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ABSTRACT. Based on the switching Takagi-Sugeno (T-S) fuzzy control theorem, this
study investigates the position control for a developed differential-drive two-wheeled mo-
bile robot (TWMR). The developed TWMR is introduced, followed by a description of the
kinematic equations of the TWMR, which are represented by exact T-S fuzzy systems.
The uncontrollable problem of the derived T-S fuzzy model is avoided by considering
the switching section mechanism. The switching T-S fuzzy model is synthesized by a
switching parallel distributed compensation. Moreover, a guaranteed cost control issue is
considered to obtain proper control signals and improve state responses for the developed
TWMR. A feasible controller is obtained by solving the derived linear matriz inequali-
ties (LMIs). Finally, the proposed control law is implemented on the developed TWMR,
demonstrating the effectiveness of the control design.

Keywords: Two-wheeled mobile robot, Switching T-S fuzzy system, Guaranteed cost
control

1. Introduction. Mobile robots have received considerable attention for academic and
industrial applications, including such as security, home services, medical care, industrial
manufacturing, transportation and business services. Wheeled mobile robots are charac-
terized by their ability to move rapidly on flat surfaces. Therefore, this work investigates
the position control in a differential-drive two-wheeled mobile robot (TWMR). Nonlin-
ear controller design for TWMR has been extensively studied [1-8]. Recent efforts have
attempted to control TWMR by using fuzzy control [9-14].

As an effective and simple control method, linguistic fuzzy control is often designed
based on the experience of designers without considering the system model. However,
the stability of a traditional linguistic fuzzy control system cannot be guaranteed by
mathematical analysis. T-S fuzzy control is a reliable scheme to ensure the stability of a
system. T-S fuzzy model-based control has been extensively explored in recent decades
[15]. Tanaka and Sugeno verified the stability of a T-S fuzzy system by using a quadratic
Lyapunov function V' (k) = X7 (k)PX (k) [15]. System stability is guaranteed if a common
positive definite matrix P can satisfy the Lyapunov inequalities with respect to the T-
S fuzzy system. Lyapunov inequalities can be converted into linear matrix inequalities
(LMIs), and then be solved efficiently by LMI tools. Parallel distributed compensation
(PDC) is conventionally adopted control design for T-S fuzzy model-based stabilization.
The corresponding Lyapunov inequalities for PDC design can also be converted into LMIs.
LMI-based fuzzy control design and common matrix P can be solved simultaneously by
LMI tools. Hence, LMI-based T-S fuzzy control is applied to numerous applications, such
as inverted pendulum, truck, overhead crane, networks and TWMR [15-21].
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Despite the considerable attention paid to TWMR tracking control [9-14], position
control of TWMR based on T-S fuzzy model is still problematic. By a sector nonlinearity
method [15], the TWMR model can be converted to a T-S fuzzy model. However, the
T-S fuzzy model for TWMR leads to an uncontrollable situation [16]. The uncontrollable
issue can be avoided by using the switching T-S fuzzy model instead of the traditional T-S
fuzzy model. This work adopts the switching T-S fuzzy modelling method to represent
the kinematic equations of a differential-drive TWMR.

To apply PDC to a switching T-S fuzzy system, a switching PDC form should replace
the traditional PDC. Stability of the switching T-S fuzzy control system is then proven
using Lyapunov stability criterion. The derived Lyapunov inequalities are converted into
LMIs, and solved by existing LMI tools as well. However, simulation results indicate
that the control gains are too large for a practical TWMR system. In addition, sim-
ulation results demonstrate slow state responses. This work attempts to obtain better
state responses and obtain proper control gains by using guaranteed cost control law. A
control system should not only be asymptotically stable, but also guarantee a proper per-
formance, which is referred to guaranteed cost control [22]. The performance constraint
is represented by a cost function J = Y, XT(k)WX(k) + u” (k)Ru(k), where W and
R denote given matrices corresponding to the state vector X (k) and input vector u(k),
respectively. Better state responses can be obtained by selecting a proper matrix W. The
proper control gains can be achieved by choosing a proper matrix R. Therefore, this work
considers the guaranteed cost control law.

