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Abstract. Imperial Smelting Process (ISP) is one of the main methods for Zinc and
Lead smelting. Its operating conditions change very frequently due to the changes of work
points, which always lead to false alarms. We focus on this issue and present a recursive
Dynamic PCA (RPCA) based monitoring scheme for ISP to adapt process changes. We
present a simplified RPCA algorithm based on first-order perturbation analysis (FOP),
which is a rank-one update of eigenvalues and their corresponding eigenvectors of an ob-
servation covariance matrix. The computation cost is greatly decreased. We also present
two new statistics for process monitoring in ISP to avoid numerical computation diffi-
culty induced by the traditional statistics. Finally, we apply the proposed method to real
data from ISP. The results show that the proposed scheme can be able to eliminate false
alarms and detect faults efficiently.
Keywords: Recursive principal component analysis, Imperial smelting process, Fault
detection, First-order perturbation analysis

1. Introduction. Imperial Smelting Process (ISP) is one of the main methods for Zinc
and Lead smelting, the objective of which is to obtain maximal output, especially the
maximal zinc output because zinc is more expensive than lead [1]. There are so many ab-
normal conditions or faults in the process because its operational conditions change very
frequently, so it is very important to online detect the abnormal conditions or faults of the
process. Over the past two decades, model based fault diagnosis techniques have made
significant progress and received considerable attention in both research and application
domains. It is most important for model based fault diagnosis to obtain a mathematic
model, for example observer based scheme or Markove model based scheme for fault de-
tection [2, 3]. However, ISP is such a complex process that we cannot build mathematical
model for process monitoring and fault diagnosis (PM-FD). Fortunately, there is huge
data collected and stored in this process, and lots of data-driven methods are used for
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PM-FD and have attracted more and more attention such as AI based methods [4] and
statistics methods [5].
Principal component analysis (PCA) is a most popular way for this purpose, which

has been successfully applied to PM-FD of many industrial processes. The central idea
of PCA is to reduce the dimensionality of a data set consisting of a large number of
interrelated variables, while retaining as much as possible of the variation present in the
data set. To use PCA for PM-FD, a PCA model is firstly established based on collected
process data under normal operating conditions. Then, the control limits of monitoring
statistics (e.g., T2, SPE) are calculated and thus the process can be online monitored
by these statistics [6]. Despite its tremendous success, standard PCA-based monitoring
technique has a few major drawbacks. First of all, it could not be used to deal with
processes with time-varying parameters. When natural drifting behavior or changing of
operation region happens, there will be more false alarms; thus more reasonable PCA
model and control limits for monitoring statistics are obtained in an adaptive manner. A
promising technique combining moving window (MW) with recursive updating of PCA
model was proposed [7]. As a result, recursion with a window sliding along the data is
more appropriate for time-varying processes. This adaptation approach is so-called as
moving window PCA (MWPCA). The fast MWPCA enables online application of generic
moving window based recursive PCA with a larger window size, but the efficient algorithm
for updating PCA model was not addressed. Recently, the moving window kernel PCA
has been proposed by Liu et al. for adaptive monitoring of nonlinear process [8], but the
method is with much computation so that it is very difficult for online application.
Changes and drifts of many industrial processes like ISP would be frequently reflected

in the process variables, which would lead to false alarms. Moreover, it is also a typ-
ical complex dynamic system due to so many complex chemical and physical reactions
involved. Recent development of Dynamic PCA (DPCA) based process monitoring is
focused on achieving adaptive process monitoring and dealing with process dynamics.
To this end, Rigopoulos [9] presented a moving window scheme to identify an adaptive
model in a simulated paper machine profile. Qin [10] proposed several recursive partial
least squares (RPLS) algorithms for online process modeling to adapt process changes
and off-line modeling to deal with a large number of data samples, and [11] discussed a
recursive PCA in adaptive industrial process monitoring using rank-one modification and
Lanczos tridiagonalization. Elshenawy [12] presented two RPCA algorithms aiming to re-
duce the computation cost without computing the correlation matrix. But it also endures
a lot of computation cost because the recursive computation and indices computation of
DPCA are very complex, or may be faced with some ill cases based on such complex real
data obtained from ISP.
Motivated by the problems encountered when RPCA is solely implemented for process

