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ABSTRACT. This paper presents a new methodology for the analysis of driver inattention
using the driving operation signals. The proposed method constructs a driver model based
on a nonlinear autoregressive exogenous input (NARX) model using neutral driving data.
The nonlinear function of the model is approzimated by a multilayer perceptron (MLP)
neural network. Driving data with and without a secondary task, collected using a real
vehicle in Nagoya city, was used in this study. The performance of the model was eval-
uwated during o validation process where the model produced acceptably small errors and
the predicted values closely following the actual values. Finally, through an assessment
of the model residuals between the actual signal and predicted signal of the inattentive
driving data, we prove that driver inattention while driving in a real environment can be
detected.
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1. Introduction. Traffic accidents are a serious global problem causing not only a high
number of deaths but also economic losses [1]. It has been reported that in 2002 roughly
1.2 million people died as a result of traffic accidents. In addition, more than 20 million
people around the world are injured or disabled each year. From an economic perspective,
the damage cost of road accidents has been estimated at US$518 billion in 2004 and
has been increasing every year. Various studies on causal factors of traffic accidents
concluded that driver inattention is a primary cause accounting for more than 25% of
accidents [2-6]. The increasing implementation of in-vehicle infotainment systems (IVIS)
such as navigation systems, entertainment devices, real-time information systems and
communication equipment in modern automobiles along with typical personal tasks such
as eating and talking to passengers has exaggerated the problem [7-9].

One promising solution for this problem is to detect and estimate the driver’s condition
in real time and then use the information together with advanced driver support systems
(ADSS) to compensate the effects of inattention or redirect the driver’s focus on the
main driving tasks. Until now, numerous approaches and methods have been employed
by the research community for monitoring and detection of driver inattention. These
approaches can be broadly divided into two groups: physiological measures [10-15] and
computer vision approaches [16-20]. Physiological measures utilize biological signals such
as the EOG, EEG and ECG, which are collected through electrodes contacting the human
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body. However, these methods always require an attachment of devices to the driver,
which is impractical in real driving situations. The latter approach, computer vision, is
more practical as it is non-intrusive to the driver. Nevertheless, most of the techniques
described above focused on detecting inattention caused by fatigue and visual distractions.
Inattention caused by the driver’s mental state or driver cognition has been defined and
explored much less.

On the other hand, Ishikawa et al. [21] proposed a method to detect driving with
secondary tasks using driving behavior signals modeled with a Bayesian network, while
taking driving situations into consideration. They showed that it is effective to consider
driving situations when detecting distracted driving involving secondary tasks. Here the
primary task is normal driving operation and secondary tasks are imposed on a driver
in addition to vehicle operation, such as calculation, talking on a cell phone and looking
at road signs. Kuroyanagi et al. [22], furthermore, analyzed hazardous situations in
actual driving situations and drivers’ responses to hazards, and confirmed that drivers’
reactions decrease while driving with secondary tasks. Therefore, the secondary tasks
were considered a good tool for creating a driver’s inattention state caused by the driver’s
cognition during actual driving.

In this paper, we propose a new method to detect inattention in driving caused by
cognition distraction. The method involves constructing a neural network-based model
for each driver using the neutral driver operation signals (i.e., without secondary tasks).
Finally, through evaluation of the model residuals, we prove that driver inattention while
driving in a real environment with secondary tasks can be detected.

2. A New Methodology for Measuring Driver Inattention. It is well accepted
that driving performance will degrade when driving with some secondary tasks. This
is because the recognition of information needed from visual and cognitive attention to
correctly and/or safely accomplish the driving task is delayed due to non-driving related
activity.

