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Many approaches to stabilizing and tracking tasks have been proposed including feed-
back linearization, variable structure control (sliding mode control), backstepping, regu-
lation control, non-linear H∞ control, internal model principle and H∞ adaptive fuzzy
control. [19] has proposed the use of variable structure control to deal with non-linear
system. However, chattering behaviour that is caused by discontinuous switching and
imperfect implementation that can drive the system into unstable regions is inevitable
for variable structure control schemes. Backstepping has proven to be a powerful tool for
synthesizing controllers for non-linear systems. However, a disadvantage of this approach
is an explosion in the complexity which is a result of repeated differentiations of non-
linear functions [35,41]. An alternative approach is to utilize output regulation control
[14] in which the outputs are assumed to be excited by an exosystem. However, the non-
linear regulation approach requires the solution of difficult partial-differential algebraic
equations. Another difficulty is that the exosystem states need to be switched to describe
changes in the output and this creates transient tracking errors [28]. In general, non-linear
H∞ control requires the solution of the Hamilton-Jacobi equation, which is a difficult non-
linear partial-differential equation [4,15,37]. Only for some particular non-linear systems
it is possible to derive a closed-form solution [13]. The control approach that is based
on the internal model principle converts the tracking problem into a non-linear output
regulation problem. This approach depends on solving a first-order partial-differential
equation of the center manifold [14]. For some special non-linear systems and desired tra-
jectories, the asymptotic solutions of this equation have been developed using ordinary
differential equations [9,11]. Recently, H∞ adaptive fuzzy control has been proposed to
systematically deal with non-linear systems [6]. The drawback with H∞ adaptive fuzzy
control is that the complex parameter update law makes this approach impractical in
real-world situations. During the past decade significant progress has been made in re-
searching control approaches for non-linear systems based on the feedback linearization
theory [12,19,27,32]. Moreover, feedback linearization approach has been applied suc-
cessfully to many real control systems. These include the control of an electromagnetic
suspension system [16], pendulum system [7], spacecraft [31], electrohydraulic servosys-
tem [1], car-pole system [5] and bank-to-turn missile system [22]. The main contribution
of this study is to solve the linearized and PDC shortcomings by using non-linear feedback
linearization approach.
The almost disturbance decoupling problem, i.e., that is the design of a controller that

attenuates the effect of the disturbance on the output terminal to an arbitrary degree
of accuracy, was originally developed for linear and non-linear control systems by [25,40]
respectively. The problem has attracted considerable attention and many significant re-
sults have been developed for both linear and non-linear control systems [26,29,38]. The
almost disturbance decoupling problem of non-linear single-input single-output (SISO)
systems was investigated in [25] by using a state feedback approach and solved in terms
of sufficient conditions for systems with non-linearities that are not globally Lipschitz
and disturbances being linear but possibly actually being multiples of non-linearities.
The resulting state feedback control is constructed following a singular perturbation ap-
proach. The sufficient conditions in [25] require that the non-linearities multiplying the
disturbances satisfy structural triangular conditions. [25] shows that for non-linear SISO
systems the almost disturbance decoupling problem may not be solvable, as is case for

ẋ1(t) = tan−1 x2 + θ(t), |θ(t)| > π

2
, ẋ2(t) = u, y = x1

where u, y denoted the input and output respectively and θ(t) was the disturbance of the
system. On the contrary, this example can be easily solved via the proposed approach in
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this paper. On the contrary, this example can be easily solved via the proposed approach in
this paper. It is worth noting that the sufficient conditions given in [25] are not necessary
in this study where a nonlinear state feedback control is explicitly designed which solves
the almost disturbance decoupling problem. The almost disturbance decoupling problem
is solvable for the system by a nonlinear state feedback control, according to our proposed
approach, while the sufficient conditions given in [25] fail when applied to the system.
The design techniques in this study are also entirely different from those in [25] since the
singular perturbation tools are not used.

The goal of this study is to propose a theoretical structure for MIMO nonlinear systems
based on feedback linearization and neural network approaches. This study presents suffi-
cient conditions for achieving the exponentially global uniform ultimate bounded stability
and the almost disturbance decoupling performances without using any learning or adap-
tive algorithms. The efficiency of the proposed controller is illustrated by application to
the BILSAT-1 satellite system. In this study, we have solved the satellite attitude-tracking
problem using the MRP (Modified Rodriguez Parameters) [23] attitude kinematics with
the following properties: (1) Since the decoupling matrix of the feedback-linearizing con-
troller depends explicitly on the attitude kinematics, the use of MRPenables one to have
an always invertible decoupling matrix, thus an always existing control law; (2) The
simulations showed that the parameter ε has an important influence on the disturbance
attenuating characteristics of the controller design by increasing the attenuation param-
eter NN2; (3) For this purpose, a recently developed feedback linearization technique,
which does not require a selection of a complex Lyapunov function and is independent
of the initial conditions, is utilized on the satellite dynamical model; (4) From a prac-
tical point of view, a matrix inversion algorithm will be necessary but by most of the
modern digital signal processors that is quite simple; (5) Also, the reaction wheel used in
the model and simulation is a realistic mechanism which is designed by Surrey Satellite
Technology Limited (SSTL) and it has a torque limit of 0.02 N .m where the simulation
results are far below this value.

2. Structure of Multilayered Feedforward Neural Network. The structure of the
multilayered feedforward neural network which will be involved later in the controller
design is investigated in this section. The neural network used in controller design is
three-layered as shown in Figure 1. It consists of an input node vector X ∈ <p, a hidden
layer of p activity functions and an output node vector Y ∈ <m. The input-output

Figure 1. Three-layered neural network
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relationship can be described as[
s1 s2 · · · sp

]T
=

[
p∑

i=1

t1ixi

p∑
i=1

t2ixi · · ·
p∑

i=1

tpixi

]T
(2.1)

[
y1 y2 · · · ym

]T
=

[
p∑

i=1

ω1ifi(si)
p∑

i=1

ω2ifi(si) · · ·
p∑

i=1

ωmifi(si)

]T
(2.2)

where tmn is the weight to the hidden node sm from other input node xn and ωmn is
the weight to the output node ym from the hidden node sn. The above input-output
relationship can be written in matrix form as

Sp×1 = Tp×pXp×1 (2.3)

Ym×1 = Wm×pFp×1 (2.4)

where

S ≡
[
s1 s2 · · · sp

]T
(2.5)

X ≡
[
x1 x2 · · · xp

]T
(2.6)

T ≡


t11 t12 · · · t1p
t21 t22 · · · t2p
...

...
...

tp1 tp2 · · · tpp

 (2.7)

Y ≡
[
y1 y2 · · · ym

]T
(2.8)

F (S) ≡
[
f1(s1) f2(s2) · · · fp(sp)

]T
(2.9)

W ≡


ω11 ω12 · · · ω1p

ω21 ω22 · · · ω2p
...

...
...