This study focuses on the switching T-S fuzzy model-based guaranteed control de-
sign for the developed TWMR. Kinematic equations of the differential-drive TWMR, are
represented as a switching T-S fuzzy model. Control design for the TWMR, model is
based on the guaranteed cost control law. Both the stability and reasonable control gain
are guaranteed. The control law can be presented as LMIs and then effectively solved by
MATLAB LMI tool. Finally, the control design is implemented on the developed TWMR.
Experimental results demonstrate the effectiveness of the proposed control design.

2. System Description and Problem Formulation. This section introduces the de-
veloped TWMR and its kinematics. Kinematics of the TWMR is then represented by
T-S fuzzy model, followed by formulation of the derivative modelling problem.

2.1. Developed TWMR. The developed TWMR measures 42 x49x50cm. The TWMR
mechanism includes a vehicle body, two driving wheels and a passive caster, as shown in
Figure 1. Figure 2 shows the overall control architecture of TWMR. According to the
proposed switching T-S fuzzy model-based control law, the speed control command can
be calculated using the PC-based controller. For safety considerations, speed command is
transferred to a current command by a constant ratio £* = 1. The current control avoids
the current suddenly and hugely increasing while TWMR, demands a large torque. An
additional microcontroller, PIC18F4431 (Microchip Tech. Inc.), implements the current
control. The built-in pulse width modulation (PWM) module of the PIC18F4431 can
provide the current control signal for the driver circuit of the motor. Thus, two servo
motors (CSDC-60) can actuate the two wheels of TWMR individually. Two 500 PPR
(pulses per revolution) incremental encoders are attached to motors individually. The en-
coder feedback transmits to the PC-based controller through PIC18F4431 and FT232RL,
where FT232RL is a converter for RS232 and USB. The control demand for TWMR is
then achieved. The control law is addressed later.

2.2. Traditional T-S fuzzy model. The differential-drive TWMR model and its coor-
dinate system are shown in Figure 3. The variables are defined as follows. v; and v, are



SWITCHING T-S FUZZY MODEL-BASED GUARANTEED COST CONTROL FOR TWMR 3017

FicUure 1. Photograph of the differential-drive TWMR
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Fi1GURE 2. Control architecture of the developed TWMR

right-wheel
Ficure 3. TWMR model and its coordinate system

the forward speeds of the left and right wheel, respectively. u; refers to the linear speed
of the robot. us refers to the angular velocity of the robot. ¢ is the orientation angle of
the robot. [ denotes the half width of the robot. Therefore, the kinematic equations of
the TWMR are presented as follows:

x(k+1) = z(k) + [(v, + v)) At cos ¢(k)]/2 (1)
y(k +1) = y(k) + [(v; + v)At-sin ¢(k)] /2 (2)
¢(k +1) = o(k) + [(vr — v)AL]/(20) (3)
where At is the sampling time. For a differential-drive TWMR, we define
u = (v, +v1)/2 (4)
uy = (v — vr)/2 (5)

Herein, the control purpose is limy o y(k) = 0 and limy_, ¢(k) = 0. Therefore, the
control object is described as

Rl i ] e A e | T
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By using sector nonlinearity method [15] to replace the nonlinear term sin¢(k) in (6),
the T-S fuzzy model of TWMR is derived with the following procedures. Considering
o(k) € [-3.131 3.131] (i.e., |#(k)| < 0.9967), the maximum and minimum of sin ¢(k) are

by = min sing(k)=—-1, b= max sing(k)=1 (7)

|p(k)<0.9967] |p(k)<0.9967]

According to the sector nonlinearity method, sin ¢(k) can be expressed as

sin ¢(k) = My (sin ¢(k)) x by + Ms(sin ¢p(k)) x by (8)

where
MiGsing(h) =+ 52 Mg = AN ZED
M (sin ¢(k)) + Ma(sin (k) = 1 (10)

Hence, (6) can be represented as a T-S fuzzy model composed of a set of linear subsystems,
Plant rule i: If sin ¢(k) is M;(sin ¢(k)), then X(k + 1) = A, X (k) + B,u(k)

Wherei:1,2,A1:A2:[(1) ?],BIZH ?]At,BZZ[_Ol ?]At. The T-S

fuzzy model of the TWMR is then expressed as
2
X(k+1) =Y wi(k)[A;X(k) + Byu(k)] (11)
i=1

where X (k) = [y(k) ¢(k)]F and u(k) = [ui(k) ua(k)]T denote the state vector and the
input vector, respectively. And

(k) = o G OAE) (12)
> i1 Mi(sin ¢(k))
Notably, in (11), a situation in which sin(¢(k)) = 0 leads to
S Mi(sin (k) Bou(k) = [ oY ] At (k) (13)

i=1
Then, the system is uncontrollable. Previous works [16,23] have presented similar results.

