International Journal of Innovative
Computing, Information and Control ICIC International ©)2012 ISSN 1349-4198
Volume 8, Number 6, June 2012 pp. 4263—4284

AN ICN-BASED WORKFLOW PROCESS REDISCOVERY
FRAMEWORK

KwANGHOON P1o Kim

Collaboration Technology Research Lab.
Department of Computer Science
Kyonggi University
Suwonsi, Kyonggido 443-760, South Korea
kwang@kgu.ac.kr

Received January 2011; revised May 2011

ABSTRACT. Workflow management systems help execute, monitor, and manage work
process flow and execution. These systems, as they are executing, keep a record of who
does what and when (i.e., log of events). The activity of using computer software to
examine these records and derive various structural data results is termed workflow re-
discovery. It has encompassed behavioral (process/control-flow), social, informational
(data-flow), and organizational perspectives of a workflow model. Particularly, this pa-
per! focuses on rediscovering the behavioral aspect of an ICN-based workflow model? from
the workflow enactment histories (log of events). We term this activity workflow process
rediscovery. That is, this paper proposes a formalized framework from the logging activ-
ity to the algorithmic activity of the workflow process rediscovery, termed an ICN-based
workflow process rediscovery framework complete with a series of formal definitions and
their related algorithms. The essential algorithm, o-algorithm, is able to handle the basic
behavioral primitives (sequential, alternative, parallel) and the loop behavioral primitive
through incrementally amalgamating a series of temporal workcases that are temporal
orders of the associated workflow activities’ enactment events. This paper precisely de-
scribes analytic estimation and performance analysis of the algorithm.

Keywords: Workflow management system, Events log, Workflow process mining and
rediscovery, Temporal workcase, Information control net, Workflow process rediscovery
framework

1. Introduction. A workflow management system (WfMS) is defined as a system that
(fully or partially) automates the definition, creation, execution, and management of work
processes through the use of software that is able to interpret the defined processes, in-
teract with workflow participants, and invoke the use of I'T tools and applications. Steps
of a work process are termed activities, and jobs flowing through the system are termed
workcases or workflow instances. Such a WIMS and its related technologies have been in-
creasingly deployed and are hot-issues in the enterprise information systems’ arena. This
has seen a boom in workflows modeling and reengineering works, and became a catalyst
to trigger the emergence of the workflow mining/rediscovering concept. This concept
rediscovers several perspectives—control flow, data flow, social, and organizational per-
spectives—of workflow models from workflow execution and event histories collected at
runtime. Furthermore, as the real-world’s workflow models have been closely associated
with e-Commerce, ERP (Enterprise Resource Planning), KM (Knowledge Management)
and CRM (Customer Relationship Management), the workflow models have become larger

!This paper is an extended version of the paper published in [18] by adding more than 30 percent
substantial new contributions.
2A workflow definition model that is represented by the basic concept of Information Control Net [10].

4263



4264 K. P. KIM

and much more complex in their behavioral structures. Therefore, the workflow rediscov-
ery functionality has led to much more pragmatic requirements in the literature.

In general, a workflow model is described by the specific entities, such as activity, role,
actor, invoked applications and relevant data, and particularly, it specifies its behavioral
procedure through the transition precedences—sequential, parallel (AND), alternative
(OR) and iterative (LOOP) execution sequences—among the associated activities. The
paper uses the information control net (ICN) [10] to represent workflow models in terms
of the workflow modeling methodology. Especially it confines workflow process models
to emphasize the control (or behavioral) perspective of the workflow model. In addition,
suppose that the workflow process model keeps the proper-nesting and the matched-
pairing properties in modeling the parallel, alternative, and iterative transitions—AND-
split/AND-join, OR-split/OR-join and LOOP-split/LOOP-join nodes, and it is eventually
composed into an ICN-based structured workflow process model [18]. Particularly, this
paper focuses on rediscovering the behavioral (process, control flow) patterns from the
event log histories of workflow instances (workcases) spawned by ICN-based structured
workflow models. That is, this paper proposes an ICN-based workflow process rediscov-
ery framework that provides a systematic means for rediscovering structured workflow
process models from logs of workflow enactment events happened through the activities’
execution, based upon the concept of the ICN-based workflow process model. Note that
a workflow enactment event log is typically an interleaved list of events from numerous
workcases—workflow instances. This is represented by XML-based format and language
defined in this paper. The proposed framework is furnished with several well-defined con-
cepts, principles, and algorithms including the o-Algorithm developed by the author in
[18]. We can detect the temporal order of activity executions for each workcase, which is
termed a temporal workcase by examining the log; and then infer the general structure
of the underlying workflow process model, in terms of the mining principle. Particularly,
we assume that the general structures of the models imply those models from the typical
sequential, parallel and alternative transitions.

As a simple example, suppose we examine the execution log of a workflow process model
of four activities, a1, as, az and ay. Suppose also that all four activities are always executed
in some order by every workcase. If we observe over a large number of workcases that a; is
always executed first and a4 is always executed last, then we can begin to piece together a
workflow process model that requires a; to complete before all other activities, and a4 to
execute after all others. If we find some workcases in the log where ay begins before a3, and
other cases where ay begins after a3, then we can infer that the workflow process begins
with a;; after it completes, ay and a3 execute concurrently (parallel transition: AND
control flow); and after they both complete, ay executes. This is an extremely simplified
example that ignores the other important control transition constructs—alternative and
iterative transitions (OR control flow and LOOP control flow)—and their combinations.
Conclusively, the framework proposed in this paper formalizes the overall rediscovery
procedure coping with not only the essential rediscovery algorithm but also the XML-
based event log formats and their transformation algorithms.

The main section of this paper will show that the framework and its related algorithms
are able to handle all of the possible activity execution cases via the concepts of temporal
workcases. Finally, the paper analytically discusses the workflow process rediscovery
framework and surveys its related works.

2. Structured Workflow Process Model. This paper uses the information control
net methodology [10] to represent wokflow process models. The information control net
(ICN) was originally developed to describe and analyze information flow by capturing



AN ICN-BASED WORKFLOW PROCESS REDISCOVERY FRAMEWORK 4265

several entities within office procedures, such as activities, roles, actors, precedence, ap-
plications, and repositories. It has been used within real offices as well as hypothetical
automated offices to yield a comprehensive description of activities, to test the underlying
office description for certain flaws and inconsistencies, to quantify certain aspects of office
information flow, and to suggest possible office restructuring permutations. Particularly
this section focuses on the activities and their related information flows by newly defining
the basic concept of structured workflow process model [16], preserving proper-nesting
and matched-pairing properties, through its graphical and formal representations.

2.1. Graphical representation. As shown in Figure 1, a workflow process model con-
sists of a set of activities connected by control orderings represented by activity transitions.
This is, it is a predefined set of work steps, called activities, and a partial ordering (or
control flow) of these activities. Activities can be related to each other by combining
sequential transition types, disjunctive transition types (after activity a4, do activity ap
or o, alternatively) with predicates attached, and conjunctive transition types (after
activity ay, do activities ap and a concurrently). An activity is classified into either a
compound activity containing another subprocess, or a basic unit of work termed an ele-
mentary activity. The elementary activity denotes being executed in one of three modes:
manual, automatic, or hybrid.

Figure 2 shows a simple structured workflow process model. The model consists of six
activities, a; ~ ag, and the activities are linked to each other through combinations of
the basic transition types. Note that the AND-Control nodes (AND-split and AND-join),
and the OR-Control nodes (OR-split and OR-join) in the model are not only properly
nested but also pair-matched to build a structured workflow process model.

