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ABSTRACT. Cervical smears are used to detect cervical intraepithelial neoplasia (CIN)
and remain o popular method for the early detection of precancer and cervical cancer.
One of the classification systems for CIN, the Bethesda system, classifies atypical cells
into ASC-US (atypical squamous cells of undetermined significance) and ASC-H (atypi-
cal squamous cells: cannot exclude a high-grade squamous intra-epithelial lesion). This
paper proposes a methodology involving a decision tree (DT) to identify cases of ASC-US
by constructing a classification decision tree (CDT) based on samples from a Taiwanese
teaching hospital. The main difference between our methodology and those of other stud-
ies is the use of a DT to identify ASC-US cases. We calculated the sensitivity, specificity,
positive predictive value (PPV) and negative predictive value (NPV) to evaluate the per-
formance of our methodology and found a sensitivity of 86.36%, a specificity of 78.94%,
a PPV of 90.47% and an NPV of 71.42%. The results indicate that our CDT is capa-
ble of detecting cases that are abnormal and positive; in contrast, detecting cases that
are benign and negative remains a challenge. Moreover, our CDT performs well when
predicting the cases that are abnormal and positive but performs poorly when predicting
benign and negative cases. Considering both the sensitivity and PPV, we demonstrate
that our CDT can help decrease the number of ASC-US cases.
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1. Imtroduction. Cervical cancer is the second largest cause of female cancer mortality
worldwide; the estimated number of cervical cancer deaths per year is approximately
250,000 [1]. In Taiwan, cervical cancer is the third leading cause of death for females
between 25 and 44 years of age and ranked second out of all cancers for female deaths
in the late 1980s [2]. Cervical cancer did drop low as a cause of death in the 2000s;
however, on average, the mortality rate remains at greater than 900 deaths per year.
This high mortality rate prompted the Taiwanese government to promote a variety of
programs over the past decade, which effectively reduced the mortality rate to 710 deaths
in 2008. The programs ranged from encouraging females to undergo screening tests earlier
(see details below), to encouraging regular follow-up examinations if the test results were
inconclusive. Therefore, an accurate test not only reduces mortality but also decreases
health-care costs.

The primary cause of cervical cancer is infection with any of a number of high-risk
types of human papillomavirus (HPV). Most HPV infections regress spontaneously or are
eliminated by the host immune system; however if left untreated, some infections may
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lead to the development of cervical intraepithelial neoplasia (CIN) or precancer, which
can lead to cervical cancer. As it usually takes more than 10 years for precancer lesions
caused by HPV to develop into invasive cancer, most cervical cancers can be prevented
by early detection and treatment of precancerous lesions.

CIN can be discovered through screening with the Papanicolaou test (also called Pap
smear, Pap test, cervical smear or smear test), which can detect potentially precancerous
changes in the ectocervix. Once detected, significant changes can be treated, and thus,
cervical cancer can be prevented. Several systems have been designed for classifying
precancerous conditions of the cervix based on cytology and histology. One such system,
the Bethesda System (TBS), was originally developed in the 1990s. In a later improvement
in 2001, TBS started classifying atypical cells as ASC-US (atypical squamous cells of
undetermined significance) or ASC-H (atypical squamous cells: cannot exclude a high-
grade squamous intra-epithelial lesion). This classification is also recommended by the
World Health Organization (WHO) for cytological reports. Due to its indeterminate
nature, an ASC-US case is commonly left untreated. However, according to previous
research [3], roughly 12.7% of ASC-US cases develop into HSILs (high-grade squamous
intraepithelial lesions) or SCC (squamous cell carcinoma), both of which are highly likely
to eventually develop into cervical cancer. This high probability demonstrates the need
to develop methods for correctly identifying ASC-US cases [4,5].

The objective of this study was to decrease the number of ASC-US cases by applying a
decision tree (DT) [6]. We propose a methodology that constructs a classification decision
tree (CDT) based on cervical smear samples, either positive or negative. With this CDT,
we classify ASC-US samples and relabel the samples as positive if the CDT classifies
them as positive. A DT is a logic structure that can model a decision analysis. Each DT
starts with a root node, such as the attributes of positive samples, recursively generates
branching nodes, and ends with leaf nodes specifying the samples as either positive or
negative.

