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Abstract. The purpose of this paper is to explore the inventory control problem with
immediate return for defective items in fuzzy senses. First, the crisp case of the proposed
model is constructed in terms of annual profit. Based on the features of the model and
its practical applications, three parameters in the model: the perfective rate, demand rate
and purchasing cost are fuzzified. The Yager’s ranking method for fuzzy numbers is then
utilized to determine the optimal order quantity. Due to the fact that triangular fuzzy
numbers are used extensively, we also provide an expression of the optimal order quantity
for the case that all of the three parameters are triangular fuzzy numbers. Finally, based
on 125 combinations of triangular fuzzy numbers of the parameters, a numerical example
is provided to illustrate the proposed model and assess the effects of fuzziness of the
parameters on the optimal solution.
Keywords: Inventory, Fuzzy, Defective items, Immediate return

1. Introduction. In the last few decades, inventory models have been widely applied
in industries. However, one of the weaknesses of current inventory models is the unre-
alistic assumption that all items produced are of good quality [1]. In practice, due to
imperfective production process, natural disasters or breakage in transit, the lot sizes
produced/received may contain some defective items [2]. Hence, several researchers pay
their attention to the inventory models with defective items [3]. Recently, Salameh and
Jaber [4] and Cardenas-Barron [5] assumed that the defective items can be sold in a single
batch by the end of the 100% screening process. The result indicates that the economic
order quantity tends to increase as the average percentage of imperfect quality items in-
creases. Based on the model of Salameh and Jaber [4], many new models for defective
items were extended. For instance, Goyal and Cardenas-Barron [6] presented a simplified
method to determine the optimal lot size in the model [4]. Chan et al. [7] proposed a
non-shortage model similar to the model [4], wherein products can be classified as good
quality, good quality after reworking, imperfect quality and scrap. Wee et al. [1] and
Eroglu and Ozdemir [9] extended the model [4] to the case with shortage backordering.
Chang [2] investigated the model [4] with fuzzy demand and perfective rates. Papachristos
and Konstantaras [8] re-studied and developed the sufficient conditions for the models of
[4,7]. However, in practice, in addition to the assumption of Salameh and Jaber [4], the
imperfective items may be treated by other ways. One of the popular ways is that the
defective items may be returned to suppliers directly. In practice, it is very popular for
procurement operations of retailers. Hsu and Yu [10] have ever discussed the EOQ model
with immediate return for imperfective items.
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Another unrealistic assumption made for developing inventory models is the certainty
assumptions on the parameters in the models, such as demand rate. The traditional
inventory models that include these uncertainties are often based on the concept of ran-
domness, and thus handled by probability theory. However, in practice, there may be a
lack of historical data to estimate the probability distributions for the uncertain factors
that are modeled by random variables. For such a situation, using linguistic terms such as
high, low, or approximately equal to certain number to describe those parameters may be
more appropriate. Thus, recently, inventory models have been widely discussed in a fuzzy
sense, such as fuzzy demand rate (e.g., [11-13]), fuzzy storing cost (e.g., [14,15]), fuzzy
perfective rate [2], fuzzy backorder rate (e.g., [16]), fuzzy shortage cost (e.g., [17,18]), and
fuzzy elapsed time of production [19].
The purpose of this paper is to explore the inventory control problem with immediate

return for defective items in fuzzy senses, including fuzzy perfective rate, fuzzy demand
rate and fuzzy purchasing cost. In the relevant literature, most of studies focused on
fuzzifying the first two parameters (perfective rate and fuzzy demand rate). However,
due to the imbalance of supply and demand, exchange-rate or price negotiations, the
purchasing price of items may also be fuzzy. Note that, due to computational difficulty
and complexity, there are few articles exploring an inventory model with three fuzzy
parameters.
In this paper, the crisp case of the proposed model is first constructed in terms of

annual profit. Then, the crisp model is extended in fuzzy senses. For solving the proposed
model, the Yager’s ranking method [20] is utilized to rank the fuzzy annual profit and
determine the optimal order quantity. Due to the fact that triangular fuzzy numbers are
used extensively, we also provide an expression of the optimal order quantity for the case
that all of the three parameters (perfective rate, demand rate and purchasing cost) are
triangular fuzzy numbers. Finally, based on 125 combinations of triangular fuzzy numbers
of those parameters, a numerical example is given to demonstrate the applications of the
proposed model and assess the effects of fuzziness of the perfective rate, the demand rate,
and the purchasing cost on the optimal solution.

2. Problem Statement and Preliminaries. In this paper, the crisp inventory model
with immediate return for imperfective items is first introduced [10]. The notation used
in this paper is as follows:
λ demand rate (unit/per year)
s selling price per unit (s > c)
c purchasing cost per unit
b holding cost rate per unit/per unit time
h holding cost per unit/per unit time, h = bc
a ordering cost per order
q perfective rate for each order
p defective rate for each order (p = 1− q)
e screening rate (unit/per year)
w screening cost per unit
Q order size
T cycle length
C expected total cost per cycle
R expected total revenue per cycle
P0 expected total profit per cycle
P expected total profit per year



OPTIMAL INVENTORY MODEL 2585

In the model, the primary assumptions are: (1) a lot size of Q is replenished instanta-
neously at the beginning of each inventory cycle. (2) The screening process and demand
proceed simultaneously, and the screening rate is greater than the demand rate (i.e.,
e > λ). (3) Any of defective items found during the 100% screening process will be
returned to the supplier immediately (or at least the retailer is not responsible for the
safekeeping of the defectives any longer). The other justifications and assumptions are
available in the traditional EOQ model.

The inventory-level behavior of the model can be illustrated as Figure 1, where [t1, t2]
denotes the time period of a cycle. In the model, it is assumed that (1) a lot size of Q is
replenished instantaneously at the beginning of each inventory cycle, (2) a 100% screening
process of the lot is started at time t1 and finished at time te. The screening process and
demand proceed simultaneously, and the screening rate is greater than the demand rate
(i.e., e > λ), and (3) all imperfective items found during the 100% screening process will
be returned to the supplier immediately. Hence, the demand rate during t1 ∼ te can be
regarded as λ′ = λ + e(1 − q). After the screening process is finished, i.e., at te, the
demand rate will return to λ and the remaining non-defective items will be depleted at
time t2.