monitoring, the study reported in this paper focuses on developing a novel adaptive mon-
itoring scheme for time-varying processes by taking advantage of Dynamic PCA (DPCA).
A simplified algorithm is proposed based on first-order perturbation theory (FOP) [13]
in order to decrease the computation cost clearly. We have also noticed that real data
obtained from ISP is so complex, there are some ill cases in the computation process of
statistics indices, and slight modifications on the PCA methods might result in a perfor-
mance improvement in detecting and identifying process faults. So, we introduce two new
statistics for alternative and apply them to the recursive PCA method.
The paper is organized as follows. In Section 2, we present a simplified FOP based

PCA to recursively update the PCA model and introduce two new statistics. Section 3
gives the integrated RDPCA based process monitoring scheme. Imperial Smelting Process
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monitoring scheme and some simulation results are also shown in Section 3. The paper
ends with conclusions in the last section.

2. Recursive Dynamic Principal Component Analysis.

2.1. Principal component analysis. Similar to standard PCA, dynamic PCA consists
of several steps and can be formulated as follows:

1) Data collection and pre-processing: consider a process with variables, let

Xs =


xT
1 xT

2 . . . xT
s

xT
2 xT

3 . . . xT
s+1

...
...

. . .
...

xT
N xT

N+1 . . . xT
N+s−1

 ∈ <N×sm (1)

where xi ∈ Rm, i = 1, . . . , N + s− 1, denotes a sample vector of m sensors, which always
is scaled to zero mean and unit variance. A time lag shift s is always assumed to be some
integer and small. The normalization equation as follows:

xj =

(
x0
j − b0j

)
η0j

(2)

where b0j and η0j are the corresponding mean and variance of the jth variable x0
j respec-

tively, x0
j is the raw data, and j = 1, . . . ,m.

2) Decomposition of correlation matrix and thresholds calculation: The correlation ma-
trix is constructed as:

R ≈ 1

N − 1
XT

s Xs = PΛPT (3)

with

Λ =

[
Λpc 0
0 Λres

]
Λpc = diag(σ2

1, . . . , σ
2
lk
) ∈ <lk×lk

Λres = diag(σ2
lk+1, . . . , σ

2
sm) ∈ <(sm−lk)×(sm−lk)

P = [Ppc Pres] ∈ <sm×sm

Ppc ∈ <sm×lk , Pres ∈ <sm×(sm−lk)

where σ1, σ2, . . . , σlk (σ1 ≥ . . . ≥ σlk) are the lk largest (principal) singular values and

σlk ≥ σlk+1 ≥ . . . ≥ σsm

For process monitoring purpose, two indices Hotelling’s T 2 and SPE are calculated on
the assumption that the sample number N is large enough. In order to simply our study
and notation, thus χ2-distribution instead of F -distribution can be adopted. So that T 2

satisfies with lk degrees of freedom. For a given significance level α, the corresponding
thresholds are set to be:

Jth,T 2 =
lk(N − 1)(N + 1)

N(N − lk)
Fα(lk, N − lk) ≈ χα(lk) (4)

Jth,SPE = θ1

(
cα
√
2θ2h2

0

θ1
+ 1 +

θ2h0(h0 − 1)

θ21

)1/h0

(5)
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with

θi =
sm∑

j=lk+1

(σ2
j )

i, i = 1, 2, 3, h0 = 1− 2θ1θ3
3θ22

3) Online process monitoring: For a new scaled measurement x ∈ <m, T 2 and SPE
can be calculated online as follows:

T 2 = xTPpcΛpcP
T
pcx (6)

SPE = ||(I−PpcP
T
pc)x||2 = xT (I−PpcP

T
pc)

2x (7)

