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Abstract. In the conventional Space-Division Multiple-Access (SDMA) scheme, Direc-
tion-of-Arrival (DoA) estimation and beamforming are usually performed sequentially
and independently. Such a cascade structure may transmit the error or deviation from
the DoA stage to the beamforming stage. Two of the main reasons for such error or
deviation are the effect of imprecise array manifold and the effect of finite sample size.
The deviation, especially error may subsequently lead a beamformer to produce a beam
pointing in wrong DoA that can severely degrade the performance of the beamformer. To
address this problem, we propose a robust algorithm both for DoA estimation and for
beamforming using the constant modulus (CM) feature. In the algorithm, the DoA esti-
mation and the beamforming are no longer independent but work in an inter cooperative
way. One can regard them as two parallel outputs of the algorithm. In this way, the ro-
bustness of DoA estimation and beamforming can be improved simultaneously. Finally,
numerical experiments show the effectiveness of the proposed method.
Keywords: Direction-of-Arrival, Beamformer, Constant modulus

1. Introduction. In the past decades, several high-resolution algorithms, such as Max-
imum Likelihood method, MUSIC method and ESPRIT method, were developed for es-
timating DoA [1]. However, the performance of these methods is known to be degraded
by the effects of imprecise array manifold and/or finite sample size of signal [2-7]. Due to
the changes of weather, surrounding environment, antenna locations, etc., the response of
the array may differ from the one obtained during the last calibration. Furthermore, the
calibration itself may not be ideal [2]. Therefore, in practical applications, the exact array
manifold is unavailable; only an approximation one can be obtained, which may worsen
the DoA estimation dramatically. Besides, these conventional methods require a long
sample size. If the sample size is short, their performance will degrade. Therefore, many
methods have been proposed to improve the robustness of DoA estimation. These meth-
ods include the weighted-based algorithms, beamspace-based algorithms, self-calibration
algorithms, EM algorithms, etc. A good overview of these can be found in [1]. The
methods mentioned above are general and do not rely on the special property of signal.
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On the other hand, some other methods have been proposed based on certain special
properties of the signals. In [8], the authors presented an algorithm in the case of the
signals with known waveforms. The properties of the signals such as nonGaussianity or
cyclostationarity are also exploited in some methods [9-11]. Moreover, the CM property
is also invoked in [12]. If all sources impinging on the array are CM sources, the method
proposed in [12] can work well to estimate the DoAs. However, in practical communi-
cation systems, though the signals transmitting from digital communication users satisfy
the CM property, the interference sources might be analog (non-CM). In this case, this
method will become invalid.
In some digital communication applications, the purpose of DoA estimation is usually

for providing the beamformers with steering vectors to recover the signals of communi-
cation users. However, the performance of beamformers will degrade dramatically if the
knowledge about the complex steering vector for the desired user is imprecise and/or if the
sample size is finite. Therefore, in the last decades, several robust beamformers have been
developed for mitigating the effects of steering vector mismatch and finite sample size, e.g.,
the diagonal loading-based (DL) beamformers [13,14], the subspace-based (SSB) beam-
formers [15] and the beamformers based on some optimization methods [16,17]. Moreover,
the method so-called blind beamformer is also proposed based on CM property for digital
communications [18]. A good overview of these can be found in [19].
By reviewing the past researches, we can find that the robust DoA estimation and

beamformers are usually discussed separately, which means the relation between them is
neglected. However, in practical applications, since the steering vector utilized in beam-
formers is generally provided by DoA estimation, the beamformers should be interrelated
with DoA estimation methods. The main difference between the proposed method and
the conventional methods is that the proposed method considers the DoA estimation and
the beamformer jointly and in a mutual and cooperative way. Though DoA estimation
and beamforming are widely used in radar, sonar and many other applications, in this
paper, we consider them used only for digital communication applications. Invoking the
CM property, we propose a robust algorithm that can implement both DoA estimation
and beamforming. In the algorithm, the DoA estimation and the beamformer are per-
formed in an inter cooperative way, i.e., fused as a single algorithm, so that the robustness
of DoA estimation and beamformer can be improved together. We shall investigate the
features of the algorithm regarding both DoA estimation and beamforming.