To overcome the uncontrollable problem, the traditional T-S fuzzy model is replaced using
the switching T-S fuzzy model.

2.3. Switching T-S fuzzy model. A traditional T-S fuzzy model and a switching T-S
fuzzy model differ in the structure of non-overlapping region rules. The crisp region rules
make the T-S fuzzy model with the utility of a switch system. In each region, a switching
T-S fuzzy model is still composed of fuzzy rules, and it maintains the modelling superiority
of a T-S fuzzy system. Notably, the crisp ranges of region rules must be defined in advance
to represent the TWMR by the switching T-S fuzzy model [15,16].

Next, consider modelling sin ¢(k) by switching T-S fuzzy model in the following non-
overlapping regions 7/50 < ¢(k) < 3.131, —7/50 < ¢(k) < (7/50) and —3.131 < ¢(k) <
—m/50. The three regions are denoted as S;, So and Sj, respectively. Figure 4 shows
the division of sin¢(k). In Region 1 (S;) and Region 3 (S3), the modelling procedures
resemble (7)-(10). Due to the maximum and minimum of sin ¢(k) in S; are

) “/50<g(1}“§1§3'1318m¢() e 7r/50<rdr>l(%)xg3.131sm¢() (14)
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FIGURE 4. Division of the TWMR model

where sin ¢p(k) = z1(k) € [b11 bi2] in S;. According to the sector nonlinearity method,
sin (k) in S; can be represented as

sin ¢(k Z My (z1(k))- by; (15)

where
Mi(a () = § =, M () = 21 0 (16)

Likewise, sin ¢(k) = 23 in S can be represented as

sin ¢(k ZM?,Z 23 (k))- bs; (17)

where
b31 = 73.131§rqr51(ikr)1<77r/50 sing(k) = —1, by = 73.131;2(2}3)24/50 sin (k) = —0.01 (18)
Man(aa() = 22 g ) = 2 20 19

In Sy, however, to avoid an uncontrollable circumstance (13), u; is set as a constant C.
Then (6) can be expressed as

y(k+1) 1 C- S‘“i At [ y(k) 0 A
= t 20
{ ¢k +1) 0 1 o(k) | 7|1 |12 (20
Using sector nonlinearity method to replace the nonlinear term sin(¢(k))/p(k) = 2o,
allows us to obtain
Slnd) ZMZZ 2’2 Cl,gi (21)
where
_ sing(k)  sin(m/50) sin ¢ (k)
= = = =1 (22
21 —7r/50ér<lb%l?)§7r/50 o(k) /50 22 —7r/50<¢( )<7r/50 o(k) (22)
agy — z9(k z(k) —a
Man(za(h) = 2220 g oy ) = 20 (23)
22 — Q21 99 — 91

Next, the overall switching T-S fuzzy model of TWMR is summarized as follows.

Region rule s: If ¢(k) € S;, then
Local Plant rule si: If z; is M;(25(k)), then X(k + 1) = A, X (k) + Bgu(k)
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Wheres:1,2,3;i:1,2. A11:A12:A31:A32: |:g_] (1):|,A21: |:(]j C.a211.At:|,

1 C-agx- At 10 1 0.01 0O
A22:|:0 a212 :|,B1:|:01:|At,B11:|:0 :|AtB12:|: 0 :|At
B21 == B22 == |: (1] :| At, B31 - 0001 O :| At B32 == |: :| At, C - 05

After defuzzification, the final output of the above system is
X(k+1) Z Z s ((k))wyi (25 (k) [AsX (k) + Bgu(k)] (24)

M;(25(k))
Sy Mai(24(k))

where g,(é(k)) = { L if o(k) €5, , Wei(25(k)) = s = 1,2,3. The

0 otherwise
switching T-S fuzzy model of TWMR is derived.