Before proceeding to report the details of the DT, we describe the unique features of
our proposed methodology and the main advantages of the results. According to Ho et al.
[7], the majority of previous studies on cervical cancer have focused on describing patient
characteristics and genetic polymorphisms independently using statistical methods. To
overcome the limitations of past studies, the authors used DTs to identify cervical cancer
risk factors, such as demographic and environmental factors. The authors stated that
their study was the first to use induction techniques to analyze risk factors for cervical
cancer. Horng et al. [8] also studied environmental and host factors involved in the
progression of HPV infection to HSIL and cervical cancer. In summary, others have used
DTs to study cervical cancer, but their research has mainly focused on studying the risk
factors involved. To the best of our knowledge, no previous research has attempted to
resolve ASC-US cases using a DT. Moreover, from the perspective of managing health-care
costs, the main advantage of our methodology lies in the elimination of a certain number
of follow-up examinations that are not required if the ASC-US cases can be properly
determined.

The remainder of this paper is organized as follows. Section 2 briefly introduces cervical
smears. Section 3 describes our methodology and research framework. Section 4 describes
the data and the construction of a CDT using a smaller sample size, and Section 5 discusses
the empirical results. Section 6 presents the conclusions.

2. Cervical Smears. For a cervical smear, sample cells are collected from the outer
opening of the cervix of the uterus and the endocervix using an extended-tip wooden
spatula or brush. After the collection, the sample is smeared onto a glass slide, and
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the slide is stained using the Papanicolaou technique, in which tinctorial dyes and acids
are selectively retained by cells. Afterward, the slide is examined using a microscope
to determine whether the cells are normal and to classify them appropriately, using a
system such as TBS, mentioned earlier. Smears are evaluated in a laboratory by trained
cytotechnicians under the supervision of a pathologist who is responsible for the reported
results. Due to its convenience and simplicity, the cervical smear remains an effective and
widely used method for the early detection of precancer and cervical cancer.
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FIGURE 1. Progression from normal epithelium to invasive cancer

TABLE 1. Classifications of cervical smear according to the Department of
Health of Taiwan

NEGATIVE FOR INTRAEPITHELIAL LESION AND MALIGNANCY
Within normal limits ....... ... 1
Reactive changes: Inflammation, repair,
radiation, and others ........ ... ... . . . 2
Atrophy with inflammation ......... .. .. ... . 3

ATYPICAL SQUAMOUS CELLS
Atypical squamous cells (ASC-US) ... ..o, 4
Atypical squamous cells — cannot exclude HSIL ........................ 16

LOW-GRADE SQUAMOUS INTRAEPITHELIAL LESION (LSIL)

Mild dysplasia (CIN 1) with koilocytes .............coiiiiiiiiii... 6
Mild dysplasia (CIN 1) without koilocytes. ..o, 7
HIGH-GRADE SQUAMOUS INTRAEPITHELIAL LESION (HSIL)
Moderate dysplasia (CIN 2) ... 8
Severe dysplasia (CIN 3) ... ... 9
Carcinoma in situ (CIN 3) ... ... 10
Dysplasia — cannot exclude HSIL ...... .. ... . ..o il 17
SQUAMOUS CELL CARCINOMA (SCC) ..niiiiii e 11

CIN, also known as cervical dysplasia, is the potentially premalignant transformation
and abnormal growth (dysplasia) of squamous cells on the surface of the cervix. CIN is
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commonly classified by grade: CIN 1, CIN 2 or CIN 3. The progression from normal
epithelium to CIN 1, 2 and 3 and invasive cancer is shown in Figure 1 [9]. The vertical
axis of Figure 1 represents the morphology of a given cell layer during this progression.
As mentioned earlier, TBS is a system used for reporting cervical smear results. Some
abnormal cervical smear results, as determined by TBS, include the following: atypical
squamous cells, low-grade squamous intraepithelial lesions (LSILs) and HSILs. According
to the WHO [9], LSIL is equivalent to CIN 1, and HSIL comprises the combination of
CIN 2 and CIN 3. On the basis of the 2001 TBS, the Department of Health of Taiwan
classifies the cervical smear as listed in Table 1. Throughout the paper, we will refer to
positive samples as Items 6 and 7 (LSIL); 8, 9, 10 and 17 (HSIL) and 11 (SCC). Similarly,
ASC-US samples are Items 4 and 16.