2.2. Formal representation. A structured workflow process model needs to be repre-
sented by a formal notation that provides a means to eventually specify the model in
textual language, a database, or both. The following definition is the formal representa-
tion of a structured workflow process model:

Definition 2.1. Structured Workflow Process Model (SWPM). A basic structured
workflow process model is formally defined through 4-tuple T = (6, k, I, O) over an activity
set A, and a transition-condition set T', where

e I is a finite set of initial input repositories, assumed to be loaded with information
by some external process before execution of the model;

e O is a finite set of final output repositories, which is containing information used by
some external process after execution of the model;

G
)

. N Disjunctive Transition Conjunctive Transition
Sequential Transition Using OR-split & OR-join Using AND-split & AND-join

FIGURE 1. Graphical notations for the basic transition types



4266 K. P. KIM

FIGURE 2. A simple structured workflow process model

e §=10;Ud,,
where 6, : A — p(A) is a multi-valued mapping function of an activity to its set of
(immediate) successors, and §; : A — p(A) is a multi-valued mapping function of
an activity to its set of (immediate) predecessors;

o k= kK; UKy,
where k; : A — p(A) is a multi-valued mapping function of an activity to its in-
coming transition-conditions (C T') on each arc, (6;(),); and ko, : A — p(A): is
a multi-valued mapping function of an activity to its outgoing transition-conditions
(CT) on each are, (o, §,(c)).

Starting and Terminating Nodes. Additionally, the execution of a structured workflow
process model commences with a single A transition-condition. So, we always assume
without loss of generality that there is a single starting node (7). At the commencement,
it is assumed that all input repositories in the set I have been initialized with data by
the external system:

day € A |(51(C¥1) = {@} A /ﬁ?o(Oé[) = {{)\}}
The execution is terminated with any one A output transition-condition. In addition, we
assume without loss of generality that there is a single terminating node (ap). The set of
output repositories O is data holders that may be used after termination by the external
system:

dap € A |dy(ar) = {0} A ki(ar) = {{\}}.

Structured Modeling Methodology. The role of the structured modeling methodol-
ogy is to preserve the proper-nesting and the matched-pairing properties in modeling a
workflow process model. Conclusively, the formal definition implies that the temporal
ordering of a structured workflow process model can be interpreted as follows: for any
activity a (6 = 6; Ud,), in general,

do(a) = {
{BII ’ 6127 SR Blm(]
{BQJ ’ 6227 Tt B?m(?

)

)b
)}

)



AN ICN-BASED WORKFLOW PROCESS REDISCOVERY FRAMEWORK 4267

} {Bnl;ﬁn?a' e 7Bnm(n)}

denotes that upon completion of activity «, either a set of transitions that simultaneously
initiates all of the activities 3;; through ;) occurs, or a transition in which only one
value of ;7 i (1 < i < n) is selected as the result of a decision made within activity «
occurs, or both. In general, if n = 1, then no decision is needed and « is not a decision
node. In addition, if m(i) = 1 for all 7, then no parallel processing is initiated by com-
pletion of . (Note that f; € {Va,{0}}, (1 < i < n), (1 < j < m)). In the SWPM
graphical notation, the former, that an activity has a conjunctive (or parallel) outgoing
transition, is represented by a solid dot—AND-split, and the latter, that an activity has
a disjunctive (or decision) outgoing transition, is represented by a hollow dots—OR-split.
Also,
05(r) = {
{Bi1:,Bizs -, Bim(r)
{BQJ ’ 6227 SRR 62m(2)

{Bnl ) 6712; ) Bnm(n)

2
12

}
}

denotes that upon commencement of activity «, either all the activities, 3;; through B,
simultaneously completes, or only one transition 3;; out of the activities 5;; through 3,1, ¢
(1 < i < n) completes, or both. In general, if m(i) = 1 for all 7, then no parallel processing
is completed before the commencement of . In the SWPM graphical notation, the former,
that an activity has a conjunctive (or parallel) incoming transition, is represented by a
solid dots—AND-join, and the latter, that an activity has a disjunctive (or decision)
incoming transition, is represented by a hollow dots—OR-join.

In summary, a structured workflow process model is constructed by the structured mod-
eling methodology to preserve the proper-nesting and the matched-pairing properties. Its
formal definition implies that the temporal orderings of the model can be interpreted as
the ordered combination of the following formal transition types, each of which corre-
sponds to each of the basic transition types graphically depicted in Figure 1. Table 1
represents the formal description of the structured workflow process model of Figure 2.

: Sequential Transition

incoming — 0;(ap) = {{aa}}; outgoing — 0,(ap) = {{aclt};
: OR Transition

or-split — 6o(va) = {{as}, {ac}}; or-join — di(ap) = {{an} {act});
: AND Transition

and-split — §,(ax) = {{ap,acl}; and-join — 6;(ap) = {{ap,ac}t};

3. Framework Rediscovering Structured ICN-Workflow Processes. In this sec-
tion, we propose a workflow process rediscovery framework that mines a structured work-
flow process model from the temporal workcases filtered from the workflow execution
events log. The framework is made up of a series of concepts and algorithms. However,
we particularly focus on the mining algorithm, termed o-Algorithm, and its directly re-
lated concept—temporal workcase. Finally, we show how it works for a typical structured
workflow process model, as an example, comprising the three basic transition types to
prove the correctness of the algorithm.

3.1. Framework. Figure 3 illustrates the workflow process rediscovery framework. The
framework starts from the event logs written in XWELL (XML-based Workflow Event



4268 K. P. KIM

TABLE 1. Formal representation of the structured workflow process model

= (0,k,1,0) over A, T /* The Structured Workflow Process Model
A={a;,az, a3, 0y, a5, a4, a7, ap} /* Activities
T = {d(default), tc;, tce} /* Transition Conditions
I = {0} /* Initial Input Repositories
O = {0} /* Final Output Repositories

o)
I
S
C
=2
S
S
—
Q
~
~
I

' do(arr)

{ar}}: do(cry)

{or}); do(az) =

{os}}; do(as) = {{vs}};
do(cry) :
do(ts)
do(rs)
0o

{az}t};
{az}th;
{ag, {{ay ) {ast

SIS IS I et
—
B
~— |~ — e
Il
S| A D

i(aF = {aﬁ}}a 0 CYF) = (ba
k= kK; UK, ki(ar) =10 kolay) = {d};
ri(ar) = {d}; ko) = {d};
ki(ag) = {d}; Kolag) = {d, tey, teo};
Ki(ag) = {d}; rolag) = {d};
ri(ay) = {ter }s kolay) ={d};
wi(as) = {tca}; Ko(as) = {d};
ki(ag) = {d}; Ko(ag) = {d};
ki(ar) = {d}; kolar) = 0;

Log Language) [7], by which the workflow event logging mechanism of a workflow enact-
ment engine stores all workflow process execution event histories triggered by the engine
components. XWELL needs to be standardized such that heterogeneous workflow mining
systems are able to collect the event logs without any additional data transformations.
In general, the event logs might be produced by the three types of workflow engine’s
components, such as event triggering components, event formatting components, event
logging components.

The event triggering components handle the workflow enactment services requested
from workflow clients. These services can be categorized into three levels of classification
— Workcase level class, Running activity level class, and Workitem level class. The event
formatting components try to compose event log messages according to the service classes
after performing the requested services. Finally, the event logging components, especially
the log agents, are responsible for the event logging mechanism. Once a log agent receives
event logs and transforms them into XML-based log messages. It stores the transformed
messages into the Log File Storage.