2.2. Recursive DPCA based on FOP. Standard PCA (DPCA) based process moni-
toring is efficient to deal with time-invariant process. However, it is hard to monitor the
normal process variations caused by external disturbances and conditions change, which
would lead to the changes of work points. To deal with this problem, an adaptive model
should be constructed to update the PCA (DPCA) model to adapt to the time-variant
sceneries. To this end, the correlation matrix Rk at time instant k is required to be
computed and update its eigen-structure, however, the calculation costs of Rk would be
so tremendous that it is even impossible for on-line application. Therefore, a recursive
algorithm based on FOP is introduced to update the fixed model with lower computation
costs as follows.
Let x0

k ∈ <sm be the raw data at time instant k, the mean value at time instant k − 1
is:

bk−1 =
k−1∑
i=1

x0
i /(k − 1) (8)

So similarly, bk presents the mean value at time instant k.

bk =
k∑

i=1

x0
i /k (9)

It is deserved to note that
kbk = (k − 1)bk−1 + x0T

k (10)

For further discussion, Equation (10) can be rewritten as:

bk−1 =
k

k − 1
bk −

1

k − 1
x0T
k (11)

Let

∆bk = bk − bk−1 = bk −
k

k − 1
bk +

1

k − 1
x0T
k

=
1

k − 1

(
x0T
k+1 − bk+1

)
=

1

k − 1

(
x0
k+1 − bT

k+1

)T
(12)

Recall following equation from (11)

Rk = µΛ−1
k

(
Λk−1Rk−1Λk−1 +∆bk∆bT

k

)
Λ−1

k + (1− µ)xT
k xk (13)

If the variance does not change significantly, we can use the initial variance to scale the
data and do not update the variance. Equation (13) can be reduced into,

Rk = µRk−1 + µΛ−1
k ∆bk∆bT

kΛ
−1
k + (1− µ)xT

k xk (14)

where µ = k−1
k
, xk ∈ <sm denotes the measurement vector at time instant k. For further

discussion, Equation (14) can be regenerated by:

Rk =
k − 1

k
Rk−1 +

1

k − 1
xT
k xk (15)
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According to the algorithm proposed by [13], if the correlation matrix can be recursively
based on first-order perturbation analysis (FOP) updated by

Rk = εRk−1 + (1− ε)xT
k xk (16)

where forgetting factor ε is a small positive number (ε → 0). And then, the singular
values and eigenvectors of the updated matrix can be described by:

σ2
k,i = εσ2

k−1,i + (1− ε)PT
k−1,ixkx

T
kPk−1,i (17)

Pk,i = Pk−1,i +
m∑
j=1

λjiPk−1,i (18)

where i, j = 1, . . . ,m, bii = 0 and

λji =
PT

k−1,ixk−1x
T
k−1Pk−1,i

σ2
k−1,i − σ2

k−1,j

(19)

λij = −λji (20)

It is deserved to note that if the difference between two successive eigen-values is small,
there will be undesirable behavior of the algorithm. To overcome this problem, Equation
(19) can be reconstructed without altering the complexity of the algorithm with following
modifications:

λji =
PT

k−1,ixk−1x
T
k−1Pk−1,i

max(γσ2
k−1,1, σ

2
k−1,i − σ2

k−1,j)
(21)

2.3. Two new statistics. Assume that the process is normal, x ∼ N(0,R), and it holds
that

zpc = PT
pcx ∈ <lk , zpc ∼ N

(
0,PT

pcRPpc

)
= N (0,Λpc) (22)

thus T 2 satisfies χ2-distribution with lk degrees of freedom when N is large enough. Note
that,

zres = PT
resx ∈ <(sm−lk), zres ∼ N

(
0,PT

resRPres

)
= N(0,Λres) (23)

As a result,

xTPresΛ
−1
resP

T
resx

satisfies χ2-distribution with sm−lk degrees of freedom and would be a reasonable statistic
for fault detection purpose. Actually the statistic mentioned above is called Hawkin’s T 2

H ,
which is however less used in practice due to some drawbacks with Λres when some of the
singular values σlk+1, . . . , σsm are closed to zero. To avoid this difficulty, an alternative
test statistic is proposed. Let