3. Methodology. A DT is a logic structure that can partition a large collection of
records into smaller sets of records. The goal is to create a model for predicting the value
of a target variable based on a set of input variables. In this tree, each node corresponds
to one of the input variables and there are edges to the children of the node for each of the
possible values of that input variable. Each leaf represents a value of the target variable
given the values of the input variables represented by the path from the root to the leaf.
The tree recursively grows based on information gain; namely, at each node, the attribute
with the most information gain is selected. The recursion is completed when the subset
of a node has the same value as the target variable or when the splitting no longer adds
value to the predictions.

The information gain is computed as follows. Given a dataset D, the entropy (impurity
or disorder) of D is defined as:

Entropy(D) = — Zpi log, (pi) (1)

where p; is the proportion of class 7 samples in D and m is the number of classes. The
information gain of an attribute A is the expected reduction in entropy caused by splitting
on this attribute:

Gain(D, A) = Entropy(D) — Z | U|Entropy(Dv) (2)

where D, is the subset of D for which attribute A has value v, and |D,| denotes the number
of D,. In this context, the entropy of the partitioned data is calculated by weighting the
entropy of each partition by its size relative to the complete dataset.

A later version of the DT, C4.5 [10], contained a number of improvements. At each node
of the tree, C4.5 chooses one attribute that most effectively splits the dataset into subsets
by normalizing information gain. The attribute with the highest normalized information
gain is the one chosen to split and is computed as follows:

: — |Dy| | D |
Split(D, A) = x log (3)
2 1oj * % (7o)
With Split(D, A), we can define a gain ratio as follows:
, , Gain(D, A)
D A) = —————= 4
GainRatio(D, A) Split(D, A) (4)

In the following, we will select the variable with the highest GainRatio(D, A) to split
a decision tree.
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Patient reports of cervical smear
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FiGurEe 2. A flowchart of the methodology

As introduced in Section 1, our methodology involves constructing a CDT. A schematic
of our methodology is depicted in Figure 2, but the methodology will be introduced in
more detail below.

Despite the wide applications for DT, applying a DT to cervical cancer or cervical
smears has occurred infrequently in reports such as those mentioned earlier [7,8]. Recall
that Ho et al. [7] identified the combined patterns of cervical cancer risk factors using
an induction technique and demonstrated how the DT could be used in risk analysis and
target segmentation for cervical cancer management. Horng et al. [8] used a Bayesian
network and four different DT algorithms, comparing the performance of these learning
algorithms and claimed that the results could identify combinations of genetic factors that
influence the risk associated with common complex multifactorial diseases such as cervical
cancer. Readers are referred elsewhere for additional studies using DTs to investigate
cancer [11-13].

The issue of cancer classification has also been addressed in the literature. Mohamad
et al. [14] proposed a two-stage gene selection method to identify a smaller subset of
informative genes that are most relevant for cancer classification. Later, Mohamad et
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al. [15] improved their earlier study by proposing a three-stage selection method. The
additional stage analyzes the frequency of the appearance of each gene in the subsets,
producing a small subset of informative genes. Yeh et al. [16] proposed simplified swarm
optimization for discovering breast cancer classification rules. The authors concluded that
the proposed approach has potential application in hospital decision-making.

4. Data. We collected sample cells (referred to as samples thereafter) from one of the
largest teaching hospitals in Taiwan. Samples were originally collected between 2006 and
2009, and the samples were verified by one pathologist and two cytotechnicians. Each
sample was classified either as positive or negative, and the samples were divided into
training samples and test samples. We now describe attribute definitions, followed by the
construction of a DT using a small sample size.