1.1. The contributions of the proposed method for DoA estimation. In the
proposed method, a beamformer is employed for directing to any angle. This beamformer
may be the DL beamformer, the beamformer based on the optimization method, or others.
In this paper, we choose the SSB beamformer as an example to present our approach.
We choose the SSB beamformer rather than the others just because this beamformer is
popular and is well known to most readers. Of course, one can choose other advanced
and latest robust beamformer for providing a better performance of DoA estimation.
In this paper, we use the beam produced by the SSB beamformer to scan the region

of DoA space. If, in a definite angle at which one of the CM sources is impinging, the
SSB beamformer with this angle will cancel the interference efficiently. In this case, the
outputs of SSB beamformer should also satisfy the CM property more exactly than that
with other angles. Therefore, minimizing CM errors (MCME) can act as a natural and
reasonable criterion for determining the DoA of the CM source. Since the CM property
is a strong and natural condition, the proposed method can significantly improve the
robustness about DoA estimation against the effects of imprecise array manifold and/or
finite sample size without any additional assumption.
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Upon the CM, as is well known, several kinds of CM cost functions have been proposed
in the field of blind equalizations to evaluate the CM errors. However, these functions
cannot be directly used in DoA estimation for our purpose. In [20], the authors have pro-
posed a modified CM cost function that can address this problem. Recently, we proposed
a DL beamformer based on the CM property [20]. A key point of the DL beamformer is
how to determine the diagonal loading factor (DLF). In [20], we have proposed a modified
CM cost function based on the minimizing CM errors (MCME) criterion to determine the
one-dimensional parameter, i.e., DLF. In this paper, by generalizing the cost function in
[20], we propose a cost function to estimate the one-dimensional variable, i.e., the DoAs
for CM sources. Since the cost function in the proposed method depends only on one pa-
rameter, DoA, the optimization can be solved easily by one-dimensional search algorithm
no matter the cost function is convex or not.

The CM property is also exploited in [12]; however, all sources are CM which is required
in that. As a comparison, the proposed method is quite different from that of the method
presented in [12] so that the condition that all sources are CM sources is no longer required.
However, if there exist both CM sources and non-CM sources impinging on the array,
the proposed method can only estimate the DoAs for the CM sources (More details see
Section 3). Though this method cannot estimate the DoAs about the non-CM sources, if
the purpose of DoA estimation is only for providing the beamformers with steering vectors
to recover the communication users signals, the method is enough for this purpose. The
reason is that, in digital communications, a non-CM source is definitely an interference
source.

1.2. The contributions of the proposed method for beamformer. In the proposed
method, since the DoA is optimized by the MCME criterion, the SSB beamformer with
this optimal DoA will eliminate the interferences effectively so that its outputs should be
more closer to CM signals than those of the SSB beamformer with the other angles are.
Therefore, using the MCME criterion can improve the DoA estimation and sequentially
improve the performance of SSB beamformer.

Remark 1.1. In most digital communication applications, the ultimate objective of array
signal processing is to recover the desired users signals effectively. However, due to the
effects of imprecise array manifold and/or finite sample size, the best performance of a
beamformer should be achieved at a certain DoA within a near region of the true one that
may be different from the true DoA of CM source itself. The goal of the proposed method
is to estimate DoA for a better performance of SSB beamformer. Therefore, it can search
a DoA so that the SSB beamformer can achieve a good performance that is even better
than that by true DoA (See the numerical experiment 4.3 in Section 4).

The rest of this paper is organized as follows. In Section 2, we present the mathe-
matical models of DoA estimation and beamforming. In Section 3, we propose a robust
DoA/Beamforming algorithm. In Section 4, we show some numerical experimental results.
Conclusions and discussions are given in Section 5.

2. The Mathematical Models of DoA Estimation and Beamforming.

2.1. The mathematical description of DoA estimation. Assume a uniform linear
array with M sensors and L narrow-band, far-field signal sources. The array manifold is
calibrated beforehand and is represented as Ω = {a(θ) : θ ∈ Θ}, where Θ denotes the
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region of DoA space. The array output x(k) ∈ CM×1 can be written as [8]

x(k) =
L∑
i=1

a(θi)cisi(k) + n(k), (1)

where k denotes the time index; a(θi) ∈ CM×1 is the complex array response, i.e., the
steering vector for the ith source with direction of arrival θi; n(k) ∈ CM×1 represents
additive noise; ci and si(k) is the channel attenuation and the normalized signal for the
ith source, respectively. In this paper, si(k) may or may not be digital signals. For the