Based on the XML-based event logs on the log file storage, we can build a workflow
process mining warehouse that forms a three dimensional cube with dimensions, work-
flow process models, temporal workcases, and activities. We extract a set of temporal
workcases (traces) that is instantiated from a structured workflow process model from the
cube. A temporal workcase is a temporal order of activity executions within an instance
of the corresponding workflow process model. It will formally represent a workcase model.
The details of the temporal workcase and its related models are precisely defined in the
next section. Finally, the structured workflow process mining algorithm rediscovers a
structured workflow process model by incrementally amalgamating a series of workcase



AN ICN-BASED WORKFLOW PROCESS REDISCOVERY FRAMEWORK 4269

'\Worldlow
Activities
CO LA Workflow Process ) StartTime-Based Temporal Workcases,
- Warehouse 2) CompletedTime-Based Temporal Workeases,
o R o Voot P P ] of Temporal Workeases | 3) ScheduledTime-based Temporal Workcases
RARRRRRARRE M
G % O ) % ] % % ] % ] % | M
e i LOGs in XWELL
AT T T 1. (XML-based
R TR ) A 2 A I Worklley Workflow Event Log Language)
oyl G| o | % f o [ Workeasts
Sf] G B ) @l %nf ®n 'I'he

Aﬁrkﬂuw
Procedures Temporal Worlccases
Spawned From a SWPM

i o N
w, w, w, #

00000
3 -3 3 3

The Rediscovered
Workflow Process Model

FiGURE 3. The workflow process rediscovery framework

models, w; ~ w,, one-by-one. The details of the algorithm and its operational example
are described in the next sections.

3.2. o-algorithm. This section gives full detail to the structured workflow process min-
ing algorithm and demonstrates the algorithm’s correctness using an example structured
workflow process model. We have to assume that there might be many and possibly infi-
nite workflow process models (if fake activities are allowed) that could be mined from a set
of traces to mine a structured workflow process model if we use one of the conventional
algorithms like [2,3,19]. Even though some of these models are very easy to compute,
others are not. Thus, we must pick one reasonable model out of the infinite number of
models as a final output of the algorithm. However, those traditional algorithms have
high-orders of complexity. Therefore, we must take a fundamentally different approach
to conceive an algorithm. More specifically, our algorithm will build up one reasonable
model by amalgamating one trace after another, each of which is embodied in a workcase
model. In summary, the central idea of our approach is as follows:

e The algorithm repeatedly modifies a temporarily rediscovered workflow process model,
termed reasonable model, by incorporating one trace at a time into it until it runs
out of traces.

o Thus, it is an incremental algorithm; after seeing the first trace the algorithm gen-
erates a new reasonable model, and upon seeing the second trace it merges into the
existing reasonable model, and so forth.

e Conclusively, the algorithm is made up of a series of rewrite operations that transform
the reasonable model plus one trace into a new reasonable model until the last. The
final reasonable model becomes the structured workflow process model rediscovered
from all traces of the corresponding workflow process model.



4270 K. P. KIM

3.2.1. Workflow traces: temporal workcases. A temporal execution sequence of its ac-
tivities is produced and logged into a database or a file, as a workflow process instance
executes; this temporal execution sequence is termed workflow trace or temporal workcase,
formally defined in Definition 3.2. The temporal workcase is made up of a set of work-
flow event logs as defined in Definition 3.1. In addition, we would define the concept of
workflow process log in Definition 3.3, which is produced from a set of temporal workcases
spawned from a single structured workflow process model.

Definition 3.1. Workflow Event Log. Let we = («, pe, wf, ¢, ac, e, p*, t, s) be a workflow
event, where « is a workitem (activity instance) number, pec is a package number, wf is a
workflow process number, ¢ is a workflow instance (workcase) number, ac is an activity
number, € is an event type, which is one of {Scheduled, Started, Changed, Completed}, p
s a participant or performer, t is a timestamp, and s is an activity state, which is one
of {Inactive, Active, Suspended, Completed, Terminated, Aborted}. Note that * indicates
multiplicity.

In general, we consider a workflow event log to be stored in XML format. An XML-
based workflow event log language has been studied and proposed in [7] for workflow
mining. There are three levels of classes—workitem class, running activity class, and
workcase class—for the workflow event logs. Here, we just introduce the XML schema of
a workflow event log for the workitem class, as shown in Table 2, to properly illustrate
the basic concept of the workflow mining. The WORKITEM attribute of a workflow
event represents a workitem ID that is uniquely assigned by the workflow enactment en-
gine when it is corresponding activity is scheduled to the worklist handler. In addition,
the corresponding activity is identified by the buildtime’s IDs—PACKAGE ID, WORK-
FLOW ID and ACTIVITY ID—and the runtime’s ID—WORKCASE ID—that represents
a process instance maintained and executed by a runtime client. The EVENT attribute is
used to specify the event type—Scheduled, Started, Changed, Completed—of the activity
instance being logged. The PARTICIPANT attribute is used to specify who performs the
workitem. The TIMESTAMP attribute specifies the time the event occurred. Finally,
the STATE attribute represents the workitem’s runtime state maintained by the engine.
Whenever the workitem’s state is changed, it is logged with the eventcode, WMChanged-
WorkitmeState. The possible state is one of those states, such as INACTIVE, ACTIVE,
SUSPENDED, COMPLETED, TERMINATED and ABORTED.

Definition 3.2. Workflow Trace (Temporal Workcase). Let WT(c) be the workflow
trace of process instance ¢, where WT(¢) = (wey, ..., wey). Especially, the workflow trace
is termed a temporal workcase, TW(e), if all activities of its underlined process instance
are successfully completed. The three types of temporal workcases according to the event
types are Scheduled, Started, Completed:

e ScheduledTime Temporal Workcase
{we;|we;.c = e A\ we;.e = "Scheduled’ AN we;.t < wej.t Ni <jAN1<i,j<n}, which
s a temporally ordered workflow event sequence based upon the scheduled time stamp.
e StartedTime Temporal Workcase
{we;|we;.c = e N\ we;.e = "Started’ A\ we;.t < we;.t ANi <jAN1<1i,j<n}, which is
a temporally ordered workflow event sequence based upon the stated time stamp.
o CompletedTime Temporal Workcase
{wei|we;.c = ¢ N\ we;.e = "Completed’ A\ we;.t < wej.t Ni <jAN1 <1i,j<n}, which
s a temporally ordered workflow event sequence based upon the completed time stamp.

The three types of temporal workcases are differentiated from the temporal informa-
tion (the event’s timestamp) logged when the corresponding activity’s workitem event



AN ICN-BASED WORKFLOW PROCESS REDISCOVERY FRAMEWORK 4271

TABLE 2. XML schema of the workitem class’s event logs

Log Element XML Tag Description

WorkitemLog <WorkitemLog> ... </WorkitemLog> Event Log on Workitem

WorkitemID <WorkitemI|D > WorkitemID  Unique ID for the
< /WorkitemID> workitem
PackagelD <PackagelD> PackageID  Package ID identifying the
< /PackagelD> package being associated
with this workitem
WorkflowID <WorkflowlD> WorkflowID  Process Definition ID
< /WorkflowlD> identifying the workflow
being associated with this
workitem
WorkcaselD <InstancelD> WorkcaseID  Workcase (Process In-
</WorkflowID> stance) ID identifying the

workcase being associated
with this workitem

ActivitylD <ActivityID> ActivityID  Activity Definition ID for
< /WorkflowlD> the base activity of this
workitem
EventCode <EventCode> EventCode  This message code is as-
= { WMAssginedWorkitem sociated with the events
| WMTakenWorkitem | of this workitem

WMChangedWorkitemState
| WMCompletedWorkitem }

< /EventCode>
EventTimestamp <EventTimestamp> EventTimestamp  Timestamp at the time
</EventTimestamp> when the event was
recorded
Performer <Performer> Performer </Performer>  Performer ID of the cur-
rent workitem
State <State> State = { INACTIVE | Current state of the
ACTIVE | SUSPENDED | COMPLETED | workitem

TERMINATED | ABORTED } </State>

occurred, as shown in the definition of temporal workcase. The events that are associated
with the workitem are WMAssginedWorkitem, WMTakenWorkitem, WMChangedWorkitemSta-
te and WMCompletedWorkitem, based upon the workflow event log format of Table 2. How-
ever, we take into account only three events—WMAssginedWorkitem, WMTakenWorkitem
and WMCompletedWorkitem, which correspond to Scheduled, Started and Completed,
respectively, in the temporal workcase, to form the types of temporal workcases to be
used in the workflow mining algorithm.