Figure 1. The inventory-level behavior of the model with immediate re-
turn for defective items

To avoid shortages, we have one more assumption that the number of good items is
at least equal to the demand during the screening process. This leads to e ≥ λ/q. The
optimal Q is determined by maximizing the following expected total profit per year:

P (Q) = P0(Q) ∗N,

where P0(Q) is the expected profit of a cycle and N is the number of orders per year.
For ease of exposition, P0(Q) can be expressed as follows:

P0(Q) = R(Q)− C(Q), (1)

where R(Q) and C(Q) denote the revenue and the total cost in each cycle, respectively.
It is easily seen that

R (Q) = SR +RR, (2)

where SR and RR denote the revenues for sale and for return in each cycle, respectively.
It is clear that SR = sQq and RR = cQ(1− q).
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Further, C(Q) comprises the following four parts:

C(Q) = PC + AC +WC +HC,

where PC, AC, WC, and HC denote the procurement cost, ordering cost, screening
cost, and holding cost in each cycle, respectively. Obviously, PC = cQ, AC = a, and
WC = wQ. To compute HC, we need to calculate the total quantity of inventory in a
cycle, which is equal to the sum of the areas of 4ABC and �BCDE in Figure 1. By
direct algebraic manipulations, we have:

V =
Q2

2

(
q2

λ
+

(1− q)

e

)
.

Hence,

HC = h ∗ V = cb ∗ Q2

2

(
q2

λ
+

(1− q)

e

)
.

The total annual profit, P (Q), thus can be derived as:

P (Q) = P0(Q) ·N = [(SR +RR)− (PC + AC +WC +HC)] ·N

=

{
[sQq + cQ(1− q)]−

[
cQ+ a+ wQ+ cb

Q2

2

(
q2

λ
+

(1− q)

e

)]}
λ

Qq

= sλ− cλ+
bQ

2e
· cλ− bQ

2
· cq −

(
a

Q
+ w

)
· λ/q −

(
bQ

2e

)
· cλ/q. (3)

Taking the first derivative of P (Q) with respect to Q and setting the result to zero, we
have:

P ′(Q) =
bcλ

2e
− bcq

2
+

aλ

Q2q
− bcλ

2eq
= 0.

By solving the above equation, the optimal solution, termed as Q∗
c , can be found as:

Q∗
c =

√
2aλe

cb[eq2 + (1− q)λ]
. (4)

It is easy to find the second derivative of P (Q) with respect to Q is:

P
′′
(Q) = −2aλ

Q3q
< 0, for Q > 0.

Thus, the Q∗
c is the global maximum solution of P (Q). Substituting Equation (4) into

Equation (3), we can obtain the corresponding total profit P ∗
c (= P (Q∗

c)). It is easily
seen that if the defective rate is zero (i.e., q = 1), then Equation (4) will reduce to

Q∗ =
√
2aλ/cb, the traditional EOQ formula.

3. The Fuzzy Model. Suppose the perfective rate, demand rate and purchasing cost
are LR-type fuzzy numbers with parameters: q̃ = [lq,mq, uq], λ̃ = [lλ,mλ, uλ] and c̃ =
[lc,mc, uc], where, lq > 0, lλ > 0 and lc > 0. That is, their membership functions can be
described as follows:

µq̃(xq) =

 Lq(xq), lq ≤ xq ≤ mq

Rq(xq), mq ≤ xq ≤ uq

0, otherwise
,

µλ̃(xλ) =

 Lλ(xλ), lλ ≤ xλ ≤ mλ

Rλ(xλ), mλ ≤ xλ ≤ uλ

0, otherwise
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and

µc̃(xc) =

 Lc(xc), lc ≤ xc ≤ mc

Rc(xc), mc ≤ xc ≤ uc

0, otherwise
,

where Lq(xq) and Rq(xq) are the left-shape and right-shape functions of q̃; Lλ(xλ) and

Rλ(xλ) are the left-shape and right-shape functions of λ̃; and Lc(xc) and Rc(xc) are
the left-shape and right-shape functions of c̃. Those three membership functions can be
depicted by α-level cuts as:

q̃(α) =
[
min .µ−1

q̃ (α),max .µ−1
q̃ (α)

]
=

[
L−1
q (α), R−1

q (α)
]
, 0 ≤ α ≤ 1, (5)

λ̃(α) =
[
min .µ−1

λ̃
(α),max .µ−1

λ̃
(α)

]
=

[
L−1
λ (α), R−1

λ (α)
]
, 0 ≤ α ≤ 1, (6)

c̃(α) =
[
min .µ−1

c̃ (α),max .µ−1
c̃ (α)

]
=

[
L−1
c (α), R−1

c (α)
]
, 0 ≤ α ≤ 1. (7)

Based on the concept of α-level cut, for L−1
q (α) > 0, L−1

λ (α) > 0, and L−1
c (α) > 0 (i.e.,

lq > 0, lλ > 0, lc > 0), several arithmetic operations about the three parameters (q̃, λ̃, c̃)
can be defined as follows [21]:

(i) (λ̃+ q̃)(α) = [L−1
(λ+q)(α), R

−1
(λ+q)(α)] = [L−1

λ (α) + L−1
q (α), R−1

λ (α) +R−1
q (α)].

(ii) (λ̃− q̃)(α) = [L−1
(λ−q)(α), R

−1
(λ−q)(α)] = [L−1

λ (α)−R−1
q (α), R−1

λ (α)− L−1
q (α)].

(iii) k · λ̃(α) = [L−1
kλ (α), R

−1
kλ ] =

{ [
kL−1

λ (α), kR−1
λ (α)

]
, k > 0[

kR−1
λ (α), kL−1

λ (α)
]
, k < 0

, where k is a constant.

(iv) (c̃× λ̃)(α) = [L−1
(c×λ)(α), R

−1
(c×λ)(α)] = [L−1

c (α) · L−1
λ (α), R−1

c (α) ·R−1
λ (α)].

(v) (λ̃/q̃)(α) = [L−1
(λ/q)(α), R

−1
(λ/q)(α)] = [L−1

λ (α)/R−1
q (α), R−1

λ (α)/L−1
q (α)].

(vi)(λ̃× c̃/q̃)(α) = [L−1
((λ×c)/q)(α), R

−1
((λ×c)/q)(α)]

= [L−1
λ (α) · L−1

c (α)/R−1
q (α), R−1

λ (α) ·R−1
c (α)/L−1

q (α)].