cases of analog signal sources, si(k) ∈ C1 and 1
N

∑N
k=1 ∥si(k)∥2=1, where N is the number

of snapshots (sample size); in the cases of CM sources, si(k) ∈ {+1,−1} [12].
If the array manifold Ω is known and the sample size is infinite, one can use DoA esti-

mation methods to extract the users’ DoAs efficiently. In practical applications, however,
the sample size is usually finite. Moreover, the exact array manifold is unavailable; only

the approximation Ω̃ can be obtained

Ω̃ = {ã(θ) : ã(θ) = a(θ) + ∆(θ), θ ∈ Θ} (2)

where ∆(θ) is the deviation vector between ã(θ) and a(θ). In these cases, the performance
of the DoA estimation methods will degrade dramatically.

2.2. The mathematical description of SSB beamformer. A beamformer is a spatial
filter that operates on the observations of an array of M sensors in order to enhance the
desired signal relative to directional interference and background noise. That is, its output,
for approaching the desired source, is given by

y(k) = wHx(k) (3)

where w ∈ CM×1 denotes the beamformer weights, which need be determined by the
beamformer.
The SSB beamformer is a popular one which can improve robustness against the mis-

match of the array response and the effect of finite sample size. The covariance matrix of
the observations vector x(k) can be estimated by

R =
1

N

N∑
n=1

x(n)xH(n). (4)

The weight vector of the SSB beamformer for the ith source is given by [15]

wSSB = αUsΣ
−1
s UH

s ã(θ̂i) (5)

where α =
(
ãH(θ̂i)UsΣ

−1
s UH

s ã(θ̂i)
)−1

. Here, Us ∈ CM×L is stacked up by the L eigen-

vectors of signal subspace of R; Σs ∈ RL×L is a diagonal matrix in which the elements are
the eigenvalues of signal subspace. θ̂i denotes the DoA of the ith source obtained from
the DoA estimation methods.

Remark 2.1. In the conventional beamformer, the DoA of desired user is required that
usually is estimated in the former DoA stage. This is different from the proposed algo-
rithm, as shown in the next section, in which DoA is also a unknown parameter to be
determined.
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3. The Proposed DoA/Beamforming Algorithm. In the beginning of DoA estima-
tion stage, the DoAs are unknown and wSSB cannot be determined by (5). We propose a
weight vector of SSB beamformer which depends on θ. That is,

wSSB(θ) = αθUsΣ
−1
s UH

s ã(θ) (6)

where αθ =
(
ãH(θ)UsΣ

−1
s UH

s ã(θ)
)−1

.

For more easier understanding, we would like to give an illustrative example. In this
example, there are one CM source and L−1 analog signal sources impinging on the array.
Assume the first source is the desired CM source, i.e., s1(k) ∈ {+1,−1}; the others are
analog signal sources. From (3) and (6), the output of the SSB beamformer with an
arbitrary angle θ can be written as

y(k) = wH
SSB(θ)x(k) = γs1(k) +wH

SSB(θ)

(
L∑
i=2

a(θi)cisi(k) + n(k)

)
(7)

where γ = c1w
H
SSB(θ)a(θ1). Define xin(k) =

∑L
i=2 a(θi)cisi(k)+n(k). (7) can be rewritten

as
y(k)

γ
= s1(k) +

wH
SSB(θ)xin(k)

γ
(8)

Though s1(k) is unknown in (8), it satisfies CM property, i.e., |s1(k)|2 = 1. If θ is
closer to the DoA of the first source, the SSB beamformer shown in (6) can cancel the
interference term xin(k) more efficiently. In this case, y(k)/γ will approximate to s1(k)
more exactly. Therefore, if γ is known, we can use CM cost functions, such as Godard
cost function G(θ) to determine the DoA of desired user.