Definition 3.3. Workflow Process Log and Warehouse. Let I; = {ci,... ci} be a
set of completed process instances (m is the number of process instances) that have been
instantiated from a workflow process model, I;. A workflow process warehouse consists of
a set of workflow process logs, WL(I;), ..., WL(I,), where WL(I;) =VWT(c' € L), and
n is the number of workflow process models managed in a system.

We are able to prepare the temporal workcases, which become the input data of the
workflow mining algorithm proposed in this paper, based on these defined concepts. Ad-
ditionally, we can build three different types of workflow process logs and their warehouses
as defined in Definition 3.3, according to the types of temporal workcases. The workflow
mining algorithm may consider taking the temporal workcases, as input data, coming



4272 K. P. KIM

Workcase Model
Wy
Temporal Workcase Y
we

[ e Jie Je Ji= ]
@ )8 )<&)

2N
FIGURE 4. The workcase model

from one of three workflow process warehouse types—Scheduled Time-based Warehouse,
Started Time-based Warehouse, and CompletedTime-based Warehouse. In addition, the
algorithm may simultaneously take two types of temporal information such as Scheduled-
Time/Completed Time or Started Time/Completed Time to rediscover structured workflow
process models. In this case, the algorithm needs to take two types of the temporal work-
cases, each of which belongs to its respective warehouse type. The algorithm presented
in this paper will take care of the StartedTime-based workflow process warehouse as the
source of the temporal workcases. Nevertheless, the algorithm will be able to be extended
to handle two types of temporal workcases as its input data.

3.2.2. Workcase model. Fach of the temporal workcases, as the input data of the algo-
rithm, is represented to a workcase model via a series of converting operations of the
algorithm. We formally define the workcase model in Definition 3.4. It can be graphically
represented, as shown in Figure 4. The primary reason we use the formal workcase model
is due to its convenience in composing the structured workflow process mining algorithm.

Definition 3.4. Workcase Model (WCM). A workcase model is formally defined through
3-tuple W = (w, P, S) over an enacted-activity set E(C A) out of the original ICN-based
workflow model, where

e P is a predecessor activity of some external workcase model that is connected to the
current workcase model;

e S is a successor activity of some external workcase model that is connected from the
current workcase model;

o w=w; Uw,,
where, w, : E — o(E) is a single-valued mapping function of an activity to its im-
mediate successor in a temporal workcase, and w; : E— o(E) is a single-valued
mapping function of an activity to its immediate predecessor in a temporal workcase.

3.2.3. The basic amalgamating principles. As described in the previous section, a struc-
tured workflow process model is designed by the three types of control transitions—sequen-



AN ICN-BASED WORKFLOW PROCESS REDISCOVERY FRAMEWORK 4273

tial, disjunctive and conjunctive transition—keeping the matched-pairing and proper-
nesting properties. Therefore, the structured workflow process mining algorithm must be
obligated to rediscover these transitions by amalgamating the temporal workcases of a
workflow process log. The basic idea of the amalgamation procedure conducted by the
algorithm is to incrementally amalgamate one workcase model after another. In addition,
the most important thing is to observe and seek those three types of transitions during
the amalgamation procedure task.

Precisely, the basic amalgamating principles seeking each of the transition types are
as follows: if a certain activity is positioned in the same temporal order in all workcase
models, then the activity is to be involved in a sequential transition; else if the activity is
in a different temporal order in some workcase models, then we can infer that the activity
is to be involved in a conjunctive transition; otherwise if the activity is either presented
in some workcase models or not presented in the other workcase models, then it has to
be involved in a disjunctive transition.

We algorithmically illustrate the amalgamation procedures rediscovering a conjunctive
transition and a disjunctive transition through Figure 5 and Figure 6, respectively, as
simple examples of the amalgamating principles. In Figure 5, suppose we examine the
workflow process log of a structured workflow process model that has three activities, a;,
az and a4, and try to amalgamate two specific workcase models; the temporal order of
az and a4 in one workcase model, is reversed on the other workcase model. Therefore,
we can infer that the activities, az and ay4, are involved in a conjunctive transition of the
structured workflow process.

Temporal TemEoraI
WurkcaseI Workcase,

¥
i ;
¢

94
9

«9@@«4
®

AND-pocl
*~—>
i >
A A ) VAN
L ) Rediscovered

( Step | AND-Relationship

FiGURE 5. The amalgamating principle rediscovering AND-transition

Temporal Temporal
Workcase, Workcase,

IS

-~

Rediscovered
OR-Relationship

FIGURE 6. The amalgamating principle rediscovering OR-transition



4274 K. P. KIM

In Figure 6, we also assume that we examine the workflow process log of a structured
workflow process model that has four activities, a;, a3, a4 and a5, and try to amalgamate
two specific workcase models; the temporal order of a; and a5 in one workcase model is the
same in the other workcase model; in addition, the positions of a3 and a4 in the temporal
order are the same in these two workcase models respectively. Conversely, the activities,
az and a4, are not presented in these two workcase models simultaneously. Therefore,
we can infer that the activities, az and a4, are involved in a disjunctive transition of the
structured workflow process.

3.2.4. The SWP mining algorithm. We conceive a workflow mining algorithm to redis-
cover a reasonable structured workflow process model from a workflow process log, based
upon the basic amalgamating principles. We name it o-Algorithm [18], because its basic
idea is to incrementally amalgamate the temporal workcase, which simply reflects the
conceptual idea of the summation operator (>) in mathematics. We could not fully de-
scribe the algorithm here. However, we introduce the simple descriptions of a series of
operational functions used in the algorithm as follows. In addition, we give the detailed
algorithm with the following pseudo-codes with explanations as comments, so it is easy
to grasp the algorithm without a full description.

e readOneWorkcase() composes a temporal workcase model, we[ |, from a workflow
trace with its event history logs.

e isSANDTransition() makes a decision whether two activities (input parameters of
the function) on the current temporal workcase model have an AND-relationship, or
not.

e checkupTransition() decides the relationship out of “fixed, sequential, conjunctive,
and disjunctive relationships” between an activity set (the first input parameter) on
the current rediscovered SWPM and an activity (the seconde input parameter) on
the new temporal workcase model.

e makeANDTransition() amalgamates the input parameter’s activity into the current
temporary rediscovered SWPM with a conjunctive (AND) relationship.

e makeORTransition() amalgamates the input parameter’s activity into the current
temporary rediscovered SWPM with a disjunctive (OR) relationship.

e eliminatePreviousTransition() eliminates the input parameter’s activity from the
current temporal workcase model after composing AND or OR relationships on the
current temporary rediscovered SWPM.

PROCEDURE SWPMiningProcedure():

1:  Input : A Set of Temporal Workcases, V(wc[i],i = 1..m);

2 where, we[l] == START(v/), we[m] == END(A);

3:  Output : (1) A Rediscovered SWPM, R = (§, %, I, O);

4: - The Activity Set of SWPM, A = {a; .. a,}, (weli],i = 1..m) € A;
5: (2) A Set of Workcase Models (WCMs), ¥V W = (w, P, S);
6.