Ξ = diag

(
σ2
sm

σ2
lk+1

, . . . ,
σ2
sm

σ2
sm−1

, 1

)
∈ <(sm−lk)×(sm−lk) (24)

It turns out that

Ξ1/2PT
resx ∼ N

(
0, σ2

smI(sm−lk)×(sm−lk)

)
And moreover

xTPresΞP
T
resx = σ2

smx
TPresΛ

−1
resP

T
resx (25)

Define a new test statistic as

SPEnew = xTPresΞP
T
resx (26)

Threshold for a given significance level α is equal to

Jth,SPE,new = σ2
smχ

2
α(sm− lk) (27)
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Recall that
SPE = xT (I−PpcP

T
pc)

2x = xTPresP
T
resx (28)

The new statistic SPEnew is χ2-distributed, and better than conventional SPE since the
threshold associated with SPE is an approximation, while the threshold with SPEnew

can be exactly determined by the available χ2-distribution table. On the other hand,
Jth,SPE,new is much less complicated compared with Jth,SPE. For further discussion, let

Ξ = diag

(
σ2
sm

σ2
1

, . . . ,
σ2
sm

σ2
sm−1

, 1

)
∈ <sm×sm (29)

A new combined index is proposed as follows:

T 2
c,new = xTPΞPTx = σ2

smT
2 + T 2

new (30)

It is clear that the corresponding threshold for a given significance level α is

Jth,c,new = σ2
smχ

2
α(sm) (31)

The detection logic is summarized as follows:

SPE ≤ Jth,SPE, T 2 ≤ Jth,T 2

SPEnew ≤ Jth,SPE,new and T 2
c,new ≤ Jth,c,new ⇒

Fault-free, otherwise there is a fault.

2.4. Algorithm analysis. We compare the computational costs of the proposed RDPCA
algorithm, with other known algorithm, such as the standard singular value decomposi-
tion (SVD) algorithm, Lanzos tridiagonalization [11], inverse iteration approach and fast
MWPCA [12]. For the sample-wise case, the overall complexity using these five algorithms
is listed in Table 1.

Table 1. Comparison of computational complexity

Approach Flops Computation complexity
Standard SVD 22m3 + 4m2 + 12m+ 1 O(m3)

Lanczos approach (4lk + 3)m2 + (6.5lk − 1.5l2k + 12)4m+ 1 O(lkm
2)

fast MWPCA 6m2 + 20m2 + 11m+ 17 O(m3)
Inverse iteration 2

3
m3lk + 2lkm

2 − (5l + 12)m+ lk + 1 O(m3)
RDPCA 14s2m2 + 19sm+ 1 O(m2)

Here m is the number of system variables and lk are the PCs. Table 1 shows that
the proposed recursive algorithm considerably reduces the computation cost. Because
there is exists a time lag shift, the flops of the FOP based RDPCA approach is 14s2m2 +
19sm + 1. As mentioned above, s is small and always assumed to be some integer, so
the computation complexity of RDPCA is approximately O(m2). In the special case
of updating, i.e., lk = 1, flops of Lanczos approach is 7m2 + 68m + 1, which has the
same computation complexity O(m2) with the proposed recursive PCA algorithm. In
other cases, the computation complexity of FOP approach is the smallest. Since the
proposed RDPCA does not need to decompose the covariance matrix every step, instead
of recursive calculating the eigenpairs, a significant further reduction in computation cost
is also available.



A SIMPLIFIED RDPCA BASED MONITORING SCHEME FOR ISP 2557

3. Adaptive Monitoring of Imperial Smelting Process.

3.1. Description of process. Blast smelting for Zinc and Lead is a very typical main
complex metallurgical process firstly patented by Imperial Smelting Company in Britain.
So it is also called Imperial Smelting Process (ISP). The smelting Equipment of ISP is
called Imperial Smelting Furnace (ISF). Lead and Zinc are simultaneously and continu-
ously smelted in a closed furnace in a series of complicated chemical reactions with little
process details known.