G(θ) = E


(∣∣∣∣y(k)γ

∣∣∣∣2 − 1

)2
 = E


(∣∣∣∣s1(k) + wH

SSB(θ)xin(k)

γ

∣∣∣∣2 − 1

)2
 (9)

However, this cost function also includes a(θ1) and c1 (both are include in γ), which are
also unknown. We cannot employ Godard function directly. Fortunately, this situation
will be changed if we use the modified Godard cost function that has been proposed in
[20]. The modified Godard cost function can be expressed as

GMCME(θ) = E


(

|y(k)|2

E
{
|y(k)|2

} − 1

)2
 = E




∣∣∣ãH(θ)UsΣ
−1
s UH

s x(k)
∣∣∣2

E

{∣∣∣ãH(θ)UsΣ−1
s UH

s x(k)
∣∣∣2} − 1


2
(10)

A notable difference between the Godard function G(θ) and GMCME(θ) in (10) is that
GMCME(θ) does not depend on γ but G(θ) does. Let us analyze the reason why GMCME(θ)
can replace the Godard function. (10) can be rewritten as

GMCME(θ) = E


 ∣∣γs1(k) +wH

SSB(θ)xin(k)
∣∣2

E
{
|γs1(k) +wH

SSB(θ)xin(k)|
2
} − 1

2 (11)

As is well known, the aim of beamforming is to remove interference. Obviously, if
θ is closer to the DoA of the first source, the interference xin(k) should be eliminated
more efficiently; in this case, y(k) should be closer to γs1(k) and wH

SSB(θ)xin(k) should
be closer to 0, for every k. If so, GMCME(θ) will more exactly approach its minimum,

E
{(

|s1(k)|2 − 1
)2}

, which is also just the minimum of the Godard cost function.
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Remark 3.1. If θ is closer to the DoA of the first source, the SSB beamformer shown
in (6) can cancel the interference term xin(k) more efficiently. In this case, the function
(10) will approach its minimum more exactly. However, for the other analog sources, since
their signals do not satisfy the CM property, the outputs of the SSB beamformer should
be non-CM even though θ is close to one of the DoAs of analog sources. Therefore, the
function (10) will show one valley point corresponding to the DoA of CM source, rather
than L valley points. In other words, our method can only estimate the DoA for the CM
source.

In practical applications, since the number of snapshots is finite, (10) should be rewrit-
ten as

ĜMCME(θ) =
1

N

N∑
k=1

(
N · |y(k)|2∑N

i=1 |y(i)|
2
− 1

)2

=
1

N

N∑
k=1

 N ·
∣∣∣ãH(θ)UsΣ

−1
s UH

s x(k)
∣∣∣2∑N

i=1

∣∣∣ãH(θ)UsΣ−1
s UH

s x(i)
∣∣∣2 − 1


2

(12)
Therefore, the DoA of the first source θ1 can be determined by solving the optimization

problem

min
θ

ĜMCME(θ) (13)

Obviously, if there are several CM sources impinging on the array, the cost function
(12) will show several valley points corresponding to the DoAs of CM sources. Therefore,
the cost function (12) can be employed to estimate the DoAs of multi-CM sources.
Since the function (12) is complicated, its gradient is also complicated. A more serious

problem is that the function (12) is not convex and has local optimal points. Fortunately,
(12) is a one-dimensional problem that permits us to apply a direct search algorithm for
the global optimization. The similar search algorithm is also used in some conventional
DoA estimation methods such as MUSIC method.
Next, we will analyze the computational complexity of the proposed method compar-

ing with that of the MUSIC method. The cost function of the MUSIC method can be
expressed as [1]

max
θ

fMUSIC(θ) =
ãH(θ)ã(θ)

ãH(θ)UnU
H
n ã(θ)

(14)

where Un is stacked up by the M − L eigenvectors of noise subspace of R.
Assume there are P points to search, and assume the search region is bounded by

[θmin, θmax]. In this case, the search interval ∆ is (θmax − θmin)/(P− 1). Therefore, in the
lth search, θ(l) is equal to θmin+(l−1)∆ (l = 1, 2, . . . , P ). For each search point, the main

cost of MUSIC method is to calculate ãH(θ(l))UnU
H
n ã(θ

(l)), the complexity is O(M (M -
L)), ∀l = 1, 2, . . . , P . Finally, one can determine an optimal value of DoA from P search
points, corresponding to the maximum of the MUSIC cost function (14). Therefore, the
total computational complexity of MUSIC method is O(PM(M− L)).
Let’s consider the proposed method. Since the term UsΣ

−1
s UH

s x(k) is independent
from the variable θ and search points in (12), one can compute this term before search-
ing. The complexity for computing this term is O(NLM ). Once the terms UsΣ

−1
s UH

s x(k),
∀k = 1, 2, . . . , N have been calculated, we sequentially calculate the value of (12) in each
search point. For the lth search, the main cost of the proposed algorithm is to calculate
ãH(θ(l))UsΣ