7: Initialize : 0;(START(V)) < {NULL}; 6,(END(A)) « {NULL};
8:

9: PROCEDURE SWPMiningProcedure()

10: BEGIN

11: WHILE ((wc[ | < readOneWorkcase()) # EOF) DO

12: 7+ 1;

13: WHILE (wcli] # END(A)) DO

14: wo(weli]) < weli + 1], 1 « i+ 1; w;(weli]) « weli — 1];

15: END WHILE



16:

17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44.
45:
46:
47:
48:
49:
50:
51:

52:

AN ICN-BASED WORKFLOW PROCESS REDISCOVERY FRAMEWORK 4275

/* Rediscovering a temporary Rediscovered SWPM from the current
WCM */
FOR (i =1;i < m;i++;) DO
IF (Is 0,(wc[i]) an empty-set?) THEN
8o (weli]) «— w,o(wceli]); continue;
END IF
IF (isANDTransition(wc|i],w,(wc[i])) == TRUE) THEN
continue;
END IF
FOR (each set, a, of sets in d,(wc[i])) DO
SWITCH (checkupTransition(a,w,(wc[i])) DO
Case ’fixed transition’:
Case ’sequential relationship’:
8o (weli]) «— wo(weli]);
break;
Case ’'conjunctive transition (AND-split)’:
ANDset «+— makeAND Transition(a, w,(wc[i]));
do(weli]) <= d,(weli]) U ANDset;
eliminatePreviousTransition(a, w,(wc[i]));
break;
Case 'disjunctive transition (OR-split)’:
ORset «+— makeORTransition(a, w,(wc[i]));
do(weli]) <= d,(we[i]) U ORset;
eliminatePreviousTransition(a,w,(wc[i]));
break;
Default: /* Exceptions */
printErrorMessage();
break;
END SWITCH
END FOR
END FOR
END WHILE
finishupSWPM();
/*Its input-activity sets, (d;(weli]), i = 1..n) and its transition-conditions* /
di(a;) < {START(/)}; 0,(ay) + {END(A)};
PRINTOUT
(1) The Rediscovered Structured Workflow Process Model, SWPM, R = (¢, x,
I, 0);
(2) A Set of the Workcase Models, WCMs, YW = (w, P, S);

53: END PROCEDURE

3.2.5. An operational example. Finally, Figure 7 algorithmically illustrates the algorithm’s
operational example. The right-hand side of the figure, which is formally defined in Table
3, is the rediscovered structured workflow process model that the algorithm extracts from
the temporal workcases; these are the typical four temporal workcases that can be possibly
produced from the original structured workflow process model. As you may expect, the
algorithm is not concerned with the original model; nevertheless, we need it to generate a
set of temporal workcases and to verify the algorithm. Fortunately, we are able to imagine
that the original model produces the following four Started Time temporal workcases:

(1) ay—ay—ay—az3—ag



4276 K. P. KIM

(2) a1—>Qo—> 05— 03— 0g
(3) ay—ay—az—as—ag
(4) a1—>Qo—> 03— 05— 0g.

Figure 7 illustrates the detailed amalgamating procedure and its associated data struc-
tures that show that the algorithm incrementally amalgamates the Started Time temporal
workcases one-by-one. In the figure, a group of linked lists under each of the temporal
workcases represents the temporal orders, w,(« € E), of the corresponding temporal work-
case model. We assume that start and end activities are omitted from each of the temporal
workcases. For example, the first group of the linked lists in the figure comes from the first
temporal model with start and end activities, (1) start—a;—ay—as—az3—ag—end. And,
the second group of the linked lists is the result of amalgamating the first temporal work-
case model with the second temporal workcase model, (2) start—a;—ay—as—az—ag—
end; where, ® represents the amalgamating operator. Similarly, amalgamating all of those
four temporal workcases produces the fourth group of the linked lists, which eventually
builds up into the rediscovered structured workflow process model in the right-hand side
of the figure.

3.2.6. Analysis of the algorithm. As emphasized in the previous sections, this algorithm
operates on the concept of a structured workflow process model that retains the proper-
nesting and matched-pairing properties. Keeping these properties constrain the modeling
workflow processes and the mining workflow processes; nevertheless, it might be worthy to

The Original The Temporal Workcases The Rediscovered
Workflow Process Model Workflow Process Model
(1] (2] (3] 4 ]
H e H oo H oo H
o] [ (o] Lo ]
(=]
R 3 A ™ 3 e N ’ A ™ & — ™
(@ [Sorfe}>[a | [Sorne}>[a | [Fatle} o[ | [Fedle]l [ & ]
! [ Jo} 5w | [ [o} e ] [w ol w@ ] [ o} & |
(e Jo}>ar] [Len [} >fladtod [eo [o}>foctiodiad] [Ca; o} fod (@]
[ o= a | [ & ] [l « | [w[# & |
[e o= & | [a[of=2 & | [afof2 & | [Calof= o |
Lo [of>{end | [Co [0} > @ | [l o | [ o3 a |
(o [0} 5[ end | Lo [of= end | [[a end

FIGURE 7. An operational example of the algorithm

TABLE 3. Control flows of the rediscovered structured workflow process model

= (0, k,1,0) /* The Rediscovered Structured Workflow Process Model

0= 51 U 50 o )
{{os}):

di(ar) = do(cur)
di(as) = {{az}} do(ay) =
0i(az) = {{as}}; 0o(az) = {{as, {{ay}, {as} 1}
0i(az) = {{az}}; do(as) = {{as}};
0i(ay) = {{as}}; do(ay) = {{as}};
0i(as) = {{az}}; do(as) = {{as}};
0i(ag) = {{as, {{ay}, {as}}}}; do(as)
i 0o

= {{ar}};
ar) = {{as}}; = 0;

7




AN ICN-BASED WORKFLOW PROCESS REDISCOVERY FRAMEWORK 4277

preserve the constraints because they can play an important role in increasing the integrity
of workflow models. Especially, an improperly nested workflow model complicates its
analysis and the workflow model with unmatched pairs may be stuck and reach a deadlock
during its execution. In view of the results so far analyzed, we would say that the proper-
nesting and matched-pairing properties might no longer become constraints in the mining
algorithms and the workflow modeling works.

Another important issue in designing workflow process mining algorithms is how to
handle loop transitions in a workflow process model, because they may produce many
workflow event logs and much more complicated patterns of temporal workcases. The
model’s execution may generate very diverse and complex patterns of temporal workcases
based on the number of repetitions and the inside structure of a loop transition. Therefore,
the algorithm proposed in this paper must be extended to correctly handle the loop
transitions. We will leave this issue to our future research.

The Original The Rediscovered
Workflow Process Model The Temporal Workcases with StartedTime Workflow Process Model
(o] (o] (o] [a]
[ eal [l o]
S 9 B e o e B
o,
o] (o]
(] (=] (o]
[slort Je}>{ o | [stat[e}—] o | [stoifel>] w | [startfe] > o |
Lol wm ] [alds o] Calds w | [ald w |
[ Jof=> a0 | [ [o}={ o | [o Jo}2{ tmed | [@ (o} >[Tupad |
Lo o= a | Lo [ w0 | [ M3 a0 | [Ca [0 >[Hadind]
Lo (o3 e | [o [ofSfedod [[en [oF3] fodiad | [T [o]>[Hadind |
Lo [ o | [as [ o | [as [ o (o [o=] o ]
(o [o2{end ] [ewlt> o | [Cald> o | [wlf> « |
[ [*F={end | [a [6]> end | [Cay [o}=>["ena ]

FiGURE 8. The algorithm’s abnormality with Started Time Temporal Workcases

The Original The Rediscovered
Workflow Procass Model The Temporal Workcases with StartedTime & CompletedTime Worldlow Process Model
N/

|l | [ e | oy L= |

(=] [y | Lol | (]

[, | (=, | e | [im |

o] )] Lo oo

[Liea] [ ] (e ] A

® & & I @ & @ o

A [ 1o | (s | [l

[l [s) ] (o] (e ]

A [ | s | [osl]

[l ] ) | [as]] (=) ]

[ic ] = | A iz ]

o) o) az) )