3. Controller Synthesis for the Switching T-S Fuzzy System. This section de-
scribes a controller design for the above switching T-S fuzzy model of TWMR.

3.1. Switching PDC fuzzy controller. The switching PDC controller is presented as:
Region rule s: If ¢(k) € S, then
Local Plant rule sj: If z; is M;(25(k)), then u(k) = —F4;X(k) (25)
where s = 1,2,3; j = 1,2. Then, the final output of the switching fuzzy controller is

ZE;gs V)ws; (25 (k) F oy X (k) (26)

s=1

j
By (24) and (26), the final output of the closed-loop switching fuzzy system is

3
X(k+1) Z

s=1 1=

2

ng wsi(k)ws; (k) [Asi — By o] X (k) (27)

According to the Lyapunov stability criterion and Lyapunov function V (k)=X"(k)PX(k),
the following theorem provides the stabilization conditions for the system (27).

Theorem 3.1. The switching T-S fuzzy model of TWMR (24) can be stabilized by the
switching PDC' (26), if there exist matrices Q > 0 and K; such that

|: AszQ _CzBsiKsi (a) :| > 0’ § = 15 2;3; 1= 1, 2, (28)
[ Q (¥
Gaj Q

where Q = P~', K,; = F,Q and G; = [(A.Q — B,K,;) + (A,;Q — B,;K.)]/2. The
asterisk indicates the transposed element for symmetric positions.

Proof: See Appendix A.

]>Q s=1,2,3 1<i<j<2, (29)

Remark 3.1. Theorem 3.1 provides a switching T-S fuzzy model-based control design
method for TWMR. The control design procedures are simple and direct. The Lyapunov
function V (k) = XT(k)Q™'X(k) and control gains Fy; = K; Q™" can be solved efficiently
by MATLAB LMI toolbox. However, while the control theory is applied to the developed
TWMR, some practical limitations must be considered. Simulation results reveal that the
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control gains are too large, leading to saturation of the control inputs in practical exper-
iments. Additionally, the control design might provide slow state responses. Therefore,
acceptable control gains are obtained using the quaranteed cost fuzzy control method.

3.2. Guaranteed cost fuzzy control design. If a controller u(k) exists such that not
only a fuzzy system is stable but also a considered cost function is satisfied, then u(k)
is called the guaranteed cost control law for the T-S fuzzy system. The cost function is
defined as

J =Y [X"(k)WX(k) +u" (k)Ru(k)], (30)
k=0
where W and R are given positive definite matrices. The following theorem provides a
guaranteed cost control law for the TWMR system (24).

Theorem 3.2. Consider the TWMR system (24) and the cost function (30) with given
positive definite matrices W and R. The fuzzy controller (26) not only can stabilize the
TWMR system (24) asymptotically but also ensure that the cost function (30) satisfies
J < Jo =XT(0)Q™'X(0), if there exist matrices Q > 0 and K, such that

Q () (x) ()
(AsiQ —QBsiKsi) (3 “971 8 >0, s=1,2,3; i=12. (31)
L Ksi 0 0 Ril
- ~Q (x) (%) (%) () (%) _
G Q 0 1 0 0 0
Q- 8 “:) Rq1 8 8 >0, s=1,23; 1<i<j<2 (32)
Q 0 0 0 W' 0
L Ksi 0 0 0 0 R_l ]

Proof: See Appendix B.

Remark 3.2. Based on Theorem 3.2, the TWMR system (24) can be stabilized and the
cost index (30) is considered simultaneously. Notably, fast state responses and proper
control gains can be achieved by choosing proper matrices W and R for (30), respectively
(describe in next section). Proper control gains do not cause saturation of the driver
circuit of the developed TWMR. Then the control design can directly apply to the developed
TWMR. Consequently, the theoretical control design conforms to practical circumstances
of the developed TWMR.