−1
s UH

s x(k), ∀k = 1, 2, . . . , N with the computation complexity O(NM ). Fi-
nally, one can determine an optimal value of DoA from P search points, corresponding
to the minimum of the proposed cost function (12). Therefore, the total computation
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complexity of the proposed method is

O(NLM) +O(PNM) (15)

Since the sample size N is usually greater than the number of sources L, the computation
complexity of the proposed method is usually greater than that of the MUSIC method,
especially when N is large. Though the proposed algorithm has larger computational
cost, it can achieve better performance. Moreover, if the channels are time invariant
or varied slowly in realistic applications, the computational complexity of the proposed
algorithm can be reduced tremendously. In this case, updating our algorithm is only
required to be performed completely from the beginning for time invariant channels and
to be performed at a low periodicity for slow time-varying ones. After updating, one can
just use a conventional beamformer to estimate the source signals in real time, taking
advantage of the DoA information estimated previously by the proposed algorithm.

Once the DoAs of CM sources are solved by optimization of (13), the weights of SSB
beamformer (6) can be sequentially determined. One can employ these weight vectors to
recover the CM signals.

4. Numerical Experiments and Results. Assume a uniform linear array with M = 4
omni-directional sensors spaced at half-wavelength intervals. In this case, the presumed
array manifold can be characterized analytically. That is,

Ω̃ = {ã(θ) : ã(θ) = (1, . . . , exp{−jπ(M − 1)sinθ})H , θ ∈ Θ}. (16)

Assume ∆(θ) in (2) is a white noise vector with covariance matrix σ2
naI. The uncertainty

ratio (UR) is defined as [13]
UR = 10logσ2

na (17)

In all experiments, the signal-to-noise ratio (SNR) is fixed to 15 dB.

4.1. The effectivity of DOA estimation for the proposed method. In this set-
ting, we assigned one CM signal source and two interference sources (Non-CM with the
white Gaussian distribution) with plane wavefronts; their DoAs are 30◦ (CM), 10◦ (user
2) and 50◦ (user 3), respectively. In order to present the algorithm performance both
for high-power and low-power interference cases (simulate a near-far effect), the channel
attenuation coefficients are assigned to c1 = 1; c2 = 10; c3 = 1.

Figure 1 shows the typical results obtained from the proposed method and the MUSIC
method in scenarios of UR = −40dB, N = 500 and UR = −20dB, N = 100, respectively.
In fact, many other well known DoA estimation methods, such as Maximum Likelihood
method, ESPRIT method and some other robust methods [4,6], etc., had also been eval-
uated in our experiments. However, since the typical results of them are similar or worse
than those of the MUSIC method under the given experimental environment, in Figure
1, we only compare the typical results of our method with that of MUSIC algorithm.
Since there are one CM source (30◦) and two analog sources (10◦ and 50◦) impinging on
the array, the plots of MUSIC method should appear three peaks near 10◦, 30◦ and 50◦.
Whereas, the proposed method can only estimate the DoA for the CM source, the plots
of the proposed method should appear one valley near 30◦.

Figure 1 shows that, when the uncertainty ratio is small and the sample size is long
(UR = −40dB, N = 500), the MUSIC algorithm can estimate the DoAs effectively.
However, if the uncertainty ratio is great and sample size is too short (UR = −20dB,
N = 100), the MUSIC algorithm becomes invalid, the peak in 30◦ disappears. In contrast
to this, the proposed method can obtain the DoA of CM source that is very close to the
true value, 30◦, even if the UR is great (UR = −20dB) and/or the sample size is very
short (N = 100).
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To evaluate the performance of our method versus uncertainty ratio, we conduct 1,000
blocks data and the length of each block is equal to the sample size N = 100. The
uncertainty ratio varies from −25dB to −15dB. The DoA estimation absolute error for
each block is defined as |θ1 − θ̂1|. We show the average estimation absolute errors about
the CM source’s DoA in Table 1, which shows that our method can efficiently estimate
the DoA of the CM source even UR is increased to −15dB.
From the experimental results, we can conclude that, if there exist both CM sources and

non-CM sources impinging on the array, the proposed method can estimate the DoA of
the CM source effectively even in the case that the conventional DoA estimation methods
become invalid. Though this method cannot estimate the DoAs of the non-CM sources, if
the purpose of DoA estimation is only for providing the beamformers with steering vectors
to recover the communication users signals, the method is enough for this purpose. Since,
in digital communications, a non-CM source is definitely an interference source.
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Figure 1. The effectivity of DOA estimation for the proposed method
compared with the MUSIC method