ωm1 ωm2 · · · ωmp

 (2.10)

3. Feedback Linearization and Neural Network Controller Design. The follow-
ing non-linear control system with disturbances is considered:

ẋ1

ẋ2

...
ẋn

 =


f1(x1, x2, . . . , xn)
f2(x1, x2, . . . , xn)

...
fn(x1, x2, . . . , xn)



+
[
g1(x1, x2, . . . , xn) g2(x1, x2, . . . , xn) · · · gm(x1, x2, . . . , xn)

]


u1(x1, x2, . . . , xn)
u2(x1, x2, . . . , xn)

...
um(x1, x2, . . . , xn)


+

p∑
j=1

q∗j θjd

(3.1a)
y1(x1, x2, . . . , xn)
y2(x1, x2, . . . , xn)

...
ym(x1, x2, . . . , xn)

 =


h1(x1, x2, . . . , xn)
h2(x1, x2, . . . , xn)

...
hm(x1, x2, . . . , xn)

 (3.1b)
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that is

Ẋ(t) = f(X(t)) + g(X(t))u+

p∑
j=1

q∗j θjd

y(t) = h(X(t))

where X(t) ≡ [x1(t) x2(t) · · · xn(t)]
T ∈ <n is the state vector, u ≡ [u1 u2 · · · um]

T ∈ <m

is the input vector, y ≡ [y1 y2 · · · ym]T ∈ <m is the output vector, θd ≡ [θ1d(t) θ2d(t) · · ·
θpd(t)]

T is a bounded time-varying disturbances vector, f ≡ [f1 f2 · · · fn]T ∈ <n, g ≡
[g1 g2 · · · gm] ∈ <n×m and h ≡ [h1 h2 · · · hm]

T ∈ <m are smooth vector fields. The
nominal system is then defined as follows:

Ẋ(t) = f(X(t)) + g(X(t))u (3.2a)

y(t) = h(X(t)) (3.2b)

The nominal system of the form (3.2) is assumed to have the vector relative degree
{r1, r2, · · · , rm} [12], i.e., the following conditions are satisfied for all X ∈ <n:
〈1〉

LgjL
k
fhi(X) = 0 (3.3)

for all 1 ≤ i ≤ m, 1 ≤ j ≤ m, k < ri − 1, where the operator L is the Lie derivative [12]
and r1 + r2 + · · ·+ rm = r.
〈2〉 The m×m matrix

A ≡


Lg1L

r1−1
f h1(X) · · · LgmL

r1−1
f h1(X)

Lg1L
r2−1
f h2(X) · · · LgmL

r2−1
f h2(X)

...
...

Lg1L
rm−1
f hm(X) · · · LgmL

rm−1
f hm(X)

 (3.4)

non-singular.
The desired output trajectory yid(t), 1 ≤ i ≤ m and its first ri derivatives are all

uniformly bounded and∥∥∥[yid, yi
(1)

d , · · · , yi
(ri)

d

]∥∥∥ ≤ Bi
d, 1 ≤ i ≤ m (3.5)

where Bi
d is some positive constant. Under the assumption of well-defined vector relative

degree, it has been shown [12] that the mapping

φ : <n → <n (3.6)

defined as

ξi ≡


ξi1
ξi2
...
ξiri

 ≡


φi
1

φi
2
...
φi
ri

 ≡


L0

fhi(X)
L1
fhi(X)

...
Lri−1

f hi(X)

 , i = 1, 2, . . . ,m (3.7)

φk(X(t)) ≡ ηk(t), k = r + 1, r + 2, . . . , n (3.8)

and satisfying

Lgjφk(X(t)) = 0, k = r + 1, r + 2, . . . , n, 1 ≤ j ≤ m (3.9)

is a diffeomorphism onto image, if the following hold
〈1〉 The distribution

G ≡ span{g1, g2, . . . , gm} (3.10)

is involutive.
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〈2〉 The vector fields
Y k
j , 1 ≤ j ≤ m, 1 ≤ k ≤ rj (3.11)

are complete, where

Y k
j ≡ (−1)k−1 adk−1

f̃
g̃j, 1 ≤ j ≤ m, 1 ≤ k ≤ rj (3.12)

f̃(X) ≡ f(X)− g(X)A−1(X)b(X) (3.13)

b(X) ≡


Lr1
f h1(X)

Lr2
f h2(X)

...
Lrm
f hm(X)

 (3.14)

g̃ ≡
[
g̃1 g̃2 · · · g̃m

]
≡ g(X)A−1(X) (3.15)

adkfg ≡
[
f adk−1

f g
]

(3.16)[
f g

]
≡ ∂g

∂X
f(X)− ∂f

∂X
g(X) (3.17)

For the sake of convenience, define the trajectory error to be

eij ≡ ξij − y
i(j−1)
d , i = 1, 2, . . . ,m, j = 1, 2, . . . , ri (3.18)

ei ≡
[
ei1 ei2 · · · eiri

]T ∈ <ri (3.19)

and the trajectory error to be multiplied with some adjustable positive constant ε

eij ≡ εj−1eij, i = 1, 2, . . . ,m, j = 1, 2, . . . , ri (3.20)

ei ≡
[
ei1 ei2 · · · eiri

]T
∈ <ri (3.21)

e ≡


e1

e2
...
em

 ∈ <r (3.22)

and

ξ ≡


ξ1
ξ2
...
ξr

 ∈ <r, (3.23)

η(t) ≡ [ηr+1(t) ηr+2(t) · · · ηn(t)]
T ∈ <n−r (3.24)

q(ξ(t), η(t)) ≡ [Lfφr+1(t) Lfφr+2(t) · · · Lfφn(t)]
T

≡
[
qr+1 qr+2 · · · qn

]T (3.25)

Define a phase-variable canonical matrix Ai
c to be

Ai
c ≡


0 1 0 · · · 0
0 0 1 · · · 0

...
...

0 0 0 · · · 1
−αi

1 −αi
2 −αi

3 · · · −αi
ri


ri×ri

, 1 ≤ i ≤ m (3.26)

where αi
1, α

i
2, · · · , αi

ri
are any chosen parameters such that Ai

c is Hurwitz and the vector
Bi to be

Bi ≡
[
0 0 · · · 0 1

]T
ri×1

, 1 ≤ i ≤ m (3.27)
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Let P i be the positive definite solution of the following Lyapunov equation

(Ai
c)

TP i + P iAi
c = −I, 1 ≤ i ≤ m (3.28)

λmax(P
i) ≡ the maximum eigenvalue of P i, 1 ≤ i ≤ m (3.29)

λmin(P
i) ≡ the minimum eigenvalue of P i, 1 ≤ i ≤ m (3.30)

λ∗
max ≡ min

{
λmax(P

1), λmax(P
2), . . . , λmax(P

m)
}

(3.31)

λ∗
min ≡ min

{
λmin(P

1), λmin(P
2), . . . , λmin(P

m)
}

(3.32)

Assumption 1. For all t ≥ 0, η ∈ <n−r and ξ ∈ <r, there exists a positive constant M
such that the following inequality holds:

‖q22(t, η, ē)− q22(t, η, 0)‖ ≤ M(‖e‖) (3.33)

where q22(t, η, ē) ≡ q(ξ, η).
For the sake of stating precisely the investigated problem, define

dij ≡ LgjL
ri−1
f hi(X), 1 ≤ i ≤ m, 1 ≤ j ≤ m (3.34)

ci ≡ Lri
f hi(X), 1 ≤ i ≤ m (3.35)

and

ei ≡ αi
1e

i
1 + αi

2e
i
2 + · · ·+ αi

ri
eiri , 1 ≤ i ≤ m (3.36)

Definition 3.1. [19] Consider the system ẋ = f(t, x, θ), where f : [0,∞)×<n×<n → <n

is piecewise continuous in t and locally Lipschitz in x and θ. This system is said to
be input-to-state stable if there exists a class KL function β, a class K function γ and
positive constants k1 and k2 such that for any initial state x (t0) with ‖x (t0)‖ < k1 and
any bounded input θ(t) with sup

t≥t0

‖θ (t)‖ < k2, the state exists and satisfies

‖x(t)‖ ≤ β(‖x(t0)‖, t− t0) + γ

(
sup

t0≤τ≤t
‖θ(τ)‖

)
(3.37)

for all t ≥ t0 ≥ 0.