Referring to Equation (3), since the perfective rate, the demand rate, and the purchasing
cost have been fuzzified, the corresponding total profit (denoted by P̃ (Q)) is fuzzy as well.
By extension principle [11] and Equation (3), the P̃ (Q) can be derived as:

P̃ (Q) = sλ̃− (c̃× λ̃) +
bQ

2e
· (c̃× λ̃)− bQ

2
· (c̃× q̃)−

(
a

Q
+ w

)
(λ̃/q̃)− bQ

2e
(c̃× λ̃/q̃).

Note that the expression for P̃ (Q) consists of five fuzzy numbers: λ̃, (c̃× λ̃), (c̃× q̃), (λ̃/q̃),

and (c̃× λ̃/q̃). Further, the membership function of P̃ (Q) can also be depicted by α-level
cut as:

P̃ (α) =
[
L−1
P (α), R−1

P (α)
]
, (8)

where, by Equations (5)∼(7) and the arithmetic operations (i)∼(vi), the L−1
p (α) and

R−1
p (α) can be derived as:

L−1
P (α) = sL−1

λ (α)−
[
R−1

c (α)×R−1
λ (α)

]
+
bQ

2e

[
L−1
c (α)×L−1

λ (α)
]
− bQ

2
·
[
R−1

c (α)

×R−1
q (α)

]
−
(
a

Q
+ w

)[
R−1

λ (α)/L−1
q (α)

]
− bQ

2e

[
R−1

c (α) ·R−1
λ (α)/L−1

q (α)
]

R−1
P (α) = sR−1

λ (α)−
[
L−1

c (α)×L−1
λ (α)

]
+
bQ

2e

[
R−1

c (α)×R−1
λ (α)

]
− bQ

2
·
[
L−1

c (α)

×L−1
q (α)

]
−
(
a

Q
+ w

)[
L−1

λ (α)/R−1
q (α)

]
− bQ

2e

[
L−1

c (α) · L−1
λ (α)/R−1

q (α)
]

.

(9)
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Since different Q results in different P̃ (Q), we can find the maximum P̃ (Q) by ranking
the P̃ (Q) with respect to Q. In the literature, there are a lot of ranking methods which
have been proposed. One popular method which lends itself to this purpose is Yager’s
ranking method [20]. This method has an advantage of not requiring the knowledge of
the explicit form of the membership functions of the fuzzy numbers, and further, it is very
simple to apply [11]. Hence, the Yager’s ranking method is employed to find the optimal
order quantity in this paper.
The Yager’s ranking method is to calculate a ranking index for a fuzzy number from

its α-level cut form. For example, for the fuzzy number of total profit P̃ (= P̃ (Q)), its
Yager’s index I(P̃ ) is defined as:

I(P̃ ) =
1

2

∫ 1

0

[
L−1
P (α) +R−1

P (α)
]
dα. (10)

Thus, from Equations (8) and (9), the Yager’s index of P̃ then can be derived as:

I(P̃ ) = s · I(λ̃)− I(c̃× λ̃) +
bQ

2e
· I(c̃× λ̃)− bQ

2
· I(c̃× q̃)

−
(
a

Q
+ w

)
· I(λ̃/q̃)− bQ

2e
· I(c̃× λ̃/q̃),

where 

I(λ̃) =
1

2
·
[∫ 1

0
L −1
λ (α)dα +

∫ 1

0
R −1

λ (α)dα
]

I(c̃× λ̃) =
1

2
·
[∫ 1

0
L−1
c (α)L−1

λ (α)dα +
∫ 1

0
R−1

c (α)R−1
λ (α)dα

]
I(c̃× q̃) =

1

2

[∫ 1

0
L−1
c (α)L−1

q (α)dα +
∫ 1

0
R−1

c (α)R−1
q (α)dα

]
I(λ̃/q̃) =

1

2
·
[∫ 1

0

L−1
λ (α)

R−1
q (α)

dα +
∫ 1

0

R−1
λ (α)

L−1
q (α)

dα

]
I(c̃× λ̃/q̃) =

1

2
·
[∫ 1

0

L−1
c (α)L−1

λ (α)

R−1
q (α)

dα +
∫ 1

0

R−1
c (α)R−1

λ (α)

L−1
q (α)

dα

]
.

Taking the first derivative of I(P̃ ) with respect to Q and setting the result to zero, we
have:

dI(P̃ )

dQ
=

b

2e
· I(c̃× λ̃)− b

2
· I(c̃× q̃) +

a

Q2
· I(λ̃/q̃)− b

2e
· I(c̃× λ̃/q̃) = 0.

By solving the above equation, the optimal solution Q∗ can then be obtained as follows:

Q∗ =

 2aeI(λ̃/q̃)

b
[
I(c̃× λ̃/q̃) + eI(c̃× q̃)− I(c̃× λ̃)

]
 1

2

. (11)

The global optimality and the uniqueness of Q∗ reside in the fact that I(P̃ ) is concave,
which is implied by the following second derivative of I(P̃ ) with respect to Q:

I
′′

Q(P̃ ) = − 2a

Q3
· I(λ̃/q̃) < 0, for Q > 0.

Let P̃ ∗(= P̃ (Q∗)) denote the optimal total profit associated with Q∗. Then, from
Equations (8), (9), and (11), the P̃ ∗ can be expressed as:

P̃ ∗(α) =
[
(L−1

P (α)|Q = Q∗), (R−1
P (α)|Q = Q∗)

]
. (12)
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Also, the Yager’s index of P̃ ∗(Q)can be found as:

I(P̃ ∗) = s · I(λ̃)− I(c̃× λ̃) +
bQ∗

2e
· I(c̃× λ̃)

− bQ∗

2
· I(c̃× q̃)−

(
a

Q∗ + w

)
· I(λ̃/q̃)− bQ∗

2e
· I(c̃× λ̃/q̃).

(13)

4. The Fuzzy Model with Triangle Fuzzy Numbers. Let perfective rate, demand
rate and purchasing cost be triangular fuzzy numbers with respective parameters: q̃t =
[q −∆1, q, q +∆2], λ̃t = [λ −∆3, λ, λ +∆4] and c̃t = [c −∆5, c, c +∆6], where ∆1 ∼ ∆6

are positive numbers such that q−∆1 > 0, λ−∆3 > 0, and c−∆5 > 0. By α-level cuts,
those fuzzy numbers can be described as:

q̃t(α) = [(q −∆1) + ∆1α, (q +∆2)−∆2α] , 0 ≤ α ≤ 1

λ̃t(α) = [(λ−∆3) + ∆3α, (λ+∆4)−∆4α] , 0 ≤ α ≤ 1
c̃t(α) = [(c−∆5) + ∆5α, (c+∆6)−∆6α] , 0 ≤ α ≤ 1.