™ i - e ™ I'g e ™ -
[start[o}>"w | [sot]e}>{"a | [start[e}>] a | [stotfe}l >« | [slatfe] > o |
[aJol o a | [wmlefo a | [wlds o | [alds & | [« @ |
Lo o= wm | [Cmlod3{ e | [=ld3{iwmau] [ole} o Tmar] [ o] > fwal ]
[a ot w0 | [wmlot> o | [al®3 o | [[a (o tmend | [w [+ o |
oo o3 e | Cw [ >fodiod (o [of>{foded] [o (o] [(o o> Edid ]
[t o | [wlo}>{ o | [ > o ] [alot> o | [a]o} > o |
[eotoled] [wml® >l ] [wlof> o | [l & | (w3 = |

[ [

o [of > end | [o [¢}>] end | [or=>] end | [o [of>{ end |

&

FIGURE 9. The resolution of the abnormality with Started Time and Com-
pletedTime Temporal Workcases



4278 K. P. KIM

Additionally, the o-Algorithm presented in the paper may not guarantee rediscover-
ing the exact structured workflow process model, in terms of the algorithms’ correct-
ness issue, because the algorithm is based on the only single type of temporal informa-
tion—=Started Time temporal workcases. As illustrated in Figure 8, the algorithm may
rediscover a kind of strange workflow process models duplicating activities on OR con-
structs or AND constructs, which might not happen in the real modeling situation, and so
which might be an abnormal structured workflow process model. This duplicated activi-
ties problem comes from using only one type of temporal information in the o-Algorithm,
like in the case of the example temporal workcases Figure 9. It is true that the redis-
covered model is semantically correct; however, it is syntactically incorrect, as you see.
Therefore, the o-Algorithm is able to resolve the abnormality by using more sophisticated
temporal information. That is, Figure 9 shows that the duplicate activities problem has
been resolved by supplementing the Started Time temporal orders and the Completed Time
temporal orders in logging the activities’ execution events.

Finally, in terms of the complexity issue, the o-Algorithm’s time complexity is O(N x
M), where N is the number of activities associated in the original workflow process model,
and M is the number of temporal workcases. Fortunately, it is possible to dramatically
reduce the number of temporal workcases, because all of the temporal workcases filtered
from the workflow process log (warehouse) can be grouped by the workflow reachable-
pathes [5] of the original workflow process model.

4. Implementation of the Framework. The author’s research group has recently com-
pleted the development of a workflow management system that aims for very large scale
workflows applications, and it is dubbed e-Chautauqua workflow management system [25].
e-Chautauqua is based on the workcase-oriented workflow architecture [26], and especially
we have implemented it by the Enterprize Java Beans framework approach, while almost
all conventional workflow systems are based on the activity-oriented workflow architecture
proposed by OMG [27-30]. This section shortly introduces e-Chautauqua’s event logging
mechanism and formats. As a functional part of the proposed framework, we have de-
veloped an XML-based event logging mechanism and language, which is abbreviated to
XWELL. In this section, we describe the functional structure of log agents, and explain
about how the engine components take events, generate the events’ log message formats
and their language, and finally store them on log database. Additionally, we introduce the
asynchronous logging message queue mechanism that is used for the engine components
to store their event log information formatted in XWELL.

4.1. Engine’s logging components. The core engine components of e-Chautauqua’s
engine are the workcase objects residing on the workcase pool, as shown in Figure 10. That
is, the control flow management is done by the workcase objects in the workcase-oriented
workflow engine (e-Chautauqua), and so the activity precedence information is stored to
the inside of each workcase object as data. Figure 10 illustrates the relationship and
interactions between the e-Chautauqua engine’s workcase components and the log agent
components that are in charge of the execution of the event logging mechanism proposed in
this paper. As shown in the figure, once one of the workflow clients requests its assigned
activity enactment services, then its corresponding workcase component performs the
requested services, and makes their corresponding events log information according to
the XML-based log message format to be specified in the next section and stores to log
databases through the corresponding log agent. The functional structure of the workflow
event logging mechanism consists of the following three types of components:

e Fuvent triggering components — Requester and Worklist Handler



AN ICN-BASED WORKFLOW PROCESS REDISCOVERY FRAMEWORK 4279

Service Requests
e-Chautaugua Engine LE :‘1

Workcases Pool Lo Fequester
=)
)=
S,

)
i

—C  worklist [J<—
Handler

.

i

=

events logging
based on the
Interface 5 of WiMC

Service Requests

O

FI1GURE 10. e-Chautauqua’s events logging mechanism

e Fuvent formatting components — Workcase Pool
e Fuvent logging components — Log Agent and Log File Storage

The Requester and Worklist Handler handle the workflow enactment services requested
from workflow clients, and, these services are able to be categorized into three levels of
classification—Workcase level class, Running activity level class, and Workitem level class.
The Workcase Pool has workcase objects, as its residents, each of which composes event
log messages according to the service classes after performing the requested services.
Finally, the Log Agent and Log File Storage take in charge of the responsibility of the
event logging mechanism. Once, a log agent receives event logs and then transforms them
into XML-based log messages, and store the transformed messages onto the Log File
Storage.

4.2. The implementation details of XWELL. All events coming from the e-Chautau-
qua workflow enactment components, such as worklist handler, requester and workcases,
would have to be logged on a certain type of storage. These events log information is
precisely well-defined in the audit and monitoring functions’ standard specifications of
WEMC3. Moreover, an XML-based formats of audit and monitoring information have
been recently released and termed BPAF that stands for Business Process Audit Format
by WEMC. However, this section tries to identify and classify all events produced by the
engine components, and also to define them by a certain form of XML-based representa-
tion formats developed by the author’s research group only for the framework proposed
in this paper.

4.2.1. Workflow event log information. As shortly explained in the previous section, the
workcase components, which are taking a role of the event formatting component, com-
pose event log messages after executing the requested services from the event triggering
components—the requester and the worklist handler. After doing the formatting job,
they transmit the formatted event log messages to the event logging components—the
log agents. Based on the formatted messages, the log agents form the XML-based event
log information. In order to efficiently perform these logging-related jobs, we classify the
events into three levels of classes—workcase level event class, running activity level event
class, and workitem level event class in implementing the workflow process rediscovery

3Workflow Management Coalition, http://www.wfmc.org



4280 K. P. KIM

| Workcase E3—{=J=
RTActivitylD

WorkcaselD

PackagelD

Workllowl0g (== (=x

ActivityName

Activity Type

EventCode

—| EventTimestamp |

| Workitem B3-(——J&

FiGure 11. Structure of the workflow event log schema

TABLE 4. Workflow event log classes

Event Log Classes Log Elements to be Tagged in XML

Workcase Class WorkcaselLog, = WorkcaselD,  ParentWorkcaselD,
WorkcaseName, State, PackagelD, WorkflowlD,
EventCode, EventTimestamp, CreatedTimestamp,
StartTimestamp

Running Activity Class RTActivityLog, WorkcaselD, State, PackagelD,
WorkflowlD, ActivitylD, Activity Type, ActivityName,
EventCode, EventTimestamp

Workitem Class WorkitemLog, WorkitemID, PackagelD, WorkflowlD,

WorkcaselD, ActivitylD, ActivityName, State, Event-
Code, EventTimestamp, Performer

framework. Figure 11 shows the event log schema implementing the three levels of the
event log classes, and Table 4 enumerates the tagging elements of the event log classes.
Also, the detailed event names of the event log classes to be captured and logged by the
framework’s logging mechanism are simply enumerated as the following:

e Workcase Level Events: WMCreatedWorkcase, WMStartedWorkcase, WMChanged-
WorkcaseState, WMCompletedWorkcase, WM TerminatedWorkcase, WMAbortedWork-
case

o Running Activity Level Fvents: WMChangedActivitylnstanceState, WMCompletedAc-
tivitylnstance, WMTerminatedActivitylnstance, WMADbortedActivitylnstance

o Workitem Level Fvents: WMAssginedWorkitem, WM TakenWorkitem, WMChanged-
WorkitemState, WMCompletedWorkitem