4. Simulation and Experimental Results. This section introduces illustrative exam-
ples that demonstrate the effectiveness of the T-S model-based control for the developed
TWMR. Firstly, two examples are illustrated based on Theorem 3.1 and Theorem 3.2,
respectively. Example 4.3 describes how to determine an appropriate cost function for
Theorem 3.2. Finally, Example 4.4 presents the experimental results of the TWMR con-
trol based on the proposed control law.

Example 4.1. Consider the derived switching T-S fuzzy system (shown in Section 2.3)
for TWMR. According to Theorem 3.1, the positive definite matriz P = Q™' and the
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control gains Fy; = K, Q™' can be obtained as follows.

)

p_ 0.3347 0.0228
~ | 0.0228 0.2120

p_ | 10.0057 0.0004 ] o [250316 0.0431 ]
M -0.2820 9.9923 |0 T T | 09356 10.0307 |’

For = [ 0.9766 10.0597 |; Fap = [ 10.9766 10.0596 | ;

P _ | —25.0316 —0.0431 ] o [ —~10.0057 —0.0004
71 09356 10.0307 | T T | —0.2820 9.9923 |-

Figure 5(a) and Figure 5(b) show the trajectory and state responses of the TWMR with
initial condition X(0) = [-1 1.571]T, respectively. In Figure 5(a), the block denotes the
instant attitude of the TWMR. Notably, to avoid the complexity, the following simulation
results show only partial instant attitudes of TWMR. Simulation results indicate that the
control design based on Theorem 3.1 can stabilize TWMR. Figure 6 and Table 1 show
the control signals. However, in Table 1, the maximum magnitude |uz(k)| of the control
signals is 15.98, i.e., larger than the boundary value of the driver circuit for the developed
TWMR. The limit of our practical driver circuit is 15. Next, Theorem 3.2 is considered
to avoid the control signal being over the limit of the driver circuit.
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: I é 0 :
§ 5 O5H OO S
0.4}~ 1 ;
: 0 0.5 1 15 2
0.6 = 2 .
-0.8F '% 1F
. N
Al TR Ly S o
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x(m Time (Sec)
(@) Robot trajectory (b) State responses X (0) =[-1 1.571]"
FIGURE 5. Simulation results of Example 4.1
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FI1GURE 6. Control singles of Example 4.1

Example 4.2. Consider the derived switching T-S fuzzy system (shown in Section 2.3)
for TWMR. Using Theorem 3.2 and arbitrarily choosing W = R = diag(1, 1), the positive
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TABLE 1. Significant control singles of Example 4.1

k=0 k=1 k=2 k=3] k=4
wi(k) | 1001] 05 0.5 0.5 0.5
us(k) | —15.98 | 0.27 | <0.01 | < 0.01 | <0.01

definite matriz P = Q™' and the control gains F,; = K,;Q™" are obtained as follows.

p— 1911 13947 |
| 13947 149.2 |

po_ | 74145 02807 ] o [1.8368 0.0389 ]
M 03.5007 5.0729 |0 TP T | 47724 51252 |7

Fy = [ 4.4405 4.9616 ]; Fyy = [ 4.4400 4.9613 ];

F [ —1.8368 —0.0389 | P — —7.4145 —0.2807
371 47724 51252 | 3270135007 5.0729

Figure 7(a) and Figure 7(b) show the trajectory and state responses of TWMR with the
initial condition X(0) = [-1 1.571]7, respectively. Obviously, the TWMR is asymptoti-
cally stabilized. Figure 8 and Table 2 show the control signals. In Table 2, the maximum
magnitude |us(k)| of the control signals is 6.97, which is smaller than the boundary value
of the driver circuit for the developed TWMR. Simulation results indicate that the control
design based on Theorem 3.2 not only can stabilize the TWMR but also avoid triggering
the saturation region of the driver circuit.

y(m)

y(m)

rﬂrﬂfﬂr i Rt Bustos Rasties R
B e e A i

=)
I
=
L5F e IS s ASS R R : :
0 05 1 15 2 25 3 2 3 4 5 6 7
x(m) Time (Sec)
(@ Robot trajectory (b) State responses X (0) =[-1 1.571]"

FI1GURE 7. Simulation results of Example 4.2
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Ficure 8. Control singles of Example 4.2

In Example 4.2, simulation results demonstrate the utility Theorem 3.2 by arbitrarily
choosing W = R = diag(1,1). According to the cost function (30), matrices W and
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TABLE 2. Significant control singles of Example 4.2

k=0 k=1] k=2] k=3] k=4
ui(k) | 697 1.78| 061 0.35] 025
u(k) | —4.46 | —4.61 | —2.81 | —1.50 | —0.77

R are concerned with the state vector X(k) and input vector u(k), respectively. The
following example illustrates how to choose the suitable matrices W and R.