Generally, the driving performance shows a driver’s ordinary behavior and it can be
shown by the operation signals, such as the gas pedal, brake, steering angle signals and
car speed. The performance degradation therefore can be detected by the presence of
operation signals that differ from the normal (neutral) driving signals and which have
some turbulence. We here first define driving with turbulent operation signals from the
normal (neutral) driving as inattentive driving and driving operation signals without
turbulence or with little turbulence as neutral driving. Then, by analyzing the differences
between neutral and inattentive driving in terms of driving performance, it is possible
to detect driver inattention. In order to achieve the above objective, our approach is
comprised of the following steps:

Step 1: An experiment is performed to collect driving operation signals both with
and without a secondary task. Driving without the secondary task is considered neutral
driving of the driver.

Step 2: A driver model is constructed for each driver using the neutral driving operation
signals. This model serves as a baseline model for a particular driver. The baseline model
can be improved through an incremental learning process using neutral operation signals.

Step 3: The baseline model is used to predict the model output when given the model
inputs. The predicted output should be nearly equal (or equal) to the actual signal if the
input signal is taken from neutral driving and vice versa. Driver inattention is examined
evaluated through the model’s residual between the actual signal and predicted signal.
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3. Experiment Description. The driving date utilized in this study was collected in
collaboration with Professor Kazuya Takeda’s Laboratory, Nagoya University, Japan. A
real vehicle equipped with various sensors and cameras was used for synchronous recording
of data, which consists of video, speech, driving control and physiological signals.

The aim of these experiments were to record multimodal driving data on different types
of roads, such as city roads and expressways, under ordinary driving and with four tasks,
in order to collect neutral and inattentive driving data. The four different secondary tasks
are: 1) a navigation dialog task, 2) an alphanumeric reading task, 3) a signboard-reading
task and 4) a music retrieval task. Figure 1 shows the course map used in this study,
where mark (1) denotes the start location, marks (2) to (7) and (12) to (13) denote the
city roads and marks (8) to (11) denote the highway roads. Table 1 shows all twelve
portions of the experiments that correspond to numbers (2) to (13) shown in Figure 1,
the types of roads and their conditions during the data collection.
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FIGURE 1. The course map used in this study

TABLE 1. Description of experiments and driving conditions

Experiment | Type of Task Description
1 - Idling
2 City Ordinary riving Driving without extra task
3 City Signboard reading Reading aloud information on signboards
4 City Ordinary driving Driving without extra task
5 City Navigator Following navigator instructions in an unfamiliar place
6 City éggzﬁ;gtlg: Repeating four alphanumeric letters
7 City Ordinary driving Driving without extra task
8 Highway | Ordinary driving Driving without extra task
9 Highway éggiﬁ;ﬁf&c Repeating four alphanumeric letters
10 Highway | Song retrieving Song retrieving by spoken dialog interface
11 Highway | Ordinary driving Driving without extra task
12 City Song retrieving Song retrieving by spoken dialog interface
13 City Ordinary driving Driving without extra task
14 - Idling

In this paper, however, the operation signals of experiments 8, 11 (without secondary
task) and 9 (with secondary task) from 15 licensed drivers (eight males and seven females)
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were selected as examples, in order to investigate the influence of the secondary task to
the driver performance and confirm the difference between inattentive driving and neutral
driving. An example of driving data that was measured in experiment 8 is shown in Figure
2, where (a) shows the outside image of the car, (b) shows the facial image of a driver and
(c) shows the operation signals. In Figure 2(c), the top figure shows the car speed, the
bottom figure shows the steering angle and the middle figure shows the pedal pressure.
The sampling rate of the operation signals is 100[Hz]. Note that the pedal pressure signal
shown in Figure 2(c) is a synthetic signal, which was made to be the sum of the gas pedal
pressure (made to be positive) and the brake pressure (made to be negative). Hereafter,
we call such pedal pressure the synthetic pedal pressure.
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FicUure 2. Example of driving data measured during the experiment 8,
where (a) shows the outside image, (b) shows the driver’s facial image and
(c) shows the driver’s operation signals