Now we formulate the tracking problem with almost disturbance decoupling as follows:

Definition 3.2. [26] The tracking problem with almost disturbance decoupling is said to
be globally solvable by the state feedback controller u for the transformed-error system by
a global diffeomorphism (3.6), if the controller u enjoys the following properties.
〈1〉 It is input-to-state stable with respect to disturbance inputs.

〈2〉 For any initial value x̄e0 ≡ [ē(t0) η(t0)]
T , for any t ≥ t0 and for any t0 ≥ 0

|y(t)− yd(t)| ≤ β11(‖x(t0)‖, t− t0) +
1√
β22

β33

(
sup

t0≤τ≤t
‖θ(τ)‖

)
(3.38a)

and
t∫

t0

[y(τ)− yd(τ)]
2 dτ ≤ 1

β44

β55 (‖x̄e0‖) +
t∫

t0

β33

(
‖θ (τ)‖2

)
dτ

 (3.38b)

where β22, β44 are some positive constants, β33, β55 are class K functions and β11 is a
class KL function.
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Figure 2. The interconnect structure of the neural network

We immediately presents sufficient conditions for achieving the exponentially global
uniform ultimate bounded stability and the almost disturbance decoupling performance.
The interconnect structure of the neural network is shown in Figure 2.
The transformation matrices discussed earlier in Section 2 are chosen as

Si =
[
si1 si2 · · · siri

]T
, 1 ≤ i ≤ m (3.39a)

X i =
[
ei1 ei2 · · · eiri

]T
, 1 ≤ i ≤ m (3.39b)

T i =


ti11 0 · · · 0
0 ti11 · · · 0
...

...
0 0 · · · ti11

 , 1 ≤ i ≤ m (3.39c)

Y i = yi
1
= ui

NN , 1 ≤ i ≤ m (3.39d)

F i =
[
f i
1(s

i
1) f i

2(s
i
2) · · · f i

ri
(siri)

]T
=

[
si1 si2 · · · siri

]T
, 1 ≤ i ≤ m (3.39e)

W i =
[
ωi

11
ωi
12 · · · ωi

1ri

]
, 1 ≤ i ≤ m (3.39f)

Thus, the input-output relationship for the neural network controller is obtained as

uNN =
[
u1
NN u2

NN · · · um
NN

]T
(3.39g)

ui
NN = ωi

11t
i
11e

i
1 + ωi

12t
i
22e

i
2 + · · ·+ ωi

1ri
tiririe

i
ri
, 1 ≤ i ≤ m (3.39h)

Theorem 3.1. Suppose that there exists a continuously differentiable function V : <n−r →
<+ such that the following three inequalities hold for all η ∈ <n−r:

(a) ω1 ‖η‖2 ≤ V (η) ≤ ω2 ‖η‖2 , ω1, ω2 > 0 (3.40a)

(b) ∇tV + (∇ηV )T q22(t, η, 0) ≤ −2αx‖η‖2, αx > 0 (3.40b)

(c) ‖∇ηV ‖ ≤ ω3 ‖η‖ , ω3 > 0, (3.40c)
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then the tracking problem with almost disturbance decoupling performance is globally solv-
able by the controller defined by

u = A−1{−b+ v + uNN} (3.41)

b ≡
[
Lr1
f h1 Lr2

f h2 · · · Lrm
f hm

]T
(3.42)

v ≡ [v1 v2 · · · vm]
T (3.43)

vi ≡ yi
(ri)

d − ε−riαi
1

[
L0
fhi(X)− yid

]
− ε1−riαi

2

[
L1

fhi(X)− yi
(1)

d

]
− · · · − ε−1αi

ri

[
Lri−1

f hi(X)− yi
(ri−1)

d

]
, 1 ≤ i ≤ m

(3.44)

Moreover, the influence of disturbances on the L2 norm of the tracking error can be arbi-
trarily attenuated by increasing the following adjustable parameter N2 > 1:

ωi
max = max(|ωi

11t
i
11|, |ωi

12t
i
22|, · · · , |ωi

1ri
tiriri|), 1 ≤ i ≤ m (3.45a)

k11 ≡
k

2ε
− εr1−1ω1

maxr1k
∥∥BT

r1
P 1

∥∥− · · · − εrm−1ωm
maxrmk

∥∥BT
rmP

m
∥∥

− 3

2

k2
∥∥φ1

ξ

∥∥2 ‖P 1‖2

ε2
− · · · − 3

2

k2
∥∥φm

ξ

∥∥2 ‖Pm‖2

ε2
− 4

(3.45b)

k22 ≡ 2αx −
ω2
3M

2

16
− ω2

3 ‖φη‖2 (3.45c)

N2 ≡ min {k11, k22} (3.45d)

N1 ≡
m+ 1

6

(
sup

t0≤τ≤t
‖θd (τ)‖

)2

(3.45e)

φi
ξ(ε) ≡

 ε ∂
∂X

hiq
∗
1 · · · ε ∂

∂X
hiq

∗
p

...
...

εri ∂
∂X

Lri−1
f hiq

∗
1 · · · εri ∂

∂X
Lri−1

f hiq
∗
q

 , 1 ≤ i ≤ m (3.45f)

φη(ε) ≡


∂
∂X

φr+1q
∗
1 · · · ∂

∂X
φr+1q

∗
p

...
...

∂
∂X

φnq
∗
1 · · · ∂

∂X
φnq

∗
q

 (3.45g)

Moreover, the output tracking error of system (3.1) is exponentially attracted into a sphere

Br, r =
√

N1

N2
, with an exponential rate of convergence

1

2

(
N2

∆max

− N1

∆maxr2

)
=

1

2
α∗ (3.45h)

where

∆max = max

{
ω2,

k

2
λ∗
max

}
(3.45i)

where k(ε) : <+ → <+ is any continuous function satisfying

lim
ε→0

k(ε) = 0 and lim
ε→0

ε

k(ε)
= 0 (3.45j)
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Proof: Applying the coordinate transformation (3.6) yields

ξ̇11 =
∂φ1

1

∂X

dX

dt
=

∂h1

∂X

[
f + g · u+

p∑
j=1

q∗j θjd

]

=
∂h1

∂X
f +

∂h1

∂X
g1u1 + · · ·+ ∂h1

∂X
gmum +

p∑
j=1

∂h1

∂X
q∗j θjd

=
∂h1

∂X
f +

p∑
j=1

∂h1

∂X
q∗j (θjd)

= ξ12 +

p∑
j=1

∂h1

∂X
q∗j (θjd)

(3.46)

...