Example 4.3. The derived switching T-S fuzzy system (shown in Section 2.3) is stabi-
lized based on Theorem 3.2. In this example, various matrices W and R are examined
to demonstrate how cost function influences state responses and control gains. Consider
the initial state X(0) = [1 3.131])T. First, fix W = diag(1,1) and test R = diag(0.1,0.1),
R = diag(1,1) and R = diag(10,10). According to Figure 9, various matrices R induce
different control signals. Simulation results indicate that a large diagonal element of ma-
triz R leads to a small control gain. While R = diag(10,10), the control signals |uy (k)|
and |uq (k)| are always smaller than 15, which is the limit of the driver circuit.

= | — R=diag(10,10) ; | —— R=diag(10,10)
....... — — R:diag(lyl) : — — R:diag(l‘l)
S R R=diag(0.1,0.1) : B R=diag(0.1,0.1)
105 0.5 1 1.5 2 405 0.5 1 1.5 2
Time (Sec) Time (Sec)

Ficure 9. Comparison of control signals based on different R

Second, fix R = diag(1,1) and test W = diag(0.1,0.1), W = diag(1,1) and W =
diag(10,10). According to Figure 10, various matrices W induce different control signals.
Figure 10 indicates that a large element of matrix W leads to a small control gain.

=0 75l , ‘ — W=diag(10,10) |} ——W=diag(10,10) |
E "Iy — —  W=diag(1,1) — — W=diag(L,1)
] O w=diag0.10.0[1 < gt [ W=diag(0.1,0.1)|]
025F  N\Jm o T ] -
09 1 2 3 4 5 2 3 4 5
Time (Sec) Time (Sec)

Ficure 10. Comparison of control signals based on different W

For the cost function (30), the diagonal terms of matrix W are the relative weights of the
states y(k) and ¢(k), respectively. Likewise, the diagonal terms of matrix R are relative
weights of the states u; (k) and uy(k), respectively. The simulation results follow the above
statements and also illustrate how to determine the scale of matrices W and R. Based
on the hardware constraints and performance requirements of the developed TWMR,
W = diag(3,1) and R = diag(10,10) are determined for the following experiments.

Example 4.4. In this example, Theorem 3.2 is applied to the developed TWMR. Ac-
cording to Example 4.3, W = diag(3,1) and R = diag(10,10) are determined for the
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cost function (30). Following (31) and (32), the designed controller can be obtained by
MATLAB LMI toolbox. Figure 11 summarizes the experimental results with four differ-
ent initial states X(0) = [-1 1.571]7, X(0) = [-1 3.131]", X(0) = [-1 0.01]" and
X(0) = [1 0.01]7, respectively. Figure 11 also compares the simulation and experimental
trajectories. The block in the dashed line denotes the simulation trajectory based on the
switching T-S fuzzy model of TWMR. Also, the block in the solid line denotes the ex-
perimental trajectory of the developed TWMR. Experimental and simulation trajectories
always significantly differ from each other while TWMR turns its direction. We believe
that the initial state and/or the friction with respect to the passive caster of the developed
TWMR induces such differences. Despite the differences that exist in Figure 11, the ex-
perimental and simulation trajectories closely resemble each other. Figure 11 shows the
effectiveness of the proposed quaranteed cost control law.