According to Equation (11), for finding the optimal Q∗, we need to calculate the fol-
lowing Yager’s indexes:
1. I(λ̃t)

Since ∫ 1

0

L−1
λt
(α)dα =

∫ 1

0

[(λ−∆3) + ∆3α]dα = λ−∆3/2

and ∫ 1

0

R−1
λt
(α)dα =

∫ 1

0

[(λ+∆4)−∆4α]dα = λ+∆4/2,

from Equation (10), the Yager’s index of λ̃t can be found as:

I(λ̃t) =
1

2
·
[∫ 1

0

L−1
λt
(α)dα +

∫ 1

0

R−1
λt
(α)dα

]
= λ+

1

4
(∆4 −∆3). (14)

2. I(λ̃t/q̃t)

From the arithmetic operation (v) and Equation (10), we can derive the It(λ̃/q̃) as
follows:

I(λt/qt) =
1

2
·

[∫ 1

0

L−1
λt
(α)

R−1
qt (α)

dα +

∫ 1

0

R−1
λt
(α)

L−1
qt (α)

dα

]

=
1

2
·
∫ 1

0

[
(λ−∆3) + ∆3α

(q +∆2)−∆2α
+

(λ+∆4)−∆4α

(q −∆1) + ∆1α

]
dα

=
1

2
·
[
(q∆3+λ∆2)

∆2
2

ln
(q +∆2)

q
−∆3

∆2

+
(q∆4 + λ∆1)

∆2
1

ln
q

(q −∆1)
−∆4

∆1

]
. (15)

3. I(c̃t × λ̃t) and I(c̃t × q̃t)

From the arithmetic operation (iv) and Equation (10), we can derive the It(c̃t × λ̃t) as:

I(c̃t × λ̃t) =
1

2

[∫ 1

0

L −1
ct (α)L−1

λt
(α)dα +

∫ 1

0

R−1
ct (α)R

−1
λt
(α)dα

]
=

1

2

[
(c−∆5)(λ−∆3) +

(c−∆5)∆3

2
+

(λ−∆3)∆5

2
+

∆5∆3

3

+(c+∆6)(λ+∆4)−
(c+∆6)∆4

2
− (λ+∆4)∆6

2
+

∆6∆4

3

]
.

(16)
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Similarly, we have:

I(c̃t × q̃t) =
1

2

[∫ 1

0

L−1
ct (α)L

−1
qt (α)dα +

∫ 1

0

R−1
ct (α)R

−1
qt (α)dα

]
=

1

2

[
(c−∆5)(q −∆1) +

(c−∆5)∆1

2
+

(q −∆1)∆5

2
+

∆5∆1

3

+(c+∆6)(q +∆2)−
(c+∆6)∆2

2
− (q +∆2)∆6

2
+

∆6∆2

3

]
.

(17)

4. I(c̃t × λ̃t/q̃t)

From the arithmetic operation (vi) and Equation (10), we can derive the I(c̃t × λ̃t/q̃t)
as:

I(c̃t × λ̃t/q̃t)

=
1

2
·

[∫ 1

0

L−1
ct (α)L

−1
λt
(α)

R−1
qt (α)

dα +

∫ 1

0

R−1
ct (α)R

−1
λt
(α)

L−1
qt (α)

dα

]

=
1

2

[
(c−∆5)(λ−∆3)∆

2
2 + (q +∆2) [(c−∆5)∆3∆2 + (λ−∆3)∆5∆2 + (q +∆2)∆5∆3]

(−∆3
2)(

ln
q

q +∆2

)
− ∆5∆3

2∆2

− (c−∆5)∆3∆2 + (λ−∆3)∆5∆2 + (q +∆2)∆5∆3

∆2
2

+
(c+∆6)(λ+∆4)∆

2
1 + (q −∆1) [(c+∆6)∆4∆1 + (λ+∆4)∆6∆1 + (q −∆1)∆6∆4]

∆3
1(

ln
q

q −∆1

)
+

∆6∆4

2∆1

− (c+∆6)∆4∆1 + (λ+∆4)∆6∆1 + (q −∆1)∆6∆4

∆2
1

]
.

(18)

Substituting the results in Equations (14)-(18) into Equation (11), we can find the
optimal solution Q∗

t for the case with triangular fuzzy numbers as follows:

Q∗
t =

 2aeI(λ̃t/q̃t)

b
[
I(c̃t × λ̃t/q̃t) + e · I(c̃t × q̃t)− I(c̃t × λ̃t)

]
 1

2

. (19)

Furthermore, from Equations (12) and (19), the total profit P̃ ∗
t (=P̃ (Q∗

t )) corresponding
to Q∗

t can be expressed as:

P̃ ∗
t (α) = [(L−1

P (α)|Q = Q∗
t ), (R

−1
P (α)|Q = Q∗

t )].

Note that if (λ̃t, q̃t, c̃t) degenerates to (λ, q, c) (i.e., ∆3 = ∆4 = 0, ∆1 = ∆2 = 0 and
∆5 = ∆6 = 0), then it can be shown that Q∗

t in Equation (19) will reduce to the Q∗
c in

Equation (4). The result is summarized as follows (see Appendix):

Proposition 4.1. If (λ̃t, q̃t, c̃t) degenerates to (λ, q, c), then

Q∗
t = Q∗

c =

√
2ae · λ

cb[eq2 + (1− q)λ]
.

5. Numerical Example. To illustrate the proposed model, we set

(a, b, c, q, w, s, λ) = (100, 0.2, 25, 0.98, 0.5, 175200, 50000).
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By Equations (3) and (4), we have the optimal solution of the crisp model as:

(Q∗
c , P

∗
c ) = (1438.806, 1,217,397).

To assess the effects of fuzziness of the perfective rate, the demand rate, and the purchas-
ing cost on the optimal solution, we compute and compare the optimal order quantities
and the corresponding Yager’s indexes associated with 125 combinations of q̃t, λ̃t, and c̃t
with (q, λ, c) = (0.98, 50000, 25). The 125 combinations consist of five triangular fuzzy

numbers of q̃t, five triangular fuzzy numbers of λ̃t, and five triangular fuzzy numbers of
c̃t. For q̃t, λ̃t, and c̃t, the five triangular fuzzy numbers are respectively set as follows:

(∆1,∆2): (0.00
+, 1.00), (0.25, 0.75), (0.50, 0.50), (0.75, 0.25), (1.00, 0.00+),

(∆3,∆4): (1000, 0.00
+), (750, 250), (500, 500), (250, 750), (0.00+, 1000),

(∆5,∆6): (0.00
+, 5.00), (1.25, 3.75), (2.50, 2.50), (3.75, 1.25), (5.00, 0.00+).