4. Driver Model Based on Nonlinear Autoregressive Exogenous Input (NARX)
Model.

4.1. Sensitive analysis of the operation signals. In order to investigate the overall
effect of the secondary tasks on the driver performance, we calculate the average and
standard deviation for the operation signals that include (experiments 9 and 10) or do
not include (experiments 8 and 11 shown in Table 1) secondary tasks for all drivers.
Figure 3 shows the calculation results, where the top figure denotes the average values
of the vehicle speed, the middle figure denotes the average values of the synthetic pedal
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pressure and the bottom figure denotes the standard deviation of the steering angle. Based
on these values, it is obvious that in the case of the operation with a secondary task the
average values of vehicle speed and the synthetic pedal pressure are smaller than those
in case without a secondary task. Compared to this, the standard deviation of steering
angles have a bigger difference between the cases with and without secondary tasks. This
means that in the case of a secondary task, the steering angle has bigger turbulence than
when there is no secondary task and driving performance significantly degraded. That is,
the steering angle is more sensitive to the secondary task.
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FI1GURE 3. The effect of the secondary tasks to the driver performance

4.2. Driver model structure. In this study, the model output in terms of the driver
behavior is assumed to be a function of the past and present input, and the past output.
Mathematically, this relation can be represented as a multivariable nonlinear autoregres-
sive exogenous input (NARX) model of the following form:

g(t) = f[ul(t)a ul(t_ 1)5 s aul(t_ k)a un(t)a un(t_ 1)7 s aun(t_ k)a y(t_ 1)5 s ay(t_ é});

1
where u(t) and y(t) are the model inputs, y(¢) is the estimated model output, n + 1 is
the number of inputs and k is the model time delay. In this study, there are three input
signals (n + 1 = 3), where () denotes the vehicle speed, uy(t) denotes the synthesis
pedal pressure and y(¢) denotes the steering angle, respectively. The general function f(-)
can be estimated using several identification methods. However, we chose to use a neural
network-based method due to its capability of incremental learning without changing the
model structure. Therefore, the function f(-) is approximated by a multilayer perceptron
(MLP) model with a nonlinear transfer function in the middle layer; hence, the model is
called a NARX network. Based on our previous study [23], a tansig and linear function
were used in the middle and output layers, respectively, in order to obtain a model with
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high generalization. Figure 4 shows the structure of the NARX network used in this
study.

u, (1)

F1GURE 4. The structure of the NARX network

The NARX network performs its calculations such that the output of the jth neuron
in the middle layer is expressed as Equation (2):
n

hi = g; [Z(wji“i + b;)

=1

, i=1,...,n, j=1,...,n; (2)

where u;(t) is the ith network input, w;; is the connection weight from the ith neuron
in the input layer to the jth neuron in the middle layer, b; is the weight from the bias
to the jth neuron, g;(-) is a nonlinear activation function in the middle layer, which in
this study is the tansig function. Then, the network output is calculated by the following
relation as shown in Equation (3):

go = 3G [Z (wojhj + bo)

i=1

, j=1...,n5,0=1 (3)

where w,; is the weight connecting the jth neuron in the middle layer to the output neuron
in the output layer, b, is the bias weight for the output neuron, g,(-) is a transformation
function in the output layer and is a linear function in this application.

The popular back-propagation algorithm for training the NARX network is a gradient
descent-based algorithm and is subject to slow convergence. To improve convergence,
a superior second-order Newton method based on the Hessian matrix, the Levenberg-
Marquardt algorithm [24], is used in this study to train the overall models. In addition, the
Levenberg-Marquardt algorithm is widely used for optimization and it outperforms simple
gradient descent and other conjugate gradient methods on a wide variety of problems. In
this study, the aim of the Levenberg-Marquardt algorithm is to compute the weight vector
w so that the error E(w) in Equation (4) is minimize.