05¢ : : Experiment| 05 i L PRI Experiment|
' : : ¢ [=_—Simulation ' : : : — Simulation

€
£
05
[X(0)=[-1 15717 _ _ X0 =[-1 3.131]] - :
0 05 1 15 2 25 0 05 1 __ 15
@ xm 0.5 ) X(m)
0.5.,.v.'v ....... TY.Y—'Experime'ant 15 ' ' —'Experim'ent

— — Simulation : "x(o):[l' 0_01]f """ " |— —Simulation

E E
=0 =
-0.5
X©=[-1 oo01'| : : »
0 05 1 15 2 25 0 05 1 15 2 25
) X(m) @  x(m)

FiGurEe 11. Comparison of experimental and simulation results

5. Conclusions. This work describes a developed TWMR and its switching T-S fuzzy
model. A switching T-S model-based guaranteed cost control law is also developed for
the position control of TWMR. By choosing a proper cost function for the guaranteed
cost control design, Theorem 3.2 can provide an adequate control gain for the developed
TWMR. The control gains can be effectively solved by Matlab LMI toolbox. Finally,
experimental results demonstrate the effectiveness of the proposed method.
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Appendix A: Proof of Theorem 3.1. Consider a candidate of Lyapunov function
V(X(k)) = X" (k)PX(k), P > 0, for the closed-loop switching fuzzy system (24). Then,
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AV (X(k) = V(X(k+1)) = V(X(k)) = X" (k+ 1)PX(k + 1) — X" (k)PX(k)

= (ZZzgs(k)wsi(k)ij(k)[Asi_Bsist]X(k)) P

s=1 i=1 j=1

: (Z > D gskwsi(kywy;(k)[Ay — Bsz'st]X(k)) — X" (k)PX(k)

s=1 =1 j=1
3 2 2 T
(Asi — BsiFs ) + (As — Bs Fsz)
=) 9) SACIMCENEE O] )18 = By
s=1 i=1 j=1
R . . A..—B..F.:
. P |:(A.,SZ BSZFSJ) —g ( Ly} S SZ):| X_ _ X_T(k)PX_(I{;)

<Y D gs(Rudi (k)X (k) [(Asi — ByiFy) ' P(Ay — ByFy) — P]X(k)

s=1 =1
3002
423 3 N gi(k)wi(k)w,; (k)X (k) [GL, PGy — PIX (k) (33)
s=1 1=1 1<y
where G’sij = [(Asz — Bsist) + (As] — Bngsz)]/Q Then AV(k) < 0, if
(Asi - BsiFsi)TP(Asi - BsiFsi) -P< 0; s = 15 2; 3; 1= 17 2; (34)
GLPG,; -P<0, s=1,23; i<i<j<2. (35)

By Lyapunov stability criterion, it implies the switching PDC fuzzy controller (26) can
stabilize the TWMR system (24). By Schur complement, (34) and (35) are equivalent to
following equations.

{GP,, 1(3*)1]>0, s=1,2,3 1<i<j<2 (37)
§1]

Multiplying both sides of the above inequalities by block-diag[P~" 1], then we can obtain
(28) and (29). The proof of Theorem 3.1 is completed.

Appendix B: Proof of Theorem 3.2. Consider the Lyapunov function as Theorem
3.1. Apply the corresponding part of (33), then

AV (X(E)) + X" (E)WX (k) + u” (k)Ru(k)

3 2
< XT(k) <Z > g(k)w?(k) [(Ay — ByFy)"P(A,; — B,F,;) — P+ W + FLRF,]

s=1 =1
3 2
423 3 N gu(k)wi(k)w,; (k) [GL PGyi; — P+ 2W + FLRF,; + FZ;-RFSJ-]> X (k)
s=1 i=1 i<y
If
(Agi — ByF,)"P(A,; —B,F,,)) —-P+W+F.RF,; <0, s=1,2,3; i=1,2; (38)
GL,PG,; —P+2W + FLRF,, + FLRF,; <0, s=1,2,3; i<i<j<2 (39)
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then
AV (X(E)) + XT(E)WX (k) +u” (k)Ru(k) < 0 (40)
Summing (40) from k& = 0 to k = oo, then we have

> X" (WX (k) +u” (B)Ru(k)] < = > AV(X(k)) = V(X(0)) — V(X(o0 + 1))
k=0 k=0
Since V(X (%)) < 0 and limy_,», V(X (k)) = 0. Hence,
J < Jy = V(X(0)) = X"(0)PX(0). (41)
The rest proof procedures are similar to Appendix A. Equations (38) and (39) are equiv-
alent to (31) and (30). The proof of Theorem 3.2 is completed.