Table 1. The average estimation absolute errors (AEAE) versus UR

UR (dB) −25 −23 −21 −19 −17 −15
AEAE (Degree) 1.575 1.611 1.764 1.999 2.257 2.658
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4.2. The resolution of DOA estimation for the proposed method. To evaluate
the resolution of the proposed method, we assigned two CM signal sources with the same
channel attenuation coefficients. One DoA of CM source (CM1) is fixed to 30◦; another
source’s (CM2) DoA is varied. The UR is fixed to −20dB.

Figure 2 shows the typical results obtained from the proposed method and the MUSIC
method in scenarios of DoA of CM2 are 18◦ and 26◦, respectively. Figure 2 shows that,
due to the effects of imprecise knowledge about the array manifold and finite sample size,
the MUSIC algorithm cannot discriminate the DoAs located in a near region. However,
the proposed method can distinguish the DoAs even if the DoA of CM2 is 26◦.

We also conduct 1,000 blocks data and the length of each block is equal to the sample
size N = 100. The uncertainty ratio is fixed to −20dB. We show the AEAE about two
CM source’s DoAs in Table 2. Table 2 shows that our method can efficiently estimate the
DoAs of the CM sources even though their positions are near.
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Figure 2. The resolution of DOA estimation for the proposed method
compared with the MUSIC method

Table 2. The AEAE versus DoA of CM2

DoA of CM2 (Degree) 18 20 22 24 26
AEAE (Degree) 1.848 1.449 1.105 0.973 1.033
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4.3. The performance of beamformer for the proposed method. In this setting,
the experiment data are same as those of experiment 4.1. That is, 100,000 samples
are divided into 1000 blocks. The uncertainty ratio varies from −25dB to −15dB. The
average estimation absolute errors about the CM source’s DoA has been shown in Table
1. We use the mean output Signal to Interference plus Noise Ratio (SINR) to evaluate
the performance of SSB beamformer [20]. The output SINR for each block is defined as:

SINR =
σ̂2
1|c1|2|wH

SSB(θ̂1)a(θ1)|2

wH
SSB(θ̂1)R̂inwSSB(θ̂1)

(18)

where σ̂2
1 = 1

N

∑N
k=1 |s1(k)|2; θ̂1 is the estimation of θ1 that is obtained from the proposed

DoA estimation method; R̂in = 1
N

∑N
k=1 xin(k)x

H
in(k). In each scenario, the results of 1,000

simulation runs have been averaged to obtain the mean output of SINR.
Figure 3 shows that, due to the effects of imprecise array manifold and/or finite sample

size, the highest mean output SINR of SSB beamformer is usually achieved at a certain
DoA within a near region of the true one that may be different from the true one of CM
source itself. Since the proposed method utilized the CM property to estimate DoA, it
can really search the DoA to make the SSB beamformer achieving higher mean output
SINR even than the estimation by using the true value of DoA.
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Figure 3. The output SINRs of SSB beamformer with the estimation DoA
and with the true one
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5. Conclusions and Discussions. In this paper, invoking the CM feature, we proposed
a robust DoA estimation method inter-cooperative with a SSB beamformer. In this
algorithm, the DoA estimation and beamforming can be done simultaneously. In this
way, the algorithm can (i) effectively estimate the DoAs of CM sources in the case of
great uncertainty ratio with a short sample size; (ii) by using these DoA estimations, the
SSB beamformer can achieve a good performance that is even better than that by using
the true DoAs.

In [20], the authors have presented a modified Godard cost function for multilevel
modulation systems. Therefore, in principle, it is no doubt to employ the proposed
method for the multilevel modulation systems, such as M-ary PAM and M-ary QAM
systems. However, the CM-based methods require much more samples if the modulation
systems are multilevel. As the formula (15) shows, the computational complexity of the
proposed method is in direct proportion to the sample size N. If we apply the method
to the multilevel modulation systems, the computational cost might be unacceptable in
practical applications. Therefore, how to reduce the computational complexity of the
proposed method is a valuable problem and worth researching in the future.
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