E(@) = e (@) = || (@)|] (4)
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where ¢,(W) = x; — &;(wW), x; is the target value and Z;(w) is the output (predicated)
value of output neuron [ and & = [wyy, wia, -+, Wji, Wo1, We2, * * - Wonj|” . The E(w) is
an objective error function made up of k individual error terms e?(w). By means of the
Levenberg-Marquardt algorithm, a new weight vector ,,,; can be obtained from the
previous weight vector ,, as follows:

W1 = Wy, + 0W,y, (5a)
where d10,, is defined as:
s ()
) m = _~mJ N T 5b
m = T T+ N (5b)

In Equation (5b), J,, is the Jacobian of f(-) evaluated at ,,, A is the Marquardt
parameter and I is the identity matrix [25]. In summary, the learning algorithm used to
train driver model in the form of NARX network can be summarized as follows:

(i) Calculate E(w,,) by using Equation (4),

(ii) Begin with a small value of A, e.g., A = 0.01,

(iii) Solve (5b) for du,, and compute E(;,41),

(iv) If E(wps1) < target error, then stop the training process,

(v) If E(W,,41) > target error and E(W,,11) > E(W,,), then increase A by a factor of 10

and repeat Step (iii),

(vi) If E(Wy41) > target error and E(Wy,41) < E(W,,), then decrease A by a factor of
10, update w,y, : W, < Wy, and repeat Step (iii).

4.3. Model fitting and validation. The operation signals of neutral driving from ex-
periment 8 without the secondary task were used for model fitting for each driver. Model
fitting was carried out by the learning process described in Section 4.2. The model was
then validated using the operation signals from experiment 11 without the secondary task.
The driving duration was not exactly the same for all drivers, and therefore the amount of
data available varied for each driver. The NARX network was used to predict the output
from three inputs. In this study, the steering angle is used as the model output, while
the vehicle speed, synthetic pedal pressure and actual steering angle were used as inputs
since the steering angle is more sensitive to the secondary task than the vehicle speed or
synthetic pedal pressure. We think it is a novel idea to evaluating the difference (model
residual) between the actual steering single (which is the input signal) and the predicated
steering angle (which is the output signal) in order to detect the inattentive driving. This
is because in the case of inattentive driving, the driver operation was different from nor-
mal (neutral) driving and has some turbulence, hence the model cannot predict correctly
and the predicted error becomes bigger.

Figure 5 shows examples of predicted values of driver action for driver 1 during fitting
and validation processes, where (a) shows the model output obtained by fitting process
and (b) shows the model output obtained by the validation process. In order to compare
the predicted values with actual operation signal, the actual steering angle that is one
of the inputs also is shown in Figure 5. By comparing the actual steering angle with
predication results, one can observe that the model prediction closely follows the actual
driver action in the condition of fitting and validation, which proved that the model
produces suitable output from new inputs with a high confidence rate.

5. Inattention Analysis. As discussed in the previous section, the driver model can
predict the output very well for new inputs operation signals for neutral driving. In other
words, this model can capture driver’s operation characteristic patterns, the correlation
between the inputs and output, and important properties from ordinary driver behavior
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Ficure 5. Example of the actual signals and predicted values of driver
action, where (a) shows the fitting result and (b) the validation result

in performing driving tasks. Therefore, when a driver drives normally, the model residual,
which is the difference between the predicted values and the actual steering signal, should
have a small standard deviation and be in the form of white noise. However, when this
model is used for driving with a secondary task, the standard deviation increases.

5.1. Inattention analysis using driver model. In this study, operation signals from
experiment 9 were used as the inattentive driving data to test the model. In experiment
9, each driver is instructed to loudly repeat four randomized alphanumeric letters that are
given through the driver’s earphone. This process continues until end of the experiment.
Through this process, the cognitive attention of the driver while driving is distracted due
to the secondary task.

Figure 6 shows examples of the predicated value and actual value in the case of inat-
tentive driving, where (a) shows the result obtained from the driver 1 and (b) shows the
result obtained from driver 14. As can be seen, the residual value between the predicated
value and the actual steering signal is bigger. The same result can also be obtained from
all 15 drivers. These results proved that the proposed method was capable of detecting
inattentive driving caused by cognitive distraction.