ξ̇1r1−1 =
∂φ1

r1−1

∂X

dX

dt
=

∂Lr1−2
f h1

∂X

[
f + g · u+

p∑
j=1

q∗j θjd

]

=
∂Lr1−2

f h1

∂X
f +

∂Lr1−2
f h1

∂X
g1 u1 + · · ·+

∂Lr1−2
f h1

∂X
gm um +

p∑
j=1

∂Lr1−2
f h1

∂X
q∗j θjd

=
∂Lr1−2

f h1

∂X
f +

p∑
j=1

∂Lr1−2
f h1

∂X
q∗j (θjd)

=Lr1−1
f h1 +

p∑
j=1

∂Lr1−2
f h1

∂X
q∗j (θjd)

(3.47)

ξ̇1r1 =
∂φ1

r1

∂X

dX

dt
=

∂Lr1−1
f h1

∂X

[
f + g · u+

p∑
j=1

q∗j θjd

]

=
∂Lr1−1

f h1

∂X
f +

∂Lr1−1
f h1

∂X
g1u1 + · · ·+

∂Lr1−1
f h1

∂X
gmum +

p∑
j=1

∂Lr1−1
f h1

∂X
q∗j θjd

=Lr1
f h1 + Lg1L

r1−1
f h1 u1 + · · ·+ LgmL

r1−1
f h1 um +

p∑
j=1

∂Lr1−1
f h1

∂X
q∗j (θjd)

= c1 + d11u1 + · · ·+ d1mum +

p∑
j=1

∂Lr1−1
f h1

∂X
q∗j (θjd)

(3.48)

...

ξ̇m1 =
∂φm

1

∂X

dX

dt
=

∂hm

∂X

[
f + g · u+

p∑
j=1

q∗j θjd

]

=
∂hm

∂X
f +

∂hm

∂X
g1u1 + · · ·+ ∂hm

∂X
gmum +

p∑
j=1

∂hm

∂X
q∗j θjd

=L1
fhm +

p∑
j=1

∂h1

∂X
q∗j (θjd) = ξm2 +

p∑
j=1

∂hm

∂X
q∗j (θjd)

(3.49)

...
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ξ̇mrm−1 =
∂φm

rm−1

∂X

dX

dt
=

∂Lrm−2
f hm

∂X

[
f + g · u+

p∑
j=1

q∗j θjd

]

=
∂Lrm−2

f hm

∂X
f +

∂Lrm−2
f hm

∂X
g1u1 + · · ·+

∂Lrm−2
f hm

∂X
gmum

+

p∑
j=1

∂Lrm−2
f hm

∂X
q∗j θjd

=Lrm−1
f hm +

p∑
j=1

∂Lrm−2
f hm

∂X
q∗j (θjd)

= ξmrm +

p∑
j=1

∂Lrm−2
f hm

∂X
q∗j (θjd)

(3.50)

ξ̇mrm =
∂φm

rm

∂X

dX

dt
=

∂Lrm−1
f hm

∂X

[
f + g · u+

p∑
j=1

q∗j θjd

]

=
∂Lrm−1

f hm

∂X
f +

∂Lrm−1
f hm

∂X
g1u1 + · · ·+

∂Lrm−1
f hm

∂X
gmum

+

p∑
j=1

∂Lrm−1
f hm

∂X
q∗j θjd

=Lrm
f hm + Lg1L

rm−1
f hmu1 + · · ·+ LgmL

rm−1
f hmum

+

p∑
j=1

∂Lrm−1
f hm

∂X
q∗j (θjd)

= cm + dm1u1 + · · ·+ dmmum +

p∑
j=1

∂Lrm−1
f hm

∂X
q∗j (θjd)

(3.51)

η̇k(t) =
∂φk

∂X

dX

dt
=

∂φk

∂X

[
f + g · u+

p∑
j=1

q∗j θjd

]

=
∂φk

∂X
f +

∂φk

∂X
g1u1 + · · ·+ ∂φk

∂X
gmum +

p∑
j=1

∂φk

∂X
q∗j θjd

=Lfφk +

p∑
j=1

∂φk

∂X
q∗j (θjd) = qk +

p∑
j=1

∂φk

∂X
q∗j (θjd),

k = r + 1, r + 2, . . . , n

(3.52)

Since

ci(ξ(t), η(t)) ≡ Lri
f hi(X(t)), 1 ≤ i ≤ m (3.53)

dij ≡ LgjL
ri−1
f hi(X), 1 ≤ i ≤ m, 1 ≤ j ≤ m (3.54)

qk(ξ(t), η(t)) = Lfφk(X), k = r + 1, r + 2, . . . , n (3.55)

the dynamic equations of system (3.1) in the new co-ordinates are as follows:

ξ̇1i (t) = ξ1i+1(t) +

p∑
j=1

∂

∂X
Li−1
f h1q

∗
j (θjd), i = 1, 2, . . . , r1 − 1 (3.56)
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ξ̇r1(t) = c1(ξ(t), η(t)) + d11(ξ(t), η(t))u1 + · · ·+ d1m(ξ(t), η(t))um

+

p∑
j=1

∂

∂X
Lr1−1
f h1q

∗
j (θjd)

(3.57)

...

ξ̇mi (t) = ξmi+1(t) +

p∑
j=1

∂

∂X
Li−1

f hmq
∗
j (θjd), i = 1, 2, . . . , rm − 1 (3.58)

ξ̇mrm(t) = cm(ξ(t), η(t)) + dm1(ξ(t), η(t))u1 + · · ·+ dmm(ξ(t), η(t))um

+

p∑
j=1

∂

∂X
Lrm−1

f hmq
∗
j (θjd)

(3.59)

η̇k(t) = qk(ξ(t), η(t)) +

p∑
j=1

∂

∂X
φk(X)q∗j (θjd), k = r + 1, . . . , n (3.60)

yi(t) = ξi1(t), 1 ≤ i ≤ m (3.61)

According to Equations (3.18) (3.44) (3.53) and (3.54), the tracking controller can be
rewritten as

u = A−1 [−b+ v + uNN ] (3.62)

Substituting Equation (3.62) into (3.57) and (3.59), the dynamic equations of system (3.1)
can be shown as follows:

ξ̇i1(t)

ξ̇i2(t)
...

ξ̇iri−1(t)

ξ̇iri(t)

 =


0 1 0 · · · 0
0 0 1 · · · 0

...
...

0 0 0 · · · 1
0 0 0 · · · 0




ξi1(t)
ξi2(t)
...