The outstanding feature of ISP is to smelt two metals simultaneously in the same
process, which can be divided into two sub-processes: sintering process and smelting
process. At the beginning, a preparative sintering process is performed for smelting
material preparation, and the agglomerate, which includes zinc and leads mine in this
process is sintered and desulfurated under certain burning conditions. And then the
agglomerate blended with coke in some ratio and flux is put into the top of ISF through
two devices called bells. The structure of ISF is shown as Figure 1.

Figure 1. Imperial smelting furnace structure

Blasting hot airs in more than 800◦C and oxygen are blasted into ISF for speeding
the chemical reactions. The majority of hot airs are mainly put into the bottom of ISF
and the rest part, as secondary air, is sent into the upper part near fading bell of the
surface. When the Redox-reaction is taking place, the sulfates of raw metals are reduced
due to carbons in the coke. Zinc is gasified because of a lower boiling point and passes
through the throat of furnace, to a condenser where plenty of tiny drops of liquid lead
are sprayed to absorb zinc gas with high temperature. An important technical detail is
that the liquid of lead is not directly received from smelting furnace but an independent
solvent of zinc recycling from spraying device to a lead pool. After passing through a
series of devices for segregating, the mixture of liquid zinc and lead is separated. Zinc is
lighter and accumulates in the upper layer while lead is heavier and accumulates in the
lower layer. After abstracting, refining and purifying successively, we can obtain raw zinc
of 98% and pure zinc of 99.995%. The exhaust gas released from furnace throat is put
into a washing tower for dust removal.

In ISF, the inputs are coke, agglomerate, some flux and air, and the outputs are zinc,
lead, residue and exhaust gas. There are almost 100 measurements of temperature, pres-
sure; flow and level variables to be monitored in the whole ISF. Here, 22 main process
variables are selected and listed in Table 2.

There are four types of common faults available in this process, which are slag leakage
in lead pool, nodulation, hang-up and device fault in electrical heating bed. It is obvious
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Table 2. Some important measurements

Number Name Number Name
1 Hot air temperature 2 Hot air pressure
3 Hot air flow 4 Cold air pressure
5 Surrounding air flow 6 Secondary air flow
7 Southeast air flow 8 Northeast air flow
9 Southwest air flow 10 Northwest air flow
11 Base air flow 12 Base air pressure
13 East top temperature 14 West top temperature
15 Chamber pressure 16 Lead pool temperature
17 Zinc pool temperature 18 Electrical hot bed temperature
19 Mixed air flow 20 No. 1 exhaust gas temperature
21 No. 2 exhaust gas temperature 22 No. 3 exhaust gas temperature
23 Hearth box temperature

that these faults may lead many of these variables to change. The agglomerate and hot
coke from the preheating furnace are periodically blended in a specified ratio and put into
ISF through so-called feeding bells and meanwhile some of the manipulating variables
such as hot air temperature and blasting air flow must be pre-set. One of the difficulties
in designing monitoring scheme is some normal process changes and multiple operating
conditions are mistaken as abnormal deviations that may cause false alarms. Therefore,
an adaptive process monitoring scheme should be designed. To this end, we apply the
proposed RDPCA scheme to monitoring the process.

3.2. Data preprocessing. To effectively extract the information in the data relevant to
process monitoring, it is necessary to pretreat the data. One of the pretreatment proce-
dures is the so-called autoscaling, which normalizes the process variables in a way that
each variable has equal weight before applying the process monitoring method. Autoscal-
ing consists of two steps, i.e., centering the variables to zero mean and then dividing these
variables by their standard deviations. For recursive implementation of PCA, the mean
and variance should be updated according to the following equations:

bj,k = αbj,k−1 + (1− α)x0
j,k (32)

η2j,k = αR2
j,k−1 + (1− α)(x0

j,k − bj,k)
2 (33)

where x0
j,k is the jth measurement variable before normalization, bk = [bj,k, . . . , bsm,k]

T ∈
<sm and η2j,k are the update mean vector and variances of measurement data, and j =
1, . . . , sm. According to these updated relations, the normalized data is calculated as
Equation (2).
A complete implementation of RPCA also requires recursive calculation of the number

of PCs. There are many approaches to calculate the number of PCs, but most of them
use monotonically increasing or decreasing indices. The decision to choose the index is
very subjective and depends on application requirements. Several comparative studies
have been conducted on these approaches. Unfortunately, not all of the approaches are
suitable for the recursive determination of the number of PCs. The CPV approach is
implemented in our application study [11].