4.1. Attribute definition and clustering. To classify a cervical smear sample appro-
priately, we consider the following four attributes: 1) nuclear chromatin characteristics,
2) nuclear membrane or nuclear envelope characteristics, 3) nuclear to cytoplasmic (N/C)

TABLE 2. Classes of nuclear chromatin and nuclear membrane
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TABLE 3. Classes of N/C ratio and cellular color

Nuclear to cytoplasmic (N/C) ratio
1 | <02

1 | Light green

2 [202but<0.4 2 | Light orange

3 |204but<0.6 3 | Green
»
4 | =20.6<but<0.8 |35 © 0‘ | 4 | Orange

P ®

.“P.* ‘:%. j

ratio and 4) cellular color. Nuclear chromatin is categorized into six classes according
to its distribution and density. The nuclear membrane can fall into one of seven classes
based on its roughness and smoothness. The nuclear to cytoplasmic ratio is a ratio of
the size (i.e., volume) of the nucleus of a cell to the size of the cytoplasm of that cell.
The nuclear to cytoplasmic ratio has five classes equally divide the range between zero
and one. Cellular color is categorized into four classes based on cellular maturity and
the type of cell. Detailed descriptions of each class are provided in Tables 2 and 3, and
pictures are reported elsewhere [17]. All samples are discretized based on the attribute
classes described above [18]. To enhance computational efficiency and reduce excessive
branching of the DT, we cluster each attribute into three equal-depth partitions. This
clustering method has been shown to be able to produce desirable results for single-layer
clustering [19]. The three equal-depth clusters for each attribute are listed in Table 4,
where a label such as C1 is associated with a cluster containing the value range discretized
as described above.

5 | =0.8<but<1.0

TABLE 4. Three equal-depth clusters for each attribute

Nuclear chromatin | Nuclear membrane N/C ratio Cellular color

0.000 - 1.030 | C1 | 0.000 - 1.0035 | M1 | 0.000 - 1.005 | R1 | 0.000 - 1.010 | L1

1.031 - 1.100 | C2 | 1.0036 - 1.009 | M2 | 1.005 - 1.021 | R2 | 1.011 - 1.020 | L2
> 1.100 C3 > 1.009 M3 > 1.021 R3 > 1.021 L3
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4.2. Constructing trees using small sample size. As a preliminary step to evaluate
the performance of our proposed methodology, we initially tested on a small set of sam-
ples. For this preliminary evaluation, we used several confirmed cases as training samples
and generated a DT. Afterward, we applied the tree to test samples and calculated the
classification accuracy to evaluate whether the tree could be used as the CDT mentioned
in Section 1. The classification accuracy is the ratio of items that are classified into the
correct classes. Finally, we used the CDT to test some ASC-US samples; if the sample
was classified as positive, it was relabeled as positive. We simply used the classification
accuracy as the criterion at this step, additional performance criteria will be introduced
in Section 5.

TABLE 5. Information gain and gain ratio for each attribute using a small
sample size

Gain (D, A) | Split (D, A) | GainRatio (D, A)
Nuclear chromatin 0.226 1.214 0.1859
Nuclear membrane 0.192 1.496 0.1286
N/C ratio 0.035 1.579 0.0220
Cellular color 0.001 1.546 0.0007

Nuclear

chromatin
Cl C3

C2

Nuclear Nuclear P
membrane membrane
M3
M1 M2 M1 M2 M3
N N/C ratio Cellular Cellular N/C ratio p
color color
R3
RL /%5 RL/R2
P Cellular P Cellular N
color color