ξiri−1(t)
ξiri(t)

+


0
0
...
0

ui
NN



+


0
0
...
0
1

 vi +



p∑
j=1

∂
∂X

hiq
∗
j (θjd)

p∑
j=1

∂
∂X

L1
fhiq

∗
j (θjd)

...
p∑

j=1

∂
∂X

Lri−1
f hiq

∗
j (θjd)



(3.63)


η̇r+1(t)
η̇r+2(t)

...
η̇n−1(t)
η̇n(t)

 =


qr+1(t)
qr+2(t)

...
qn−1(t)
qn(t)

+



p∑
j=1

∂
∂X

φr+1q
∗
j (θjd)

p∑
j=1

∂
∂X

φr+2q
∗
j (θjd)

...
p∑

j=1

∂
∂X

φn−1q
∗
j (θjd)

p∑
j=1

∂
∂X

φnq
∗
j (θjd)


(3.64)
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yi =
[
1 0 · · · 0 0

]
1×ri


ξi1(t)
ξi2(t)
...

ξiri−1(t)
ξiri(t)


ri×1

= ξi1(t), 1 ≤ i ≤ m (3.65)

Combining Equations (3.18), (3.20), (3.21), (3.26) and (3.44), it can be easily verified that
Equations (3.63)-(3.65) can be transformed into the following form.

η̇(t) = q(ξ(t), η(t)) + φη(θd) ≡ q22(t, η(t), e) + φη(θd) (3.66a)

εėi(t) = Ai
ce

i +Briε
riui

NN + φi
ξ (θd) , 1 ≤ i ≤ m (3.66b)

yi(t) = ξi1(t), 1 ≤ i ≤ m (3.67)

We consider L (ē, η) defined by a weighted sum of V (η) and W (ē),

L (ē, η) ≡ V (η) + k(ε)W (ē) ≡ V (η) + k(ε)
(
W 1

(
e1
)
+ · · ·+Wm (em)

)
(3.68)

where

W (ē) ≡ W 1
(
e1
)
+ · · ·+Wm (em) (3.69)

as a composite Lyapunov function of the subsystems (3.66a) and (3.66b) [20,24], where

W
(
ei
)
satisfies

W i
(
ei
)
≡ 1

2
ei

T
P iei (3.70)

In view of Equations (3.18), (3.33) and (3.40), the derivative of L along the trajectories
of (3.66a) and (3.66b) is given by

L̇ =
[
∇tV + (∇ηV )T η̇

]
+

k

2

[(
ė1
)T

P 1e1 +
(
e1
)T

P 1
(
ė1
)
+ · · ·+

(
˙em
)T

Pmem + (em)
T
Pm

(
˙em
)]

=
[
∇tV + (∇ηV )T η̇

]
+

k

2

[(
1

ε
A1

ce
1 +Br1ε

r1u1
NN +

1

ε
φ1
ξ(θd)

)T

P 1e1

+
(
e1
)T

P 1

(
1

ε
A1

ce
1 +Br1ε

r1u1
NN +

1

ε
φ1
ξ(θd)

)
+ · · ·

+

(
1

ε
Am

c e
m +Brmε

rmum
NN +

1

ε
φm
ξ (θd)

)T

Pmem

+ (em)
T
Pm

(
1

ε
Am

c e
m +Brmε

rmum
NN +

1

ε
φm
ξ (θd)

)]
≤

[
∇tV + (∇ηV )T q22(t, η(t), e) + (∇ηV )T φη (θd)

]
− k

2ε

[(
e1
)T

e1 + · · ·+ (em)
T
em

]
+ kεr1−1

∥∥BT
r1
P 1

∥∥∥∥∥e1∥∥∥∥∥u1
NN

∥∥+ · · ·+ kεrm−1
∥∥BT

rmP
m
∥∥ ‖em‖ ‖um

NN‖

+
k

ε

[
‖(θd)‖

∥∥φ1
ξ

∥∥∥∥P 1
∥∥∥∥∥e1∥∥∥+ · · ·+ ‖(θd + θu)‖

∥∥φm
ξ

∥∥ ‖Pm‖ ‖em‖
]
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≤
[
∇tV + (∇ηV )T q22(t, η(t), 0)

]
+ (∇ηV )T [q22(t, η(t), e)− q22(t, η(t), 0)]

+ ‖∇ηV ‖ ‖φη‖ ‖(θd)‖ −
k

2ε

[∥∥∥e1∥∥∥2

+
∥∥∥e2∥∥∥2

+ · · ·+ ‖em‖2
]

+
3

2

k2

ε2
∥∥φ1

ξ

∥∥2 ∥∥P 1
∥∥2

∥∥∥e1∥∥∥2

+ kεr1−1ω1
maxr1

∥∥BT
r1
P 1

∥∥ ∥∥∥e1∥∥∥2

+ · · ·

+ kεrm−1ωm
maxrm

∥∥BT
rmP

m
∥∥ ‖em‖2 + 1

6
‖(θd)‖2 + · · ·

+
3

2

k2

ε2
∥∥φm

ξ

∥∥2 ‖Pm‖2 ‖em‖2 + 1

6
‖(θd)‖2

≤
[
∇tV + (∇ηV )T q22(t, η(t), 0)

]
+ ‖∇ηV ‖ ‖q22(t, η(t), e)− q22(t, η(t), 0)‖

+ ‖∇ηV ‖ ‖φη‖ ‖(θd)‖ −
k

2ε

[
‖ē‖2

]
+

3

2

k2

ε2
∥∥φ1

ξ

∥∥2 ∥∥P 1
∥∥2

∥∥∥e1∥∥∥2

+
1

6
‖(θd)‖2 + · · ·

+
3

2

k2

ε2
∥∥φm

ξ

∥∥2 ‖Pm‖2 ‖em‖2 + 1

6
‖(θd)‖2 + εr1−1ω1

maxr1k
∥∥BT

r1
P 1

∥∥ ∥∥∥e1∥∥∥2

− εrm−1ωm
maxrmk

∥∥BT
rmP

m
∥∥ ‖em‖2

≤ − 2αx ‖η‖2 + ω3 ‖η‖M ‖ē‖+ ω3 ‖η‖ ‖φη‖ ‖(θd)‖ −
k

2ε
‖ē‖2

+
3

2

k2

ε2
∥∥φ1

ξ

∥∥2 ∥∥P 1
∥∥2

∥∥∥e1∥∥∥2

+
1

6
‖(θd)‖2 + · · ·+ 3

2

k2

ε2
∥∥φm

ξ

∥∥2 ‖Pm‖2 ‖em‖2

+
1

6
‖(θd)‖2 + εr1−1ω1

maxr1k
∥∥BT

r1
P 1

∥∥∥∥∥e1∥∥∥2

− εrm−1ωm
maxrmk

∥∥BT
rmP

m
∥∥ ‖em‖2

≤ − 2αx ‖η‖2 +
1

16
ω2
3M

2 ‖η‖2 + 4 ‖ē‖2 + ω2
3 ‖φη‖2 ‖η‖2 +

1

6
‖(θd)‖2 −

k

2ε
‖ē‖2

+
1

6
‖(θd)‖2 +

(
3

2

k2

ε2
∥∥φ1

ξ

∥∥2 ∥∥P 1
∥∥2

+ εr1−1ω1
maxr1k

∥∥BT
r1
P 1

∥∥) ‖ē‖2 + · · ·

+

(
3

2

k2

ε2
∥∥φm

ξ

∥∥2 ‖Pm‖2 + εrm−1ωm
maxrmk

∥∥BT
rmP

m
∥∥) ‖ē‖2 + 1

6
‖(θd)‖2

= − ‖η‖2
[
2αx −

1

16
ω2
3M

2 − ω2
3 ‖φη‖2

]
+

m+ 1

6
‖(θd)‖2

− ‖ē‖2
[
k

2ε
− εr1−1ω1

maxr1k
∥∥BT

r1
P 1

∥∥− εrm−1ωm
maxrmk

∥∥BT
rmP

m
∥∥

− 3

2

k2

ε2
∥∥φ1

ξ

∥∥2 ∥∥P 1
∥∥2 − · · · − 3

2

k2

ε2
∥∥φm

ξ

∥∥2 ‖Pm‖2
]