For ease of exposition, the following index (called the skewness rate) is defined to

measure the extent to which q̃t, λ̃t, and c̃t skew: SRq̃ = (∆2 −∆1)/(∆1 +∆2)
SRλ̃ = (∆4 −∆3)/(∆3 +∆4)
SRc̃ = (∆6 −∆5)/(∆5 +∆6).

(20)

Conceptually, such settings for q̃t, λ̃t, and c̃t represent the skewness from the most right
to the most left. Specifically, the values of SRq̃, SRλ̃, and SRc̃ are all 1.0 (skew to the
most righ), 0.5, 0.0 (symmetric), −0.5, and −1.0 (skew to the most left). For q̃t, when
∆2 > ∆1 (∆2 < ∆1), SRq̃ > 0(SRq̃ < 0), implying that q̃t is right (left) skew or q̃t > q
(q̃t < q); when SRq̃ = 1 (SRq̃ = −1), q̃t is the most right (left) skew; when SRq̃ = 0, q̃t is

symmetric. The above results are also available for λ̃t with SRλ̃ and c̃t with SRc̃.

Similarly, associated with the skewness rates (SR) of q̃t, λ̃t, and c̃t, the following index
(called the variation rate) is defined to measure the extent to which the corresponding Q∗

t

and I(P̃ ∗
t ) variate: {

V RQ∗ = [(Q∗
t −Q∗

c)/Q
∗
c ]× 100%

V RI(P ∗) = [(I(P ∗
t )− I(P ∗

c ))/I(P
∗
c )]× 100%.

(21)

It is also clear that for Q∗
t , V RQ∗ > 0 (V RQ∗ < 0) implies Q∗

t > Q∗
c (Q

∗
t < Q∗

c); V RQ∗ = 0

implies Q∗
t = Q∗

c . The result is also available for I(P̃ ∗
t ) with V RI(P ∗). The 125 combina-

tions and their corresponding results are shown as Tables 1∼5.
From the results of Table 1∼Table 5, it is seen that for fixed λ and q, a decreasing SRc̃

results in increasing V RQ∗ and V RI(P̃ ∗). For example, for fixed (SRq̃, SRλ̃) = (1.0,−1.0),
from the data of No. 1∼No. 5 in the last three fields of Table 1, we have that a decreasing
SRc̃ (from 1.0 to −1.0) results in increasing V RQ∗ (from −2.858 to 2.130) and V RI(P̃ ∗)

(from −5.644 to 4.585). This result implies that a decreasing c̃t results in increasing Q∗
t

and P̃ ∗
t . Likewise, for fixed λ and c, a decreasing SRq̃ results in an increasing V RQ∗ and

a decreasing V RI(P̃ ∗). For example, for fixed (SRλ̃, SRc̃) = (−1.0, 1.0), from the data of

No. 1, No. 6, No. 11, No. 16 and No. 21 in Table 1, we have that a decreasing SRq̃ (from
1.0 to −1.0) results in an increasing V RQ∗ (from −2.858 to −2.434) and a decreasing
V RI(P̃ ∗)(from −5.644 to −5.655). This result indicates that a decreasing q̃t results in an

increasing Q∗
t and a decreasing P̃ ∗

t . Furthermore, for fixed q and c, an increasing SRλ̃

results in increasing V RQ∗ and V RI(P̃ ∗), For example, for fixed (SRq̃, SRc̃) = (1.0, 1.0),

from the data of No. 1 in Table 1∼Table 5, we have that a increasing SRλ̃ (from −1.0
to 1.0) results in increasing V RQ∗ (from −2.858 to −2.375) and V RI(P̃ ∗) (from −5.644 to

−4.710). This implies that an increasing λ also results in increasing Q∗
t and P̃ ∗

t .
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Table 1. The results for (∆3,∆4) = (1000, 0+) with SRλ̃ = −1.0

No. (∆1,∆2)(%) (∆5,∆6) Q∗ I(P̃ ∗) SRq̃ SRc̃ V RQ∗(%) V RI(P̃ ∗)(%)

1

(0.00+,1.00)

(0.00+, 5.00) 1,397.682 1,148,685

1.0

1.0 −2.858 −5.644

2 (1.25, 3.75) 1,414.636 1,179,814 0.5 −1.680 −3.087

3 (2.50, 2.50) 1,432.222 1,210,943 0.0 −0.458 −0.530

4 (3.75, 1.25) 1,450.481 1,242,074 −0.5 0.811 2.027

5 (5.00, 0.00+) 1,469.456 1,273,206 −1.0 2.130 4.584

6

(0.25, 0.75)

(0.00+, 5.00) 1,399.202 1,148,652

0.5

1.0 −2.753 −5.647

7 (1.25, 3.75) 1,416.169 1,179,780 0.5 −1.573 −3.090

8 (2.50, 2.50) 1,433.769 1,210,910 0.0 −0.350 −0.533

9 (3.75, 1.25) 1,452.042 1,242,040 −0.5 0.920 2.024

10 (5.00, 0.00+) 1,471.032 1,273,172 −1.0 2.240 4.581

11

(0.50, 0.50)

(0.00+, 5.00) 1,400.728 1,148,618

0.0

1.0 −2.646 −5.650

12 (1.25, 3.75) 1,417.709 1,179,747 0.5 −1.466 −3.093

13 (2.50, 2.50) 1,435.323 1,210,876 0.0 −0.242 −0.536

14 (3.75, 1.25) 1,453.610 1,242,007 −0.5 1.029 2.022

15 (5.00, 0.00+) 1,472.614 1,273,138 −1.0 2.350 4.579

16

(0.75, 0.25)

(0.00+, 5.00) 1,402.257 1,148,585

−0.5

1.0 −2.540 −5.652

17 (1.25, 3.75) 1,419.252 1,179,713 0.5 −1.359 −3.095

18 (2.50, 2.50) 1,436.879 1,210,842 0.0 −0.134 −0.538

19 (3.75, 1.25) 1,455.181 1,241,973 −0.5 1.138 2.019

20 (5.00, 0.00+) 1,474.200 1,273,105 −1.0 2.460 4.576

21

(1.00, 0.00+)