5.2. Evaluation of analysis results. The performance of the model was analyzed by
studying the model residuals, i.e., the differences between the actual operation signal
and model-predicted driver actions. Furthermore, the root mean square (RMS) value
of the model residual was calculated using Equation (6) in order to confirm the model
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performance.

where e, = (4, — ), §, is the model-predicted value at time r, y, is the actual steering
angle at time r and s is the number of data.

0.4 T T T T T
(5]
=
3
-
=
=3
=]
2 —0.4r Predicted value T
1~
-06F - Actual value -
_0.8 " 1 N 1 N I M | " 1
0 20 40 60 80 100
Time [s]

(a) Residual value of driver 1

5

Residual value

0 20 40 60 80 100
Time [s]

(b) Residual value of driver 14

FiGurE 6. Examples of the predicated value and actual values in the case
of the inattentive driving, where (a) shows the result obtained from the
driver 1 and (b) shows the result obtained from driver 14

Figure 7 shows the RMS value of the model residual in the cases of neutral driving
(experiment 8 for fitting and experiment 11 for validation process) and inattention driving
(experiment 9) for all 15 drivers. As can be seen in Figure 7, in the case of neutral
driving, the RMS values for fitting and validation are very small for all 15 drivers, which
also indicates the effectiveness of the model. That is, the model can almost predict the
output actual value exactly even though the difference data were used for these processes.
Comparing to this, in the case of inattention driving, the RMS values are almost more than
two times larger than in the case of neutral driving. This also indicates the effectiveness
of the model for inattentive driver detection.

In addition, we also calculated the percentage of confidence score for the model residuals
obtained for the cases with and without the secondary task for all drivers to observe the
effectiveness of the model for inattentive driving detection. The percentage of confidence
score was calculated based on Equation (7).

C' = 100e Frms [%] (7)
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where C'is the percentage of confidence score, R,,,s = aRMS x RM S, RMS is calculated
using Equation (6) and a = 30 is a constant value.

Equation (7) explained that the percentage of confidence score depends on the residual’s
value. If the residual’s value is small which shows that the driver is driving neutrally, the
value of confidence score, C' will be high. In contrast, if the residual’s value is big which
shows that the driver is inattentively driving, the value of confidence score, C' will be
low. Figure 8 shows the percentage of confidence score obtained from neutral driving
(validation process) and inattentive driving data. As can be seen, the percentage of
confidence score is very high and is more than 90[%] for the neutral operation residual
whereas for inattentive operation the score drops below 70[%)] excepting the tenth driver.
This result indicates the effectiveness of the model for inattentive driving detection and
also shows that the percentage of confidence score can be used to interpret how much
the driver is affected by distraction from the given task. Furthermore, the percentage
of confidence score differs for each driver. We think this is due to the fact that the
influence of the secondary task for inattentive driving is differs based on different driving
experiences, and the driver’s behavior.
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F1GURE 8. The percentage of confidence score from fitting, validation, test-
ing and inattention driving data for the all drivers
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6. Conclusion and Future Work. This paper proposed a new method to identify
driver inattention in driving tasks caused by cognitive distraction. The method involved
constructing a neural network-based NARX model for each driver using neutral driver
operation signals (i.e., without a secondary task). The results obtained show that in
the case of neutral driving, the percentage of confidence score for the model residuals is
very high and is more than 90[%] whereas in the case of inattentive driving, the score
drops below 70[%]. It has been shown that the model is capable of demonstrating the
effects of inattention on individual drivers through its residual value. Therefore, by using
our method the inattention in driving caused by cognition distraction can be detected,
although it is difficult by using traditional method, which focused on detecting inattention
caused by fatigue and visual distractions.

Future work can seek to determine which secondary tasks give the highest effect on
driver inattention. Additionally, we intend to examine the influence of the secondary
task for inattentive driving in different conditions of driving experience, driver’s behavior
and investigate new informative features from model residuals and develop a system to
evaluate driver inattention.
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