FIGURE 3. Classification decision tree (CDT) with a small sample size

After using the training samples with 29 positives and 29 negatives, we computed the
gain ratio for each attribute defined in Equation (4); all gain ratios are listed in Table
5. According to Table 5, nuclear chromatin had the highest value, and cellular color
had the lowest one. Therefore, the root of the CDT started with nuclear chromatin; the
underlying tree is shown in Figure 3, where the label next to an edge corresponds to
the cluster label defined in Table 4, and a leaf node with “P” or “N” means positive or
negative, respectively. For example, consider the leftmost branch of Figure 3. The branch
means that if nuclear chromatin is in cluster C1 and nuclear membrane is in cluster M1,
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the sample is determined to be negative. We continued to test another 30 samples, 15
positives and 15 negatives, and the classification accuracy was found to be 93.3%, with
only two positive samples misclassified as negatives. Because the accuracy is as high
as 93.3%, the underlying tree can be referred to as a CDT. With the CDT in place,
we proceeded to test five ASC-US samples. After using the CDT, two were identified
as positive, and three remained classified as ASC-US. Despite the small sample size, the
outcome was encouraging because two out of five ASC-US cases were relabeled as positive.

5. Empirical Results. In Section 4, we tested a smaller set of samples and found that
some ASC-US cases were relabeled as positive. In this section, we describe a second test
with a larger sample size and examine whether the size of the sample affects the outcome.
We begin by describing the performance criteria.

5.1. Performance criteria for the CDT. In addition to the classification accuracy
mentioned in Section 4, we used sensitivity, specificity, positive predictive value (PPV)
and negative predictive value (NPV) to evaluate the performance of the CDT. Sensitivity
refers to the ability of the test to correctly identify individual cases with conditions such
as precancer. The higher the sensitivity, the fewer cases with precancer that will be
incorrectly identified as normal. Specificity refers to the ability of the test to correctly
identify individual cases without precancer. The higher the specificity, the fewer cases
with normal cervix tissue will be incorrectly identified as precancerous. An ideal test
would have both a high sensitivity and a high specificity. The sensitivity and specificity
are computed as follows:

sensitivity (%) = TP/(TP + FN);
specificity (%) = TN/(FP + TN), where
TP = true positive,

TN = true negative,

FP = false positive, and

FN = false negative.

The definitions of TP, TN, FP and FN are given in Table 6, where a patient report is
referred to as benign if it classifies a diagnosis as normal and as abnormal if it classifies a
diagnosis as an LSIL, an HSIL or SCC. Finally, one may also want to know the likelihood
of actually having the disease when the test turns out to be positive. This likelihood is
referred to as the positive predictive value (PPV) of the test. In contrast, the negative
predictive value (NPV) is the chance of not having the disease when the test returns a
negative result.

TABLE 6. Definitions of TP, FP, TN and FN

Category Patient report | DT report
True positive (TP) | Abnormal Positive
False positive (FP) | Benign Positive
True negative (TN) | Benign Negative
False negative (FN) | Abnormal Negative
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5.2. Construction of CDT. The larger set of training samples contained 250 cases, 125
positives and 125 negatives; the gain ratios and the CDT derived from the samples are
given in Table 7 and Figure 4, respectively. Again, nuclear chromatin had the highest
gain ratio, and cellular color had the lowest. Moreover, comparing Figure 4 to Figure
3, we observe that both trees differ marginally in terms of the structure, implying that
the size of the samples may not be critical as long as the size is sufficiently large. The
test samples included 100 total samples, 50 positives and 50 negatives. After applying
the CDT, the classification accuracy was 91.0% (91/100). In the nine misclassified cases,
five were negative but misclassified as positive, and four were positive but misclassified as
negative. The sensitivity and specificity were 92.0% and 90.0%, respectively. A previous
study [20] has shown that the sensitivity of the Papanicolaou smear test is between 30%
and 87% and that the specificity is between 86% and 100%. In comparison, our CDT
generates a considerably higher sensitivity and a specificity that equals that found in the
previous study.