(0.00+, 5.00) 1,403.787 1,148,551

−1.0

1.0 −2.434 −5.655

22 (1.25, 3.75) 1,420.799 1,179,679 0.5 −1.252 −3.098

23 (2.50, 2.50) 1,438.445 1,210,809 0.0 −0.025 −0.541

24 (3.75, 1.25) 1,456.765 1,241,939 −0.5 1.248 2.016

25 (5.00, 0.00+) 1,475.804 1,273,071 −1.0 2.571 4.573

Note: 0+ = 10−5

Furthermore, as the above explanations, we also have that the more λ̃t skews to the
right (i.e., increasing), or the more q̃t and c̃t skew to the left (i.e., decreasing), the larger Q∗

t

and P̃ ∗
t . Further, when λ̃t is the most right skew (SRλ̃ = 1.0) and (q̃t, c̃t) is the most left

skew (SRc̃ − 1.0 and SRc̃ = −1.0) (see the row No. 25 in Table 5), (V RQ∗ , V RI(P̃ ∗)) =

(3.081, 5.645) is the maximum one with (Q∗
t , I(P̃

∗
t )) = (1483.138, 1, 286, 113). On the

contrary, the more λ̃t skews to the left (i.e., decreasing), or the more q̃t and c̃t skew

to the right (i.e., increasing), the smaller Q∗
t and P̃ ∗

t . When λ̃t is the most left skew
(SRλ̃ = −1.0), (q̃t, c̃) is the most right skew (SRc̃ = 1.0 and SRc̃ = 1.0) (see the
row No. 1 in Table 1), (V RQ∗ , V RI(P̃ ∗)) = (−2.858,−5.644) is the minimum one with

(Q∗
t , I(P̃

∗
t )) = (11, 397.682, 1, 148, 685). Furthermore, when all of the q̃t, c̃t and λ̃t are

symmetric (see the row No. 13 in Table 3), i.e., SRλ̃ = SRq̃ = SRc̃ = 0, (Q∗
t , I(P̃

∗
t )) =

(1438.093, 1, 216.981) ≈ (Q∗
c , P (Q∗

c)) = (1438.806, 1, 217, 397), which implies that the
fuzzy case is close to the crisp case.
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Table 2. The results for (∆3,∆4) = (750, 250) with SRλ̃ = −0.5

No. (∆1,∆2)(%) (∆5,∆6) Q∗ I(P̃ ∗) SRq̃ SRc̃ V RQ∗(%) V RI(P̃ ∗)(%)

1

(0.00+, 1.00)

(0.00+, 5.00) 1,399.423 1,151,529

1.0

1.0 −2.737 −5.411

2 (1.25, 3.75) 1,416.399 1,182,762 0.5 −1.557 −2.845

3 (2.50, 2.50) 1,434.008 1,213,996 0.0 −0.333 −0.279

4 (3.75, 1.25) 1,452.291 1,245,231 −0.5 0.937 2.286

5 (5.00, 0.00+) 1,471.291 1,276,467 −1.0 2.258 4.852

6

(0.25, 0.75)

(0.00+, 5.00) 1,400.948 1,151,496

0.5

1 −2.631 −5.413

7 (1.25, 3.75) 1,417.937 1,182,728 0.5 −1.450 −2.848

8 (2.50, 2.50) 1,435.559 1,213,962 0.0 −0.226 −0.282

9 (3.75, 1.25) 1,453.855 1,245,197 −0.5 1.046 2.284

10 (5.00, 0.00+) 1,472.868 1,276,433 −1.0 2.367 4.849

11

(0.50, 0.50)

(0.00+, 5.00) 1,402.476 1,151,462

0.0

1.0 −2.525 −5.416

12 (1.25, 3.75) 1,419.478 1,182,695 0.5 −1.343 −2.851

13 (2.50, 2.50) 1,437.114 1,213,928 0.0 −0.118 −0.285

14 (3.75, 1.25) 1,455.424 1,245,163 −0.5 1.155 2.281

15 (5.00, 0.00+) 1,474.452 1,276,399 −1.0 2.477 4.847

16

(0.75, 0.25)

(0.00+, 5.00) 1,404.007 1,151,428

−0.5

1.0 −2.419 −5.419

17 (1.25, 3.75) 1,421.023 1,182,661 0.5 −1.236 −2.853

18 (2.50, 2.50) 1,438.673 1,213,895 0.0 −0.009 −0.288

19 (3.75, 1.25) 1,456.997 1,245,130 −0.5 1.264 2.278

20 (5.00, 0.00+) 1,476.040 1,276,365 −1.0 2.588 4.844

21

(1.00, 0.00+)

(0.00+, 5.00) 1,405.538 1,151,394

−1.0

1.0 −2.312 −5.422

22 (1.25, 3.75) 1,422.570 1,182,627 0.5 −1.128 −2.856

23 (2.50, 2.50) 1,440.238 1,213,861 0.0 0.100 −0.290

24 (3.75, 1.25) 1,458.580 1,245,096 −0.5 1.374 2.275

25 (5.00, 0.00+) 1,477.641 1,276,332 −1.0 2.699 4.841

Note: 0+ = 10−5

Synthesizing the above results, we conclude that the more the fuzzy number of demand
rate skews to the right, or the more the fuzzy numbers of perfective rate and purchasing
cost skew to the left, the larger are the optimal order quantity and its optimal profit.

Finally, from the absolute values of SRλ̃, SRq̃ and SRc̃, we can observe that as all of
the |SRλ̃|, |SRq̃| and |SRc̃| decrease, both of the |V RQ∗| and |V RI(P̃ ∗)| decrease. This

result implies that the less uncertainλ̃t, q̃t, and c̃t are, the closer between (Q∗
t , P̃

∗
t ) and

(Q∗
c , I(P

∗
c )). In other words, the less uncertain the three parameters (demand rate, per-

fective rate and purchasing cost) are, the closer between the fuzzy inventory policy and
the crisp inventory policy.