(3.71)

i.e.,

L̇ ≤ −k11 ‖ē‖2 − k22 ‖η‖2 +
m+ 1

6
‖(θd)‖2 (3.72)

From Equation (3.45c), we obtain

L̇ ≤ −N2

(
‖ē‖2 + ‖η‖2

)
+

m+ 1

6
‖(θd)‖2 (3.73)

Define

e ≡


e1

e2
...
em

 ≡
[

e11
e1rem

]
, e1rem ∈ <r−1 (3.74)
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Hence

L̇ ≤ −N2

(
‖η‖2 +

∥∥∥e11∥∥∥2

+
∥∥∥e1rem∥∥∥2

)
+

m+ 1

6
‖(θd)‖2 (3.75)

Utilizing Equation (3.75) easily yields

t∫
t0

(
y1(τ)− y1

d
(τ)

)2
dτ ≤ L (t0)

N2

+ 6
m+ 1

4N2

t∫
t0

‖(θd(τ))‖2dτ (3.76)

Similarly, it is easy to prove that

t∫
t0

(
yi(τ)− yi

d
(τ)

)2
dτ ≤ L (t0)

N2

+
m+ 1

6N2

t∫
t0

‖(θd(τ))‖2dτ, 2 ≤ i ≤ m (3.77)

so that statement Equation (3.38b) is satisfied. From Equation (3.73), we get

L̇ ≤ −N2

(
‖ytotal‖2

)
+

m+ 1

6
‖(θd)‖2 (3.78a)

where

‖ytotal‖2 ≡ ‖ē‖2 + ‖η‖2 . (3.78b)

By virtue of Theorem 5.2 [19], Equation (3.78a) implies the input-to-state stability for
the closed-loop system. Furthermore, it is easy to see that

∆min

(
‖e‖2 + ‖η‖2

)
≤ L ≤ ∆max

(
‖e‖2 + ‖η‖2

)
(3.79)

that is

∆min

(
‖ytotal‖2

)
≤ L ≤ ∆max

(
‖ytotal‖2

)
(3.80)

where ∆min ≡ min
{
ω1,

k
2
λ∗
min

}
and ∆max ≡ max

{
ω2,

k
2
λ∗
max

}
. From Equation (3.73) and

Equation (3.80) we yield that

L̇ ≤ − N2

∆max

L+
m+ 1

6

(
sup

t0≤τ≤t
‖(θd(τ))‖

)2

(3.81)

Hence,

L(t) ≤ L(t0)e
− N2

∆max
(t−t0) +

∆max(m+ 1)

6N2

(
sup

t0≤τ≤t
‖(θd(τ))‖

)2

, t ≥ t0 (3.82)

which implies

∣∣y1(t)− y1
d
(t)

∣∣ ≤ √
2L(t0)

kλ∗
min

e−
N2

2∆max
(t−t0) +

√
∆max(m+ 1)

3kλ∗
minN2

(
sup

t0≤τ≤t
‖(θd(τ))‖

)
(3.83)

Similarly, it is easy to prove that

∣∣yi(t)− yi
d
(t)

∣∣ ≤ √
2L(t0)

kλ∗
min

e−
N2

2∆max
(t−t0) +

√
∆max(m+ 1)

3kλ∗
minN2

(
sup

t0≤τ≤t
‖(θd(τ))‖

)
, 2 ≤ i ≤ m

(3.84)
So that Equation (3.38a) is proved and then the tracking problem with almost disturbance
decoupling is globally solved. Finally, we will prove that the sphere Br is a global attractor
for the output tracking error of system (3.1). From Equations (3.78a) and (3.45e), we get

L̇ ≤ −N2

(
‖ytotal‖2

)
+N1 (3.85)
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For ‖ytotal‖ > r, we have L̇ < 0. Hence, any sphere defined by

Br =

{[
ē
η

]
: ‖ē‖2 + ‖η‖2 ≤ r

}
(3.86)

is a global final attractor for the tracking error system of the nonlinear control systems
(3.1). Furthermore, it is easy routine to see that, for y /∈ Br, we have

L̇

L
≤ −N2 ‖ytotal‖2 +N1

L
≤ −N2 ‖ytotal‖2 +N1

∆max ‖ytotal‖2
≤ −N2

∆max

+
N1

∆max ‖ytotal‖2

≤ −N2

∆max

+
N1

∆maxr2
= −α∗

(3.87)

that is,

L̇ ≤ −α∗L

According to the comparison theorem, we get

L(t) ≤ L(t0) exp [−α∗(t− t0)]

Therefore,

∆min ‖ytotal‖2 ≤L(ytotal(t)) ≤ L(ytotal(t0)) exp [−α∗(t− t0)]

≤∆max ‖ytotal(t0)‖2 exp [−α∗(t− t0)]
(3.88)

Consequently, we get ‖ytotal‖ ≤
√

∆max

∆min
‖ytotal(t0)‖ exp

[
−1

2
α∗(t− t0)

]
, i.e., the conver-

gence rate toward the sphere Br is equal to α∗/2. This completes our proof.
In order to easily develop the main results via computational tool, an efficient compu-

tational algorithm for deriving the almost disturbance decoupling control is proposed as
follows:

1) Calculate the vector relative degree r1, r2, · · · , rm of the given control system.
2) Choose the diffeomorphism φ such that the Assumption 1 is satisfied.
3) Adjust some parameters αi

1, α
i
2, · · · , αi

ri
such that the matrices Ai

c are Hurwitz and
calculate the positive definite matrices P i of the Lyapunov equations (3.28) by software
package MATLAB.

4) Based on the famous Lyapunov approach, design a Lyapunov function to solve the
conditions (3.40a)-(3.40c). If the relative degree r1 + r2 + · · · + rm is equal to the
system dimension n, then this step should be omitted and immediately go to the next
step.

5) Appropriately tune the parameters ωi
max, ω

i
1ri
, tiriri , 1 ≤ i ≤ m, k, k11, k22, ε such that

N2 > 1 and go to the next step. Otherwise, we go to the Step 3 and repeat the overall
designing procedures.

6) According to Equations (3.39g) and (3.41), the desired feedback linearization controller
u can be constructed such that the uniform ultimate bounded stability is guaranteed.
That is, the system dynamics enter a neighborhood of zero state and remain within it
thereafter.