TABLE 7. Information gain and gain ratio for each attribute using a large
sample size

Gain (D, A) | Split (D, A) | GainRatio (D, A)
Nuclear chromatin 0.358 1.186 0.3017
Nuclear membrane 0.334 1.557 0.2145
N/C ratio 0.045 1.574 0.0284
Cellular color 0.017 1.565 0.0106
Nuclear

chromatin

C3
Nuclear Nuclear
membrane membrane P
M3
M1 M2 : M1 M2 M3
P o Cellular P
N N/C ratio N/C ratio color N/C ratio P
Rl R3
R2
P Cellular N Cellular
color color
L1 o L3

FIGURE 4. Classification decision tree (CDT) with a large sample size

5.3. Performance of the CDT and discussion. To evaluate how well our CDT per-
forms, we used 63 ASC-US samples for which patient reports were available. Our discus-

sions are based on the performance criteria introduced above, namely, sensitivity, speci-
ficity, NPV, and PPV. After applying the CDT to the 63 ASC-US samples, we classified
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42 as positive and 21 as negative, indicating that the number of ASC-US cases was signif-
icantly overestimated. However, the results must be further verified against the patient
reports before we can claim that the decrease is indeed an advantage of the proposed
methodology. Table 8 lists the sensitivity, specificity, PPV and NPV of the CDT.

TABLE 8. Sensitivity, specificity, PPV and NPV for the CDT

Patient reports

CDT Abnormal Benign
Positive = 42 38 4
Negative = 21 6 15

Sensitivity = 38/44 = 86.36%
Specificity = 15/19 = 78.94%
Positive predictive value (PPV) = 38/42 = 90.47%
Negative predictive value (NPV) = 15/21 = 71.42%

Siddiqui et al. [5] have reported that the sensitivity range is between 62.73% and
98.04% and that the specificity range is between 73.15% and 92.22%. In this respect, the
sensitivity of our CDT is relatively high, but its specificity has room for improvement.
High sensitivity represents a better capability to detect the cases that are abnormal and
positive, while lower specificity represents the challenge inherent to detecting cases that
are benign and negative. In other words, high sensitivity enables the CDT to meet our
goal of decreasing the number of ASC-US samples. With respect to PPV and NPV, the
former is 90.47% and the latter is 71.42%, as shown in Table 8. Using other methods,
the PPV commonly ranges from 40.01% to 96.47% and the NPV ranges from 55.87% to
99.95% [5]. By these standards, our CDT has a relatively high PPV and a somewhat low
NPV. The implication is that our CDT excels in predicting cases that are abnormal and
positive but poorly predicts benign and negative cases. A high PPV also helps the CDT
decrease the number of ASC-US samples. In conclusion, the use of CDT is justified due
to its high accuracy, high sensitivity and high NPV.

6. Conclusions. This paper applied a DT to determine ASC-US cases by constructing
a CDT based on the cervical smear samples from a teaching hospital in Taiwan. We
collected samples classified as positive or negative, divided the samples into a training set
and test set and used ASC-US cases with available patient reports to verify the results.
To evaluate how our CDT performed, we analyzed the sensitivity, specificity, positive
predictive value and negative predictive value.

According to the empirical results, the sensitivity is 86.36%, the specificity is 78.94%,
the positive predictive value is 90.47% and the negative predictive value is 71.42%. In
terms of medical perspectives, our CDT has a better capability to detect cases that are
abnormal and positive, whereas it is challenging for our CDT to detect cases that are
benign and negative. In summary, considering the sensitivity and positive predictive
value, our CDT can help decrease the number of samples classified as ASC-US. In terms
of managerial implications, this paper demonstrates that the DT can be a useful tool to
help identify more positive ASC-US cases simply with available cervical smear samples,
without purchasing additional equipment.

Despite the encouraging results from our CDT, some concerns may be raised about the
computation in our methodology. Indeed, our conclusions are based on a medium sample
size and we only implemented the clustering method [19] to enhance the computational
efficiency. Due to the size of this sample, we didnot address the issue of computational
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complexity, nor did we consider other pruning mechanisms that are widely used for en-
hancing the efficiency of DT. Additionally, we didnot discuss how our CDT deals with
missing values or outliers. In terms of these issues, our methodology leaves room for
improvement.

We have also mentioned that no previous research has applied a DT to determine ASC-
US cases. In this respect, our selection of the four attributes used to classify a sample,
our categorization of the attributes, and our discretization of the samples was successful,
but not without limitations. That is, our results are based on this selection, categoriza-
tion and discretization. Future research should investigate how different attributes or
categorizations of the attributes affect the results.
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