6. Conclusions. The purpose of the paper is to explore the inventory control prob-
lem with immediate return for defective items. Practically, this case is very popular for
procurement operations of retailers. Further, for enhancing the practical applications of
the model, this paper also extends the model in fuzzy senses, including the fuzziness of
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Table 3. The results for (∆3,∆4) = (500, 500) with SRλ̃ = 0.0

No. (∆1,∆2)(%) (∆5,∆6) Q∗ I(P̃ ∗) SRq̃ SRc̃ V RQ∗(%) V RI(P̃ ∗)(%)

1

(0.00+, 1.00)

(0.00+, 5.00) 1,401.162 1,154,373

1.0

1.0 −2.616 −5.177

2 (1.25, 3.75) 1,418.160 1,185,710 0.5 −1.435 −2.603

3 (2.50, 2.50) 1,435.792 1,217,048 0.0 −0.209 −0.029

4 (3.75, 1.25) 1,454.098 1,248,387 −0.5 1.063 2.546

5 (5.00, 0.00+) 1,473.123 1,279,728 −1.0 2.385 5.120

6

(0.25, 0.75)

(0.00+, 5.00) 1,402.692 1,154,340

0.5

1.0 −2.510 −5.180

7 (1.25, 3.75) 1,419.702 1,185,676 0.5 −1.328 −2.606

8 (2.50, 2.50) 1,437.346 1,217,015 0.0 −0.101 −0.031

9 (3.75, 1.25) 1,455.665 1,248,354 −0.5 1.172 2.543

10 (5.00, 0.00+) 1,474.702 1,279,694 −1.0 2.495 5.117

11

(0.50, 0.50)

(0.00+, 5.00) 1,404.222 1,154,306

0.0

1.0 -2.404 -5.182

12 (1.25, 3.75) 1,421.245 1,185,643 0.5 −1.221 −2.608

13 (2.50, 2.50) 1,438.903 1,216,981 0.0 0.007 −0.034

14 (3.75, 1.25) 1,457.236 1,248,320 −0.5 1.281 2.540

15 (5.00, 0.00+) 1,476.288 1,279,660 −1.0 2.605 5.114

16

(0.75, 0.25)

(0.00+, 5.00) 1,405.754 1,154,272

−0.5

1.0 −2.297 −5.185

17 (1.25, 3.75) 1,422.791 1,185,609 0.5 −1.113 −2.611

18 (2.50, 2.50) 1,440.463 1,216,947 0.0 0.115 −0.037

19 (3.75, 1.25) 1,458.811 1,248,286 −0.5 1.390 2.537

20 (5.00, 0.00+) 1,477.877 1,279,626 −1.0 2.716 5.112

21

(1.00, 0.00+)

(0.00+, 5.00) 1,407.287 1,154,238

−1.0

1.0 −2.191 −5.188

22 (1.25, 3.75) 1,424.340 1,185,575 0.5 −1.005 −2.614

23 (2.50, 2.50) 1,442.028 1,216,913 0.0 0.224 −0.040

24 (3.75, 1.25) 1,460.392 1,248,252 −0.5 1.500 2.535

25 (5.00, 0.00+) 1,479.476 1,279,592 −1.0 2.827 5.109

Note: 0+ = 10−5

defective rate, demand rate and purchasing cost. In the previous studies, due to computa-
tional difficulty and complexity, there are few articles exploring an inventory model with
three fuzzy parameters. The results improve the practical applications of fuzzy theory
significantly.
Due to the fact that triangular fuzzy numbers are used extensively, this paper also

expresses the optimal order quantity for the case that all of the three parameters are
triangular fuzzy numbers. Based on 125 combinations of triangular fuzzy numbers of the
parameters, a numerical example is provided to illustrate the model and to assess the
effects of fuzziness of the parameters on the optimal solution. The results indicate that
(1) as the three parameters reduce to their crisp values, the fuzzy model degenerates to
the crisp model, (2) the more the fuzzy number of demand rate skews to the right, or the
more the fuzzy numbers of perfective rate and purchasing cost skew to the left, the larger
are the optimal order quantity and its optimal profit, and (3) the less uncertain the three
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Table 4. The results for (∆3,∆4) = (250, 750) with SRλ̃ = 0.5

No. (∆1,∆2)(%) (∆5,∆6) Q∗ I(P̃ ∗) SRq̃ SRc̃ V RQ∗(%) V RI(P̃ ∗)(%)

1

(0.00+, 1.00)

(0.00+, 5.00) 1,402.899 1,157,217

1.0

1.0 −2.496 −4.943

2 (1.25, 3.75) 1,419.918 1,188,658 0.5 −1.313 −2.361

3 (2.50, 2.50) 1,437.573 1,220,101 0.0 −0.086 0.222

4 (3.75, 1.25) 1,455.903 1,251,544 −0.5 1.188 2.805

5 (5.00, 0.00+) 1,474.952 1,282,989 −1.0 2.512 5.388

6

(0.25, 0.75)

(0.00+, 5.00) 1,404.434 1,157,183

0.5

1 −2.389 −4.946

7 (1.25, 3.75) 1,421.465 1,188,625 0.5 −1.205 −2.363

8 (2.50, 2.50) 1,439.131 1,220,067 0.0 0.023 0.219

9 (3.75, 1.25) 1,457.472 1,251,511 −0.5 1.297 2.802

10 (5.00, 0.00+) 1,476.533 1,282,955 −1.0 2.622 5.385

11

(0.50, 0.50)

(0.00+, 5.00) 1,405.965 1,157,149

0.0

1.0 −2.283 −4.949

12 (1.25, 3.75) 1,423.010 1,188,591 0.5 −1.098 −2.366

13 (2.50, 2.50) 1,440.690 1,220,033 0.0 0.131 0.217

14 (3.75, 1.25) 1,459.046 1,251,477 −0.5 1.407 2.799

15 (5.00, 0.00+) 1,478.121 1,282,921 −1.0 2.732 5.382

16

(0.75, 0.25)

(0.00+, 5.00) 1,407.499 1,157,115

−0.5

1.0 −2.176 −4.952

17 (1.25, 3.75) 1,424.558 1,188,557 0.5 −0.990 −2.369

18 (2.50, 2.50) 1,442.252 1,219,999 0.0 0.240 0.214

19 (3.75, 1.25) 1,460.622 1,251,442 −0.5 1.516 2.797

20 (5.00, 0.00+) 1,479.712 1,282,887 −1.0 2.843 5.380

21

(1.00, 0.00+)

(0.00+, 5.00) 1,409.034 1,157,081

−1.0

1.0 −2.069 −4.955

22 (1.25, 3.75) 1,426.107 1,188,522 0.5 −0.883 −2.372

23 (2.50, 2.50) 1,443.816 1,219,965 0.0 0.348 0.211

24 (3.75, 1.25) 1,462.202 1,251,408 −0.5 1.626 2.794

25 (5.00, 0.00+) 1,481.308 1,282,853 −1.0 2.954 5.377

Note: 0+ = 10−5

parameters are, the closer between the fuzzy inventory policy and the crisp inventory
policy is.