4.2.2. An operational example of the workflow event log. Figure 12 is a runtime-snapshot
of the workflow events logged by the implemented framework’s logging mechanism of



AN ICN-BASED WORKFLOW PROCESS REDISCOVERY FRAMEWORK 4281

L R G N T L S J <WorkcaseLog>
attb"\b:teFfrhrlzt?ef?glrtz:‘quf;aliltﬂeE:u:lf;x‘:"_s " . <WUTkCaSe|D>Bsﬁlsalmmﬂlwofkcase“))
AL ek i VA ERMBE <ParentWorkcaselD> null{/ParentWorkcaselD>
e atoeme, {WorkcaseName>Performance Test Workcase {/WorkcaseName>
- <xsisequence> } . <State>INITIATED (fSla1e>
il T <PackagelD> 20041219434658234001 </PackagelD>
e e dcncsiil <WorkllowlD> 2004121906854331 1001 </WorkdlowiD>
“xzrelement name="ParentWorkcaselD” /> <EventCode>WMCreatedWorkcase {/EventCode>
P S L L <EventTimestamp> 2005-01-27 21:28:30,609</EventTimestamp>
<xsiclement nane—"PackageID” /- <CreatedTimestamp> 2005-01-27 21:28:30,609</Created Timestamp>
bl bt i <StartTimestamp> null ¢/StartTimestamp>
e Mty ateA T M staa i o - </Workcaselog>
<xsielement nane="StartTimestamp” /> .
Sfxaidequence | <RTActivityLog>
</xs:complex &> T
<piements <WorkcaselD> 851701 1885661850361 </WorkcaselD>
B <State> COMPLETED ¢/State>
g R——— <PackagelD>20041213434658234001 </PackagelD>
<xaielement name='WorkeaseID" /> {WorkflowlD>20041219068543911001 </WorkflowlD>
Pt il ULl B <ActivitylD> 2004121901034125001 </ActivitylD>
EasisSment nameR s WOrkH iR D> <ActivityName> Start Activity </ActivityName>
<xsielemnent na ctivit:Name“ /> <AC“VI‘yTVDe> START (/AC“V“YT?DQ)
Sl i ANy Ty {EventCode> WMCompletedActivitylnstance </EventCode>
<xsielement name="EventTimestamp” /> <EventTimestamp> 2005-01-27 21:29:10,953</EventTimestamp>
;E’;‘;iﬁ.ﬁﬁf;?f;, L ¢/RTActivityLog>
Gt & <WorkiternLog>
e s GTRTONYS <{WorkiternID> 381846316557838007</WorkiternID>
<xsielement name="WorkcaseID" /> <{WorkcaselD> 1147626680670526430</WorkcaselD>

=xs:element nane="PackagelD" />
<xs:element name:
<xs:element name="Activity ID" />
<xs:element name="ActivityName" />

<PackagelD>20041219434658234001 </PackagelD>
<WorkflowlD> 2004121306854391 1001 </WorkflowlD>

Zxsielsment name="EventCode* /> <ActivitylD> 2004121901034125002</ActivitylD>
e or o st AP/ <ActivityName> Draft Making </ActivityName>
JFstialamant name="Etater /s <EventCode>WMAssignedWorkitem </EventCode>
</xsicomplexTypes <EventTimestamp> 2005-01-27 21:43:22, 14</EventTimestamp>
Slslamety {Performer>ahnhj<{/Performer>
</xs:icomplexType > (Sta(e)lNﬁCTIVE </S‘ate>
s enma - {/WorkitemlLog>

F1GURE 12. The implemented workflow event log schema and log-snapshots

the e-Chautauqua workflow management system. The left-hand side of the figure is
the XML schema-structure of the workflow event logs, and the right-hand side of the
figure shows a snapshot of the sampled XWELL-based workflow event logs, each of which
comes from three different types of event log classes, respectively. In order to make a
temporal workcase from the logs, the tagged values of WorkcaselD, ActivitylD, EventCode,
EventTimestamp, and State elements of the workitem class are directly related to form a
temporal workcase. Therefore, the o-Algorithm internally works based on these tagged
elements of temporal workcases in the workflow process mining warehouse.

4.3. Extensions of the implemented framework. The workflow enactment event log
information generated by the implemented rediscovery framework may have some valu-
able implications on performing a series of advanced techniques not only for improving
the quality of workflows but also for discovering useful knowledge. In order to maximize
the usability of the valuable logs, it is necessary for the framework to extend its oper-
ational functionality and coverage. Conclusively, the framework can be systematically
implemented and functionally extended with the following crucial functionalities:

e Workflow runtime status monitoring and statistical reporting functionality
e Workflow runtime recovery functionality

e Workflow knowledge mining and discovery functionality

e Workflow validation functionality

Additionally, the implemented rediscovery framework may affect the techniques and
methods of workflow knowledge discovery, too. Here is an example of workflow knowl-
edge discovery issue; It is the case of reachable-path rediscovery problem [5,6] that gives a
way to efficiently rediscover the discrepancy between the original workflow process model
as it is built and the enacted workflow process (workcase) as it is actually executed. The



4282 K. P. KIM

discrepancy, as you can easily imagine, is caused by the alternative paths exhibited on
the model. The number of alternative paths on the model will effect on the degree of the
discrepancy. For example, after rediscovering a workcase from workflow logs, we need to
know along which reachable-path the workcase has followed. This might be very useful
knowledge for workflow administrators and designers to redesign and re-estimate the orig-
inal workflow process model after being elapsed a specific amount of period. Conclusively,
this statistical runtime information should be very effective and valuable knowledge for
redesigning and reengineering the workflow model, and the proposed framework can be
extended so as to support this workflow knowledge discovery issue, too.

The implemented rediscovery framework has something to do with those algorithms for
discovering a work-sharing human network embedded on a workflow model, and also for
quantifying the degree of working-intimacy among humans through the essential notions
of the centrality—degree centrality, betweenness centrality, stress centrality and closeness
centrality—sharing the enactment of the workflow procedure. Basically, the recent issue
of social network discovery is to define a discovered human network from the workflow
enactment event logs, to evaluate the degrees of working-intimacies in the discovered
human network, and finally to visualize the degrees of working-intimacies among humans
through a commercialized tool used to visualizing social networks, based on the centrality
analysis result over the discovered human network.

Summarily speaking, the workflow process rediscovery framework proposed in the paper
ought to be an essential component for conceiving techniques and methods resolving those
issues introduced above. In the near future, the framework will be extended with some
discovery techniques of workflow knowledge and social networks.

5. Related Works. So far, the research and development works in the workflow litera-
ture concerning about the workflow process rediscovery and mining issues have proposed
several algorithms like [1-4,8,9,11-15,17,19]. Others have developed workflow process min-
ing systems and tools [2,6]. Particularly, J. Herbsta and D. Karagiannisb in [2] presented
results of their experimental evaluation and experiences of the InWoLvE workflow mining
system, which is the first industrial application of the workflow process mining techniques.
However, almost all of the contributions focus on the development of the basic functional-
ity of workflow process mining techniques. Particularly, W. M. P. van der Aalst’s research
group, through the papers of [1,9,14,17], proposed the fundamental definition and the use
of petrinet-based workflow process mining algorithms to support the design of workflows.
They described challenging problems and some workflow process mining approaches and
algorithms. Problems, which they stated in [1], include short-loops (one-length loop and
two-length loop) problems, invisible task, duplicate task, implicit places, non-free choice,
and synchronization of OR-join place problems. However, these problems are based on
the Petri-Net modeling approach and focused on the workflow’s control flow perspective.