4. Illustrative Example. Consider the BILSAT-1 satellite of the Turkish Scientific and
Technological Research Council. From the detailed discussion of the satellite models
presented in [3,17,18,36], the dynamic equations are given as follows:

ẋ1 = (x4)

(
1 + x2

1 − x2
2 − x2

3

4

)
+ (x5)

(
−x3 + x1x2

2

)
+ (x6)

(
−x2 + x1x3

2

)
(4.1a)
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ẋ2 = (x4)

(
−x2 + x1x2

2

)
+ (x5)

(
1− x2

1 + x2
2 − x2

3

4

)
+ (x6)

(
−x1 + x2x3

2

)
(4.1b)

ẋ3 = (x4)

(
−x2 + x1x3

2

)
+ (x5)

(
x1 + x2x3

2

)
+ (x6)

(
1− x2

1 − x2
2 + x2

3

4

)
(4.1c)

ẋ4 = 0.2303∆11 − s11 − 0.2303u1 +

(
1

4.35

)
τ dx +

(
1

4.337

)
τ dy +

(
1

3.664

)
τ dz (4.1d)

ẋ5 = 0.231∆22 − s22 − 0.231u2 (4.1e)

ẋ6 = 0.2735∆33 − s33 − 0.2735u3 (4.1f)

ẋ7 = −0.2303∆11 + 125.2303u1 −
(

1

4.35

)
τ dx −

(
1

4.337

)
τ dy −

(
1

3.664

)
τ dz (4.1g)

ẋ8 = −0.231∆22 + 125.231u2 (4.1h)

ẋ9 = −0.2735∆33 + 125.2735u3 (4.1i)

y1 = h1(X) = x1 (4.1k)

y2 = h2(X) = x2 (4.1l)

y3 = h3(X) = x3 (4.1m)

where ∑
≡ 1− x2

1 − x2
2 − x2

3 (4.1n)

Λ ≡ 1 + x2
1 + x2

2 + x2
3 (4.1o)

ω0 ≡ 0.0010831 (4.1p)

s11 ≡
−4ω0x6 (−x2

1 + x2
2 − x2

3)− x6

∑2 ω0 + 8ω0x5x2x3 − 4x5x1

∑
ω0

Λ2
(4.1q)

s22 ≡
8ω0x6x2x1 − 4x6x3

∑
ω0 − 8ω0x4x2x3 + 4x4x1

∑
ω0

Λ2
(4.1r)

s33 ≡
−8ω0x5x2x1 + 4x5x3

∑
ω0 + 4ω0x4 (−x2

1 + x2
2 − x2

3) + x4

∑2 ω0

Λ2
(4.1s)

∆11 ≡
[
x6Λ

2 − ω0 (8x2x3 − 4x1

∑
)

Λ2

]0.008x8 +
4.337x5Λ

2 − 4.337ω0

(
4
(
−x2

1 + x2
2 − x2

3

)
+
∑2

)
Λ2


+

−x5Λ
2 + ω0

(
4
(
−x2

1 + x2
2 − x2

3

)
+
∑2

)
Λ2

[
0.008x9 +

3.664x6Λ
2 − 3.664ω0 (8x2x3 − 4x1

∑
)

Λ2

]
(4.1t)

∆22 ≡
[
−x6Λ

2 + ω0 (8x2x3 − 4x1

∑
)

Λ2

] [
0.008x7 +

4.531x4Λ
2 − 4.35ω0 (8x2x1 − 4x3

∑
)

Λ2

]
+

[
x4Λ

2 − ω0 (8x2x1 − 4x3

∑
)

Λ2

] [
0.008x9 +

3.664x6Λ
2 − 3.664ω0 (8x2x3 − 4x1

∑
)

Λ2

]
(4.1u)

∆33 ≡

x5Λ
2 − ω0

(
4
(
−x2

1 + x2
2 − x2

3

)
+
∑2

)
Λ2

[
0.008x7 +

4.531x4Λ
2 − 4.35ω0 (8x2x1 − 4x3

∑
)

Λ2

]

+

[
−x4Λ

2 + ω0 (8x2x1 − 4x3

∑
)

Λ2

]0.008x8 +
4.337x5Λ

2 − 4.337ω0

(
4
(
−x2

1 + x2
2 − x2

3

)
+

∑2
)

Λ2


(4.1v)

where τ dx , τ
d
y and τ dz are the disturbance torques due to external effects such as aerody-

namics, gravity gradient and solar pressure,
[
x1 x2 x3

]T
is the Modified Rodriguez
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Parameters (MRP) attitude vector,
[
x4 x5 x6

]T
is the angular velocity of the satellite

body,
[
x7 x8 x9

]T
is the velocity vector of the reaction wheel, ω0 is the orbital velocity

and
[
u1 u2 u3

]T
=

[
τxa τ ya τ za

]
is the input torque vector.

Now we will show how to explicitly construct a controller that tracks the desired ori-
entation of y1d = 20◦ = 0.35rad, y2d = 40◦ = 0.7rad, y3d = 60◦ = 1.05rad and attenuates
the disturbance’s effect on the output terminal to an arbitrary degree of accuracy. Let’s
arbitrarily choose α1

1 = α2
1 = α3

1 = 1, α1
2 = α2

2 = α3
2 = 1. Using the Matlab software yields

P 1 = P 2 = P 3 =

[
3.5 2.5
2.5 15

]
(4.2)

From Equation (3.41), we obtain the desired tracking controllers

u = A−1

−
⇀

b +
⇀
v +

 u1
NN

u2
NN

u3
NN

 (4.3a)

A ≡

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 (4.3b)

a11 ≡
0.25 + 0.25 (x2

1 − x2
2 − x2

3)

−4.35 + 0.008
, a12 ≡

−0.5x3 + 0.5x2x1

−4.337 + 0.008
, a13 ≡

0.5x2 + 0.5x3x1

−3.664 + 0.008
,

a21 ≡
0.5x3 + 0.5x2x1

−4.35 + 0.008
, a22 ≡

0.25 + 0.25 (−x2
1 + x2

2 − x2
3)

−4.337 + 0.008
, a23 ≡

−0.5x1 + 0.5x3x2

−3.664 + 0.008
,

a31 ≡
−0.5x2 + 0.5x3x1

−4.35 + 0.008
, a32 ≡

0.5x1 + 0.5x3x2

−4.337 + 0.008
, a33 ≡

0.25 + 0.25 (−x2
1 − x2

2 + x2
3)

−3.664 + 0.008

⇀
v ≡

 v1
v2
v3

 (4.3c)

v1 = − (0.22)−2 (0.2) (x1 − 0.35)− (0.22)−1 (0.2)

[
(x4)

(
1 + x2

1 − x2
2 − x2

3

4

)
+ (x5)

(
−x3 + x1x2

2

)
+ (x6)

(
−x2 + x1x3

2

)]
v2 = − (0.22)−2 (0.2) (x2 − 0.7)− (0.22)−1 (0.2)

[
(x4)

(
−x2 + x1x2

2

)
+ (x5)

(
1− x2

1 + x2
2 − x2

3

4

)
+ (x6)

(
−x1 + x2x3

2

)]

v3 = − (0.22)−2 (0.2) (x3 − 1.05)− (0.22)−1 (0.2)

[
(x4)

(
−x2 + x1x3

2

)
+ (x5)