In this paper, the Yager’s ranking method [20] is used to rank the proposed model and
find the optimal solution. In the literature, there have been a lot of ranking methods
developed. Certainly, different ranking methods may lead to different results. Thus, for
improving the validation of the result, a comparison with the results obtained by the other
ranking methods could be considered in the future research. Return is one of the popular
ways for imperfective items in current procurements. Uncertainty is another common
problem for the procurements. The result of this paper provides a solution for those two
problems. The results are very practical and applicable for procurements in real world.

Acknowledgment. The author is very grateful to professor H. F. Yu and Mr. Z. Y.
Hong for their help in checking the mathematical derivations in this paper. Besides, the
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Table 5. The results for (∆3,∆4) = (0+, 1000) with SRλ̃ = 1.0

No. (∆1,∆2)(%) (∆5,∆6) Q∗ I(P̃ ∗) SRq̃ SRc̃ V RQ∗(%) V RI(P̃ ∗)(%)

1

(0.00+, 1.00)

(0.00+, 5.00) 1,404.633 1,160,061

1.0

1.0 −2.375 −4.710

2 (1.25, 3.75) 1,421.675 1,191,607 0.5 −1.191 −2.118

3 (2.50, 2.50) 1,439.352 1,223,153 0.0 0.038 0.473

4 (3.75, 1.25) 1,457.706 1,254,701 −0.5 1.314 3.064

5 (5.00, 0.00+) 1,476.780 1,286,250 −1.0 2.639 5.656

6

(0.25, 0.75)

(0.00+, 5.00) 1,406.173 1,160,027

0.5

1 −2.268 −4.713

7 (1.25, 3.75) 1,423.226 1,191,573 0.5 −1.083 −2.121

8 (2.50, 2.50) 1,440.914 1,223,119 0.0 0.147 0.470

9 (3.75, 1.25) 1,459.278 1,254,667 −0.5 1.423 3.061

10 (5.00, 0.00+) 1,478.363 1,286,216 −1.0 2.749 5.653

11

(0.50, 0.50)

(0.00+, 5.00) 1,407.706 1,159,993

0.0

1.0 −2.162 −4.715

12 (1.25, 3.75) 1,424.772 1,191,539 0.5 −0.975 −2.124

13 (2.50, 2.50) 1,442.474 1,223,085 0.0 0.255 0.467

14 (3.75, 1.25) 1,460.853 1,254,633 −0.5 1.532 3.059

15 (5.00, 0.00+) 1,479.952 1,286,182 −1.0 2.860 5.650

16

(0.75, 0.25)

(0.00+, 5.00) 1,409.242 1,159,959

−0.5

1.0 −2.055 −4.718

17 (1.25, 3.75) 1,426.322 1,191,504 0.5 −0.868 −2.127

18 (2.50, 2.50) 1,444.038 1,223,051 0.0 0.364 0.464

19 (3.75, 1.25) 1,462.431 1,254,599 −0.5 1.642 3.056

20 (5.00, 0.00+) 1,481.545 1,286,148 −1.0 2.970 5.647

21

(1.00, 0.00+)

(0.00+, 5.00) 1,410.779 1,159,925

−1.0

1.0 −1.948 −4.721

22 (1.25, 3.75) 1,427.872 1,191,470 0.5 −0.760 −2.130

23 (2.50, 2.50) 1,445.602 1,223,017 0.0 0.472 0.462

24 (3.75, 1.25) 1,464.010 1,254,565 −0.5 1.752 3.053

25 (5.00, 0.00+) 1,483.138 1,286,113 −1.0 3.081 5.645

Note: 0+ = 10−5

author also acknowledge helpful comments and suggestions of the reviewers, which have
improved the presentation.
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Appendix. According to Equation (19), in order to prove Proposition 4.1, what we have

to do is to evaluate I(λ̃t), I(λ̃t/q̃t), I(c̃t × λ̃t), I(c̃t × q̃t), and I(c̃t × λ̃t/q̃t).

1. I(λ̃t):

Obviously, if λ̃t degenerate to λ, then ∆3 = ∆4 = 0. Thus, according to Equation (14),

it is easily seen that I(λ̃t) = λ.

2. I(λ̃t/q̃t):

If λ̃t degenerates to λ, then ∆3 = ∆4 = 0. Thus, Equation (15) will reduce to

I(λ̃t/q̃t) =
1

2
λ

[
1

∆2

ln
(q +∆2)

q
+

1

∆1

ln
q

(q −∆1)

]
. (A-1)

Further, for Equation (A-1), if q̃t also degenerates to q (i.e., ∆1 = ∆2 → 0), then by the

L’Hospital’s rule, we have I(λ̃t/q̃t) = λ/q.

3. I(c̃t × λ̃t):

If (c̃t, λ̃t) degenerates to (c, λ), we have ∆5 = ∆6 = 0 and ∆3 = ∆4 = 0. Thus,

according to Equation (16), we can easily obtain I(c̃t × λ̃t) = c · λ.
4. I(c̃t × q̃t):
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Similarly, according to Equation (17), if (c̃t, q̃t) degenerates to (c, q) (i.e., ∆5 = ∆6 = 0
and ∆1 = ∆2 = 0), then we easily obtain I(c̃t × q̃t) = c · q.
5. I(c̃t × λ̃t/q̃t):
According to Equation (18), if c̃t reduces to c (i.e., ∆5 = ∆6 = 0), then we have

I(c̃t×λ̃t/q̃t) = c·1
2

[
(q∆3 + λ∆2)

∆2
2

(
ln

q +∆2

q

)
− ∆3

∆2

+
(λ∆4 + q∆1)

∆2
1

(
ln

q

q −∆1

)
− ∆4

∆1

]
(A-2)

Comparing Equation (A-2) with Equation (15), it is clear that if c̃t reduces to c then

I(c̃t × λ̃t/q̃t) = c · I(λ̃t/q̃t). (A-3)

From Equation (A-3) and the result in (A-2), we have that if (c̃t, λ̃t, q̃t) reduces to (c, λ, q),

then I(c̃t × λ̃t/q̃t) = cλ/q.
Substituting the above results 1∼5 into Equation (19), the result of Proposition 4.1

follows immediately.