3.3. Test results and analysis.
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3.3.1. Algorithm. In this section, FOP-based recursive DPCA algorithms are illustrated
in ISP for adaptive monitoring including following steps:

a) Construct the initial DPCA model according to Equations (1) and (3). Time lag
shift s is chosen to be 1 and significance level α is selected as 0.98.

b) Determine the numbers of the principal components using recursive approach.
c) Collect the raw data x0

k ∈ <1×sm, normalize it using Equation (2), and the forgetting
factor ε here is selected as 0.01.

d) Initial conditions are calculated for sample time instant k−1, including σ2
k−1, Pk−1,i,

bk−1.
e) According to Equations (17) and (18), the eigen-values σ2

k and eigen-vectors Pk at
time instant k are updated respectively.

f) Online calculating four statistics T 2, SPE, SPEnew and T 2
c,new using Equations (6),

(7), (26) and (30) respectively.
g) On the basis of Equations (4), (5), (27) and (31), calculating 4 corresponding thresh-

olds, the computational sequence is identical with above procedure.
h) Using the detection logic, which is summarized in part 2.3, to monitor the process.

3.3.2. Simulations under the fault-free condition. Statistics indices from real data of ISP
under the fault-free condition are shown in Figures 2-5. It can be seen from Figure 2 and
Figure 3 that the process monitoring cannot work using standard DPCA because there
exist so many fault alarms, although it is very clear that there exist less fault alarm in
Figure 3 than in Figure 2. To cope with this problem that change of work points leads
to fault alarms, recursive DPCA is introduced in Figures 4 and 5. It can be seen from
Figures 4 and 5 that the proposed scheme is more effective under the fault-free condition.
And it is also very clear that there exist less fault alarms in Figure 5 than in Figure 4.

Figure 2. Normal variations
by DPCA with conventional
indices

Figure 3. Normal variations
by DPCA with two new in-
dices

3.3.3. Simulations under the fault condition. Statistics indices from real data of ISF under
the fault condition are shown in Figures 6-9.

It can be seen from Figures 6 and 7 that the process monitoring can not work using
standard DPCA under the fault condition. Now, we would like to use recursive DPCA
for monitoring purpose shown in Figures 8 and 9 under fault condition. It can be seen
from Figures 8 and 9 that the proposed scheme is more effective under the fault condition
because it is very clear that there exist few fault alarms in Figures 8 and 9.
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Figure 4. Normal variations
by recursive DPCA (fault free)
with conventional indices

Figure 5. Normal variations
by recursive DPCA (fault free)
with new indices

Figure 6. Monitoring by
DPCA with conventional in-
dices

Figure 7. Monitoring by
DPCA with new indices

Figure 8. Monitoring by re-
cursive DPCA with conven-
tional indices

Figure 9. Monitoring by re-
cursive DPCA with new in-
dices
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4. Conclusions. A recursive Dynamic PCA (RDPCA) based monitoring scheme for Im-
perial Smelting Process (ISP) is proposed to adapt the process changes. It includes a
FOP based recursive PCA algorithm and two new statistics indices. The applications of
the proposed scheme to ISP demonstrate the feasibility and effectiveness of the recursive
algorithms for adaptive process monitoring. The algorithm significantly reduces the on-
line computation cost, and have been derived based on rank-one matrix update of the
covariance matrix. Because most industrial process experience slow and normal changes
such as equipment aging, sensor drifting and periodic cleaning, the proposed adaptive
monitoring scheme in this paper is expected to have wide applications in industry.
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