(
x1 + x2x3

2

)
+ (x6)

(
1− x2

1 − x2
2 + x2

3

4

)]
⇀

b ≡

 b1
b2
b3

 (4.3d)
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f1 ≡ (x4)

(
1 + x2

1 − x2
2 − x2

3

4

)
+ (x5)

(
−x3 + x1x2

2

)
+ (x6)

(
−x2 + x1x3

2

)
f2 ≡ (x4)

(
−x2 + x1x2

2

)
+ (x5)

(
1− x2

1 + x2
2 − x2

3

4

)
+ (x6)

(
−x1 + x2x3

2

)
f3 ≡ (x4)

(
−x2 + x1x3

2

)
+ (x5)

(
x1 + x2x3

2

)
+ (x6)

(
1− x2

1 − x2
2 + x2

3

4

)
f4 ≡ 0.2303∆11 − s11

f5 ≡ 0.231∆22 − s22

f6 ≡ 0.2735∆33 − s33

b1 ≡ (0.5x4x1 + 0.5x5x2 + 0.5x6x3) f1 + (−0.5x4x2 + 0.5x5x1 + 0.5x6) f2

+ (−0.5x4x3 − 0.5x5 + 0.5x6x1) f3 +
(
0.25 + 0.25

(
x2
1 − x2

2 − x2
3

))
f4

+ (−0.5x3 + 0.5x2x1) f5 + (0.5x2 + 0.5x3x1) f6

b2 ≡ (0.5x4x2 − 0.5x5x1 − 0.5x6) f1 + (0.5x4x1 + 0.5x5x2 + 0.5x6x3) f2

+ (0.5x4 − 0.5x5x3 + 0.5x6x2) f3 + (0.5x3 + 0.5x2x1) f4

+
(
0.25 + 0.25

(
−x2

1 + x2
2 − x2

3

))
f5 + (−0.5x1 + 0.5x2x3) f6

b3 ≡ (0.5x4x3 + 0.5x5 − 0.5x6x1) f1 + (−0.5x4 + 0.5x5x3 − 0.5x6x2) f2

+ (0.5x4x1 + 0.5x5x2 + 0.5x6x3) f3 + (−0.5x2 + 0.5x3x1) f4

+ (0.5x1 + 0.5x2x3) f5 +
(
0.25 + 0.25

(
−x2

1 − x2
2 + x2

3

))
f6

u1
NN =ω1

11t
1
11ε

0 (x1 − 0.35) + ω1
12t

1
22ε

1

[
(x4)

(
1 + x2

1 − x2
2 − x2

3

4

)
+ (x5)

(
−x3 + x1x2

2

)
+ (x6)

(
−x2 + x1x3

2

)] (4.3e)

u2
NN =ω2

11t
2
11ε

0 (x2 − 0.7) + ω2
12t

2
22ε

1

[
(x4)

(
−x2 + x1x2

2

)
+ (x5)

(
1− x2

1 + x2
2 − x2

3

4

)
+ (x6)

(
−x1 + x2x3

2

)] (4.3f)

u3
NN =ω3

11t
3
11ε

0 (x3 − 1.05) + ω3
12t

3
22ε

1

[
(x4)

(
−x2 + x1x3

2

)
+ (x5)

(
x1 + x2x3

2

)
+ (x6)

(
1− x2

1 − x2
2 + x2

3

4

)] (4.3g)

It can be verified that the relative conditions of Theorem 3.1 are satisfied if ε = 0.22,
t111 = t122 = t211 = t222 = t311 = t322 = 1, ω1

11 = ω1
22 = ω2

11 = ω2
22 = ω3

11 = ω3
22 = 0.024,

αx = 0.6, ω1 = ω2 = 4, ω3 = 8, M = 0.1, r1 = r2 = r3 = 2, and k = 6
√
ε. Hence,

the tracking controllers will steer the output tracking errors of the closed-loop system,
starting from any initial value, to be attenuated to zero by virtue of Theorem 3.1. The
complete trajectories of the outputs are depicted in Figure 3. Based on the observation
of Figure 3, our proposed controller has successfully driven the the BILSAT-1 satellite
to track the desired attitudes in Euler angles (roll, pitch and yaw) y1d = 20◦ = 0.35rad,
y2d = 40◦ = 0.7rad, y3d = 60◦ = 1.05rad within short time and attenuates the disturbance’s
effect on the output terminal to an arbitrary degree of accuracy. It is easy to see that the
proposed controller does not employ any learning or adaptive algorithm and the stability
and the almost disturbance decoupling performance of the system are guanranteed at each
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Figure 3. The output trajectories of the BILSAT-1 satellite

step of selecting weights to enhance the performance via MATLAB as long as the related
sufficient conditions are satisfied.

5. Comparative Example with Existing Approach. [25] exploited the fact that the
almost disturbance decoupling problem could not be solvable for the following system:[

ẋ1(t)
ẋ2(t)

]
=

[
tan−1(x2)

0

]
+

[
0
1

]
u+

[
1
0

]
θ(t) (5.1a)

y(t) = x1(t) := h(X(t)) (5.1b)

where u, y denoted the input and output respectively, θ(t) := 0.05 sin t is the disturbance.
The almost disturbance decoupling problem can be easily solved via the proposed ap-
proach in this paper. Following the same procedures shown in the demonstrated example,
we can solve the tracking problem with almost disturbance decoupling problem by the
controller u defined as

u =
(
1 + x2

2

)
[− sin t− (0.03)−2 (x1 − sin t)− (0.03)−1 (tan−1 x2 − cos t)

+ ω1
11t

1
11(x1 − sin t) + ω1

12t
1
22(tan

−1 x2 − cos t)]
(5.2)

The output error of feedback-controlled system for (5.1) is depicted in Figure 4 with the
neural network weights ω1

11 = −0.2, t111 = −0.2, ω1
12 = −0.2, t122 = −0.2.

It is worth noting that the sufficient conditions given in [25] (in particular the structural
conditions on nonlinearities multiplying disturbances) are not necessary in this study
where a nonlinear state feedback control is explicitly designed which solves the almost
disturbance decoupling problem. For instance, the almost disturbance decoupling problem
is solvable for the system (5.1) by a nonlinear state feedback control, according to our
proposed approach, while the sufficient conditions given in [25] fail when applied to the
system (5.1). The design techniques in this study are also entirely different than those in
[25] since the singular perturbation tools are not used.
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Figure 4. The output error of feedback-controlled system for (5.1)

6. Conclusion. A novel neural feedback control to globally solve the tracking problem
with almost disturbance decoupling for MIMO nonlinear system has been proposed. The
new approach to neural network and feedback linearization controller enables the designer
to determine the interconnect structure among the layers needed to stabilize the overall
system without any learning or adaptive algorithms. One comparative example is pro-
posed to show the significant contribution of this paper with respect to some existing ap-
proach. A practical example of BILSAT-1 satellite system demonstrates the applicability
of the proposed feedback linearization approach and the composite Lyapunov approach.
Simulation results have been presented to show that the proposed methodology can be
successfully applied to feedback linearization problem and is able to achieve the desired
tracking and almost disturbance decoupling performances of the controlled system.
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