Clarence Ellis’s research group newly defined the scope of the workflow mining concept
from the view point of workflow systems being “people systems” that must be designed,
deployed, and understood within their social and organizational contexts. Thus, they
argue in [11,12,19] that there is a need to expand the concept of workflow discovery
beyond the process dimension to encompass multidimensional perspective such as social,
organizational [22], and informational [20,23] perspectives. As you have seen, this paper
proposes the workflow process rediscovery framework based upon the extension version of
the o-Algorithm [18], which might be one of the pioneering works pursuing the workflow’s
multidimensional mining activities. Particularly, this paper showed the feasibility of the
framework by implementing the most essential components of the workflow event log
formats and language.



AN ICN-BASED WORKFLOW PROCESS REDISCOVERY FRAMEWORK 4283

Summarily speaking, as a next step of this pioneering work it is needed to investigate
the adoptability of the itemsets concepts [21,24] in realizing a certain type of advanced
workflow knowledge rediscovery frameworks. Additionally, none of these approaches and
algorithms addressed in this paper considers the workflow’s change version management
[23] activity in rediscovering workflow processes and knowledge. Therefore, adopting these
advanced concepts to the workflow rediscovery techniques ought to be the future works
of this paper.

6. Conclusion. This paper proposes a framework for rediscovering structured workflow
processes, and implements the essential components of the framework. Particularly, it
shows that the workflow process mining algorithm (o-Algorithm) is able to rediscover
structured workflow processes from the temporal workcases filtered from the workflow
process execution log. Remind that the o-Algorithm is based on the ICN-based struc-
tured workflow process model, which might be the fundamental property differentiating
this paper’s framework from others’. Additionally, we have seen that the proposed frame-
work is able to correctly handle the three different types of control transitions—sequential,
selective and parallel transitions—via an operational example. At the same time, the
framework should be improved so as to reasonably rediscover the loop transitions, which
should be one of the toughest challenges that the workflow literature conquers in the fu-
ture. Conclusively, workflow mining methodologies and systems are rapidly growing and
coping with a wide diversity of domains in terms of their applications and working envi-
ronments. Thus, the literature needs various, advanced, and specialized workflow process
mining techniques and architectures that are used to eventually give feed-backs to the re-
design and reengineering phase of the existing workflow models. We strongly believe that
this work might be a pioneering contribution towards improving and advancing workflow
rediscovery technology.

Acknowledgement. This work (Grant No. 00047962) was supported by the 2011 Busi-
ness Grants for Cooperative Research and Development between Industry, Academy, and
Research Institutes funded from the Korea Small and Medium Business Administrations.

REFERENCES

[1] W. M. P. van der Aalst et al., Workflow mining: A survey of issues and approaches, Journal of Data
& Knowledge Engineering, vol.47, no.2, pp.237-267, 2003.

[2] J. Herbsta et al., Workflow mining with InWoLvE, Journal of Computers in Industry, vol.53, no.3,
2004.

[3] G.Schimm, Mining exact models of concurrent workflows, Journal of Computers in Industry, vol.53,
no.3, 2004.

[4] S. S. Pinter et al., Discovering workflow models from activities’ lifespans, Journal of Computers in
Industry, vol.53, no.3, 2004.

[5] K. Kim and C. A. Ellis, Workflow reduction for reachable-path rediscovery in workflow mining, Series
of Studies in Computational Intelligence: Foundations and Novel Approaches in Data Mining, vol.9,
pp-289-310, 2006.

[6] K. Kim, A workflow trace classification mining tool, International Journal of Computer Science and
Network Security, vol.5, no.11, pp.19-25, 2005.

[7] K. Kim et al.,, A XML-based workflow event logging mechanism for workflow mining, Proc. of Int.
Conf. on CSA, 2007.

[8] R. Agrawal et al., Mining process models from workflow logs, Proc. of Int. Conf. on Extending
Database Technology, 1998.

[9] A. K. A. de Medeiros et al., Process mining: Extending the alpha-algorithm to mine short loops,
BETA Working Paper Series, 2004.

[10] C. Ellis, Information control nets: A mathematical model of information flow, ACM Proc. of Conf.
on Simulation, Modeling and Measurement of Computer Systems, pp.225-240, 1979.



4284 K. P. KIM

[11] C. Ellis et al., Workflow mining: Definitions, techniques, and future directions, Workflow Handbook
2006, pp.213-228, 2006.

[12] C. Ellis et al., Beyond workflow mining, Lecture Notes in Computer Science, vol.4102, pp.49-64,
2006.

[13] R. Silva, J. Zhang and J. G. Shanahan, Probabilistic workflow mining, Proc. of ACM SIGKDD Int.
Conf. on Knowledge Discovery in Data Mining, 2005.

[14] W. M. P. van der Aalst, A. K. A. de Medeiros and A. J. M. M. Weijters, Genetic process mining,
Proc. of Int. Conf. on ATPN, pp.48-69, 2005.

[15] W. Gaaloul and C. Godart, Mining workflow recovery from event based logs, Lecture Notes in
Computer Science, vol.3649, pp.169-185, 2005.

[16] R. Liu and A. Kumar, An analysis and taxonomy of unstructured workflows, Lecture Notes in
Computer Science, vol.3649, pp.268-284, 2005.

[17] W. M. P. van der Aalst et al., Workflow mining: Discovering process models from event logs, IEEE
Transactions on Data €& Knowledge Engineering, vol.16, no.9, pp.1128-1142, 2004.

[18] K. Kim and C. A. Ellis, o-Algorithm: Structured workflow process mining through amalgamating
temporal workcases, Proc. of Pacific-Asia Conf. on Knowledge Discovery and Data Mining, 2007.

[19] A. Rembert, Automatic Discovery of Workflow Models, Ph.D. Thesis, University of Colorado at
Boulder, 2008.

[20] N. Nakano, A study on modeling and analysis of agent-based simulations with Q-learning, Interna-
tional Journal of Innovative Computing, Information and Control, vol.7, no.1, pp.51-60, 2011.

[21] C.-P. Lai, P.-C. Chung and V. S. Tseng, A novel algorithm for mining fuzzy high utility itemsets,
International Journal of Innovative Computing, Information and Control, vol.6, no.10, pp.4347-4361,
2010.

[22] B. Behdani, Z. Lukszo, A. Adhitya and R. Srinivasan, Agent-based modeling to support operations
management in a multi-plant enterprise, International Journal of Innovative Computing, Information
and Control, vol.6, no.7, pp.2873-2884, 2010.

[23] D. Kim, N. Lee, S. Kang, M. Cho and M. Kim, Business process version management based on
process change patterns, International Journal of Innovative Computing, Information and Control,
vol.6, no.2, pp.567-575, 2010.

[24] C.-J. Chu, V. S. Tseng and T. Liang, Mining temporal rare utility itemsets in large databases using
relative utility thresholds, International Journal of Innovative Computing, Information and Control,
vol.4, no.11, pp.2775-2792, 2008.

[25] K. Kim and H. Ahn, An EJB-based very large scale workflow system and its performance mea-
surement, Proc. of the 6th International Conference on Web-Age Information Management, LNCS,
vol.3739, pp.526-537, 2005.

[26] K.-H. Kim and C. A. Ellis, Performance analytic models and analysis for workflow architectures,
Journal of Information Systems Frontiers, vol.3, no.3, pp.339-355, 2001.

[27] D. Alonso et al., Exotica/FMQM: A persistent message based architecture for distributed workflow
management, Proc. of the IFIPS Working Conference on Information Systems for Decentralized
Organizations, 1995.

[28] K. Wallnau et al., Toward a distributed mediated architecture for enterprise-wide workflow manage-
ment, Proc. of the NSF Workshop on Workflow and Process Automation, 1996.

[29] J. Weissenfels et al., An overview of the mentor architecture for enterprise wide workflow manage-
ment, Proc. of the NSF Workshop on Workflow and Process Automation, 1996.

[30] Joint Submitters, Workflow Management Facility, Revised Submission, OMG Document Number:
bom98-06-07, 1998.



